Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Laser Induced Damage in Optical Materials: 1986
By
HE Bennett
HE Bennett
1
Naval Weapons Center
?
China Lake, California 93555
Search for other works by this author on:
AH Guenther
AH Guenther
2
Air Force Weapons Laboratory
?
Kirtland Air Force Base, New Mexico 87117
Search for other works by this author on:
D Milam
D Milam
3
Lawrence Livermore National Laboratory
?
Livermore, California 94550
Search for other works by this author on:
BE Newnam
BE Newnam
4
Los Alamos National Laboratory
?
Los Alamos, New Mexico 87545
Search for other works by this author on:
ISBN-10:
0-8031-4477-6
ISBN:
978-0-8031-4477-4
No. of Pages:
725
Publisher:
ASTM International
Publication date:
1988

Laser induced damage in a dielectric material is triggered by the presence of a sufficient number of electrons in the conduction band. When these are accelerated by the laser field with phonon assistance, they can lead to an electron avalanche and, in turn, may initiate permanent detectable damage. We have investigated the precondition of the electron avalanche model, i.e. the initial creation of electrons in the conduction band. We assume the presence of small metallic inclusions (r ∼ 10 to 100Å) in the dielectric which we model by infinitely deep one-dimensional square well potentials. The dynamics of such a model are known to be chaotic if the laser field exceeds a certain threshold value. Under these conditions an electron can gain enough energy to bridge the gap between the valence band and the conduction band. The present model yields threshold fields associated with intensities of the order of 1010W/cm2. Unfortunately, the dependence on the wavelength is complicated, however, a threshold value exists for that wavelength above which no damage occurs no matter how strong the field is.

1.
Nathan
V.
and
Guenther
A. H.
,
J. Opt. Soc. Amer. B
 0740-3224
2
(
1985
) 294.
2.
Gorkov
L. P.
and
Eliashberg
G. M.
,
Sov. Phys. JETP
 0038-5646 
21
(
1965
) 940;
Epifanov
A. S.
,
Sov. Phys. JETP
 0038-5646 
40
(
1974
) 987;
Zakharov
S. I.
,
Sov. Phys. JETP
 0038-5646 
41
(
1975
) 1085;
Manykin
E. A.
,
Poluektov
P. P.
, and
Rubezhnyi
Yu. G.
,
Sov. Phys. JETP
 0038-5646 
43
(
1976
) 1105;
Lushnikov
A. A.
,
Maksimenko
V. V.
, and
Simonov
A. Ya.
,
Sov. Phys. Solid State
 0038-5654 
20
(
1978
) 292;
Malshukov
A. G.
,
Sov. Phys. JETP
 0038-5646 
58
(
1983
) 409;
Babadzhan
E. I.
,
Kosachev
V. V.
,
Lokhov
Y. N.
, and
Ryazanov
M. I.
,
Fiz. i. Khim. Obr. Met.
17
(
1983
) 12.
3.
Lin
W. A.
and
Reichl
L. E.
,
Physica D
 0167-2789 
19
(
1986
) 145.
4.
Lin
W. A.
and
Reichl
L. E.
,
Physica D
 0167-2789 
19
(
1986
) 145.
5.
See e.g.,
Lichtenberg
A. J.
and
Lieberman
M. A.
,
Regular and Stochastic Motion
, (
Springer
,
NY
,
1982
).
6.
Chirikov
B. V.
,
Phys. Rep.
 0370-1573 
52
(
1979
) 263.
7.
Escande
D. F.
and
Doveil
F.
,
J. Stat. Phys.
 0022-4715 
26
(
1981
) 257.
8.
Walker
T. W.
,
Guenther
A. H.
, and
Nielsen
P. E.
,
IEEE J. Quant. Electron
 0018-9197.
QE-17
(
1981
) 2041.
9.
Reichl
L. E.
and
Lin
W. A.
,
Phys. Rev. A
 1050-2947 
33
(
1986
) 3598.
10.
Jensen
R. V.
,
Phys. Rev. A
 1050-2947 
30
(
1984
) 386;
Jensen
R. V.
,
Chaotic Behavior in Quantum Systems
, ed. by
Casati
G.
, NATO ASI Series B, Vol.
120
(
Plenum
,
NY
), p. 171;
van Leeuwen
K. A. H.
 et al
,
Phys. Rev. Lett.
 0031-9007 
55
(
1985
) 2231.
11.
Jensen
R. V.
,
Phys. Rev. Lett.
 0031-9007 
54
(
1985
) 2057.
12.
Zaslavskii
G. M.
and
Filonenko
N. N.
,
Sov. Phys. JETP
 0038-5646 
25
(
1968
) 851.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal