Skip to Main Content
Skip Nav Destination
ASTM Monographs
Bone Graft Substitutes and Bone Regenerative EngineeringAvailable to Purchase
By
Cato T. Laurencin, M.D., Ph.D.
Cato T. Laurencin, M.D., Ph.D.
Editor
Search for other works by this author on:
Tao Jiang, Ph.D., MBA
Tao Jiang, Ph.D., MBA
Editor
Search for other works by this author on:
ISBN:
978-0-8031-7060-5
No. of Pages:
396
Publisher:
ASTM International
Publication date:
2014

Repair and regeneration of complex human musculoskeletal tissues such as long bones and limbs using biomaterials, cells, and/or growth factors is a great challenge for tissue engineers and orthopedic surgeons. Tissue engineering has long been considered an alternative to bone graft substitutes for bone regeneration. Recently regenerative engineering has emerged as the next stage in the evolution of tissue engineering. Regenerative engineering is an interdisciplinary field in which traditional tissue engineering converges with advanced materials science, stem cell science, and areas of developmental biology. In this chapter, we first briefiy introduce various commercially available bone grafting materials. Then we provide a state-of-the-art review on the tissue engineering approach to bone regeneration using biomaterials, cells, and growth factors. Finally, we emphasize the emergence of the field of regenerative engineering, aiming to overcome various challenges that researchers have faced in bone tissue engineering. The regenerative engineering approach to bone repair takes advantage of advances in materials science, stem cells, and developmental biology, and in our opinion represents the next era in engineering bone tissue.

1.
Rodan
,
G. A.
, “
Introduction to Bone Biology
,”
Bone
, Vol.
13
,
1992
, pp. S3–S6.
2.
Buckwalter
,
J. A.
,
Glimcher
,
M. J.
,
Cooper
,
R. R.
, and
Recker
,
R.
, “
Bone Biology I. Structure, Blood-Supply, Cells, Matrix, and Mineralization
,”
J. Bone Joint Surg. Am.
, Vol.
77A
,
1995
, pp. 1256–1275.
3.
Ross
,
M. H.
,
Kaye
,
G. I.
, and
Pawlina
,
W.
,
Histology: A Text and Atlas.
Lippincott Williams & Wilkins
,
Philadelphia, PA
,
2003
.
4.
Schenk
,
R. K.
, “
Biology of fracture repair
. In
Browner
B. D.
Jupiter
J. B.
,
Levine
A. M.
, and
Trafton
P. G.
, Eds.,
Skeletal Trauma: Basic Science, Management, and Reconstruction
,
Saunders
,
Philadelphia, PA
,
2003
. pp. 29–73.
5.
Giannoudis
,
P. V.
,
Dinopoulos
,
H.
, and
Tsiridis
,
E.
Bone Substitutes: An Update
,”
Injury
, Vol.
36
,
2005
, pp. S20–S27.
6.
Jahangir
,
A.
,
Nunley
,
R.
,
Mehta
,
S.
, and
Sharan
,
A.
, “
Bone Graft Substitutes in Orthopaedic Surgery
,”
J. Am. Acad. Orthop. Surg. Now
, Vol.
2
,
2008
, pp. 35–37.
7.
Mendenhall
,
S.
, “
Commentary: The Bone-Graft Market in the United States
,” In
Davies
J. E.
, Ed.,
Bone Engineering.
Em Square Incorporated
,
Toronto, Ontario, Canada
,
2000
.
8.
Laurencin
,
C. T.
and
Khan
,
Y.
, “
Bone Graft Substitute Materials
,” Available at http://www.emedicine.com/orthoped/topic611.htm.
9.
Blokhuis
,
T.
and
Arts
,
J.
, “
Bioactive and Osteoinductive Bone Graft Substitutes: Definitions, Facts and Myths
,”
Injury
, Vol.
42
,
2011
, pp. S26–S29.
10.
Moore
,
S. T.
,
Katz
,
J. M.
,
Zhukauskas
,
R. M.
,
Hernandez
,
R. M.
,
Lewis
,
C. S.
,
Supronowicz
,
P. R.
,
Gill
,
E.
,
Grover
,
S. M.
,
Long
,
N. S.
, and
Cobb
,
R. R.
, “
Osteoconductivity and Osteoinductivity of Puros® DBM Putty
,”
J. Biomater. Appl.
, Vol.
26
,
2011
, pp. 151–171.
11.
Albrektsson
,
T.
and
Johansson
,
C.
, “
Osteoinduction, Osteoconduction and Osseointegration
,”
Eur. Spine J.
, Vol.
10
,
2001
, pp. S96–S101.
12.
Weiland
,
A. J.
and
Daniel
,
R.
, “
Microvascular Anastomoses for Bone Grafts in the Treatment of Massive Defects in Bone
,”
J. Bone Joint Surg. Am.
, Vol.
61
,
1979
, pp. 98–104.
13.
Ilan
,
D. I.
and
Ladd
,
A. L.
, “
Bone Graft Substitutes
,”
Operat. Technol. Plast. Reconstr. Surg.
, Vol.
9
,
2003
, pp. 151–60.
14.
Langer
,
R.
and
Vacanti
,
J. P.
, “
Tissue Engineering
,”
Science
, Vol.
260
,
1993
, pp. 920–926.
15.
Laurencin
,
C. T.
,
Ambrosio
,
A. M. A.
,
Borden
,
M. D.
, and
Cooper
,
J. A.
, “
Tissue Engineering: Orthopedic Applications
,”
Ann. Rev. Biomed. Eng.
, Vol.
1
,
1999
, pp. 19–46.
16.
Liu
,
X. H.
and
Ma
,
P. X.
, “
Polymeric Scaffolds for Bone Tissue Engineering
,”
Ann. Biomed. Eng.
, Vol.
32
,
2004
, pp. 477–486.
17.
Muschler
,
G. E.
,
Nakamoto
,
C.
, and
Griffith
,
L. G.
, “
Engineering Principles of Clinical Cell-Based Tissue Engineering
,”
J. Bone Joint Surg. Am.
, Vol.
86A
,
2004
, pp. 1541–1558.
18.
Spector
,
M.
, “
Biomaterials-Based Tissue Engineering and Regenerative Medicine Solutions to Musculoskeletal Problems
,”
Swiss Med. Wkly.
, Vol.
136
,
2006
, pp. 293–301.
19.
Atala
,
A.
, “
Tissue Engineering and Regenerative Medicine: Concepts for Clinical Application
,”
Rejuvenation Res.
, Vol.
7
,
2004
, pp. 15–31.
20.
Lavik
,
E.
and
Langer
,
R.
, “
Tissue Engineering: Current State and Perspectives
,”
Appl. Microbiol. Biotechnol.
, Vol.
65
,
2004
, pp. 1–8.
21.
Canalis
,
E.
,
Skeletal Growth Factors
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
,
2000
.
22.
Hubbell
,
J. A.
, “
Matrix-Bound Growth Factors in Tissue Repair
,”
Swiss Med. Wkly.
, Vol.
136
,
2006
, pp. 387–391.
23.
Chen
,
R. R.
and
Mooney
,
D. J.
, “
Polymeric Growth Factor Delivery Strategies for Tissue Engineering
,”
Pharm. Res.
, Vol.
20
,
2003
, pp. 1103–1112.
24.
Whitaker
,
M. J.
,
Quirk
,
R. A.
,
Howdle
,
S. M.
, and
Shakesheff
,
K. M.
, “
Growth Factor Release from Tissue Engineering Scaffolds
,”
J. Pharm. Pharmacol.
, Vol.
53
,
2001
, pp. 1427–1437.
25.
Black
,
J.
,
Biological Performance of Materials
,
Marcel Dekker
,
New York
,
1999
.
26.
Palsson
,
B. O.
and
Bhatia
,
S. N.
,
Tissue Engineering
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
,
2004
.
27.
Nikolovski
,
J.
and
Mooney
,
D. J.
, “
Smooth Muscle Cell Adhesion to Tissue Engineering Scaffolds
,”
Biomaterials
, Vol.
21
,
2000
, pp. 2025–2032.
28.
Lu
,
H. H.
,
Cooper
,
J. A.
,
Manuel
,
S.
,
Freeman
,
J. W.
,
Attawia
,
M. A.
,
Ko
,
F. K.
, and
Laurencin
,
C. T.
, “
Anterior Cruciate Ligament Regeneration Using Braided Biodegradable Scaffolds: In Vitro Optimization Studies
,”
Biomaterials
, Vol.
26
,
2005
, pp. 4805–4816.
29.
Chen
,
V. J.
and
Ma
,
P. X.
, “
Nano-Fibrous Poly(L-Lactic Acid) Scaffolds with Interconnected Spherical Macropores
,”
Biomaterials
, Vol.
25
,
2004
, pp. 2065–2073.
30.
Murphy
,
W. L.
,
Kohn
,
D. H.
, and
Mooney
,
D. J.
, “
Growth of Continuous Bonelike Mineral within Porous Poly(Lactide-Co-Glycolide) Scaffolds In Vitro
,”
J. Biomed. Mater. Res.
, Vol.
50
,
2000
, pp. 50–58.
31.
El-Amin
,
S. F.
,
Lu
,
H. H.
,
Khan
,
Y.
,
Burems
,
J.
,
Mitchell
,
J.
,
Tuan
,
R. S.
, and
Laurencin
,
C. T.
, “
Extracellular Matrix Production by Human Osteoblasts Cultured on Biodegradable Polymers Applicable for Tissue Engineering
,”
Biomaterials
, Vol.
24
,
2003
, pp. 1213–1221.
32.
Yu
,
X. J.
,
Botchwey
,
E. A.
,
Levine
,
E. M.
,
Pollack
,
S. R.
, and
Laurencin
,
C. T.
, “
Bioreactor-Based Bone Tissue Engineering: The Influence of Dynamic Flow on Osteoblast Phenotypic Expression and Matrix Mineralization
,”
Proc. Natl. Acad. Sci. U. S. A.
, Vol.
101
,
2004
, pp. 11203–11208.
33.
Newman
,
K. D.
and
McBurney
,
M. W.
, “
Poly(D,L Lactic-co-Glycolic Acid) Microspheres as Biodegradable Microcarriers for Pluripotent Stem Cells
,”
Biomaterials
, Vol.
25
,
2004
, pp. 5763–5771.
34.
Hutmacher
,
D. W.
,
Schantz
,
T.
,
Zein
,
I.
,
Ng
,
K. W.
,
Teoh
,
S. H.
, and
Tan
,
K. C.
, “
Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated Via Fused Deposition Modeling
,”
J. Biomed. Mater. Res.
, Vol.
55
,
2001
, pp. 203–216.
35.
Kweon
,
H.
,
Yoo
,
M. K.
,
Park
,
I. K.
,
Kim
,
T. H.
,
Lee
,
H. C.
,
Lee
,
H. S.
,
Oh
,
J. S.
,
Akaike
,
T.
, and
Cho
,
C. S.
, “
A Novel Degradable Polycaprolactone Networks for Tissue Engineering
,”
Biomaterials
, Vol.
24
,
2003
, pp. 801–808.
36.
Katti
,
D. S.
,
Lakshmi
,
S.
,
Langer
,
R.
, and
Laurencin
,
C. T.
, “
Toxicity, Biodegradation and Elimination of Polyanhydrides
,”
Adv. Drug Deliv. Rev.
, Vol.
54
,
2002
, pp. 933–961.
37.
Attawia
,
M. A.
,
Herbert
,
K. M.
,
Uhrich
,
K. E.
,
Langer
,
R.
, and
Laurencin
,
C. T.
, “
Proliferation, Morphology, and Protein Expression by Osteoblasts Cultured on Poly(Anhydride-Co-Imides)
,”
J. Biomed. Mater. Res.
, Vol.
48
,
1999
, pp. 322–327.
38.
Laurencin
,
C. T.
,
El Amin
,
S. F.
,
Ibim
,
S. E.
,
Willoughby
,
D. A.
,
Attawia
,
M.
,
Allcock
,
H. R.
, and
Ambrosio
,
A. A.
, “
A Highly Porous 3-Dimensional Polyphosphazene Polymer Matrix for Skeletal Tissue Regeneration
,”
J. Biomed. Mater. Res.
, Vol.
30
,
1996
, pp. 133–138.
39.
Nair
,
L. S.
,
Bhattacharyya
,
S.
,
Bender
,
J. D.
,
Greish
,
Y. E.
,
Brown
,
P. W.
,
Allcock
,
H. R.
, and
Laurencin
,
C. T.
, “
Fabrication and Optimization of Methylphenoxy Substituted Polyphosphazene Nanofibers for Biomedical Applications
,”
Biomacromolecules
, Vol.
5
,
2004
, pp. 2212–2220.
40.
Horch
,
R. A.
,
Shahid
,
N.
,
Mistry
,
A. S.
,
Timmer
,
M. D.
,
Mikos
,
A. G.
, and
Barron
,
A. R.
, “
Nanoreinforcernent of Poly(Propylene Fumarate)-Based Networks with Surface Modified Alumoxane Nanoparticles for Bone Tissue Engineering
,”
Biomacromolecules
, Vol.
5
,
2004
, pp. 1990–1998.
41.
Timmer
,
M. D.
,
Ambrose
,
C. G.
, and
Mikos
,
A. G.
, “
Evaluation of Thermal- and Photo-Crosslinked Biodegradable Poly(Propylene Fumarate)-Based Networks
,”
J. Biomed. Mater. Res. A
, Vol.
66A
,
2003
, pp. 811–818.
42.
Dang
,
J. M.
and
Leong
,
K. W.
, “
Natural Polymers for Gene Delivery and Tissue Engineering
,”
Adv. Drug Deliv. Rev.
, Vol.
58
,
2006
, pp. 487–499.
43.
LeGeros
,
R. Z.
, “
Calcium Phosphate-Based Osteoinductive Materials
,”
Chem. Rev.
, Vol.
108
,
2008
, pp. 4742–4753.
44.
Rezwan
,
K.
,
Chen
,
Q.
,
Blaker
,
J.
, and
Boccaccini
,
A. R.
, “
Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
, Vol.
27
,
2006
, pp. 3413–3431.
45.
Liu
,
X.
and
Ma
,
P. X.
, “
Polymeric Scaffolds for Bone Tissue Engineering
,”
Ann. Biomed. Eng.
, Vol.
32
,
2004
, pp. 477–486.
46.
Yeong
,
W. -Y.
,
Chua
,
C. -K.
,
Leong
,
K. -F.
, and
Chandrasekaran
,
M.
, “
Rapid Prototyping in Tissue Engineering: Challenges and Potential
,”
Trends Biotechnol.
, Vol.
22
,
2004
, pp. 643–652.
47.
Derby
,
B.
, “
Printing and Prototyping of Tissues and Scaffolds
,”
Science
, Vol.
338
,
2012
, pp. 921–926.
48.
Williams
,
J. M.
,
Adewunmi
,
A.
,
Schek
,
R. M.
,
Flanagan
,
C. L.
,
Krebsbach
,
P. H.
,
Feinberg
,
S. E.
,
Hollister
,
S. J.
, and
Das
,
S.
, “
Bone Tissue Engineering Using Polycaprolactone Scaffolds-Fabricated via Selective Laser Sintering
,”
Biomaterials
, Vol.
26
,
2005
, pp. 4817–4827.
49.
Wiria
,
F.
,
Leong
,
K.
,
Chua
,
C.
, and
Liu
,
Y.
, “
Poly-ε-Caprolactone/Hydroxyapatite for Tissue Engineering Scaffold Fabrication via Selective Laser Sintering
,”
Acta Biomater.
, Vol.
3
,
2007
, pp. 1–12.
50.
Borden
,
M.
,
Attawia
,
M.
,
Khan
,
Y.
, and
Laurencin
,
C. T.
, “
Tissue Engineered Microsphere-Based Matrices for Bone Repair: Design and Evaluation
,”
Biomaterials
, Vol.
23
,
2002
, pp. 551–559.
51.
Borden
,
M.
,
El-Amin
,
S.
,
Attawia
,
M.
, and
Laurencin
,
C.
, “
Structural and Human Cellular Assessment of a Novel Microsphere-Based Tissue Engineered Scaffold for Bone Repair
,”
Biomaterials
, Vol.
24
,
2003
, pp. 597–609.
52.
Kofron
,
M.
,
Cooper
,
J.
,
Kumbar
,
S.
, and
Laurencin
,
C.
, “
Novel Tubular Composite Matrix for Bone Repair
,”
J. Biomed. Mater. Res. A.
, Vol.
82
,
2007
, pp. 415–425.
53.
Kofron
,
M. D.
,
Griswold
,
A.
,
Kumbar
,
S. G.
,
Martin
,
K.
,
Wen
,
X.
, and
Laurencin
,
C. T.
, “
The Implications of Polymer Selection in Regenerative Medicine: A Comparison of Amorphous and Semi-Crystalline Polymer for Tissue Regeneration
,”
Adv. Funct. Mater.
, Vol.
19
,
2009
, pp. 1351–1359.
54.
Deng
,
M.
,
Kumbar
,
S. G.
,
Nair
,
L. S.
,
Weikel
,
A. L.
,
Allcock
,
H. R.
, and
Laurencin
,
C. T.
, “
Biomimetic Structures: Biological Implications of Dipeptide-Substituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration
,”
Adv. Funct. Mater.
, Vol.
21
,
2011
, pp. 2641–2651.
55.
Brown
,
J. L.
,
Peach
,
M. S.
,
Nair
,
L. S.
,
Kumbar
,
S. G.
, and
Laurencin
,
C. T.
, “
Composite Scaffolds: Bridging Nanofiber and Microsphere Architectures to Improve Bioactivity of Mechanically Competent Constructs
,”
J. Biomed. Mater. Res. A.
, Vol.
95
,
2010
, pp. 1150–1158.
56.
Borden
,
M.
,
Attawia
,
M.
,
Khan
,
Y.
,
El-Amin
,
S.
, and
Laurencin
,
C.
, “
Tissue-Engineered Bone Formation In Vivo Using a Novel Sintered Polymeric Microsphere Matrix
,”
J. Bone Joint Surg. Br.
, Vol.
86
,
2004
, pp. 1200–1208.
57.
Kon
,
E.
,
Muraglia
,
A.
,
Corsi
,
A.
,
Bianco
,
P.
,
Marcacci
,
M.
,
Martin
,
I.
,
Boyde
,
A.
,
Ruspantini
,
I.
,
Chistolini
,
P.
,
Rocca
,
M.
,
Giardino
,
R.
,
Cancedda
,
R.
, and
Quarto
,
R.
, “
Autologous Bone Marrow Stromal Cells Loaded onto Porous Hydroxyapatite Ceramic Accelerate Bone Repair in Critical-Size Defects of Sheep Long Bones
,”
J. Biomed. Mater. Res.
, Vol.
49
,
2000
, pp. 328–337.
58.
Simmons
,
C. A.
,
Alsberg
,
E.
,
Hsiong
,
S.
,
Kim
,
W. J.
, and
Mooney
,
D. J.
, “
Dual Growth Factor Delivery and Controlled Scaffold Degradation Enhance In Vivo Bone Formation by Transplanted Bone Marrow Stromal Cells
,”
Bone
, Vol.
35
,
2004
, pp. 562–569.
59.
Grundel
,
R.
,
Chapman
,
M.
,
Yee
,
T.
, and
Moore
,
D.
, “
Autogeneic Bone Marrow and Porous Bipiasic Calcium Phosphate Ceramic for Segmental Bone Defects in the Canine Ulna
,”
Clin. Orthop. Relat. Res.
, Vol.
266
,
1991
, pp. 244–258.
60.
Salama
,
R.
and
Weissman
,
S.
, “
The Clinical Use of Combined Xenografts of Bone and Autologous Red Marrow. A Preliminary Report
,”
J. Bone Joint. Surg. Br.
, Vol.
60
,
1978
, pp. 111–115.
61.
Connolly
,
J. F.
,
Guse
,
R.
,
Tiedeman
,
J.
, and
Dehne
,
R.
, “
Autologous Marrow Injection as a Substitute for Operative Grafting of Tibial Nonunions
,”
Clin. Orthop. Relat. Res.
, Vol.
266
,
1991
, pp. 259–270.
62.
Haynesworth
,
S.
,
Goshima
,
J.
,
Goldberg
,
V.
, and
Caplan
,
A.
, “
Characterization of Cells with Osteogenic Potential from Human Marrow
,”
Bone
, Vol.
13
,
1992
, pp. 81–88.
63.
Bruder
,
S. P.
,
Jaiswal
,
N.
, and
Haynesworth
,
S. E.
, “
Growth Kinetics, Self-Renewal, and the Osteogenic Potential of Purified Human Mesenchymal Stem Cells during Extensive Subcultivation and following Cryopreservation
,”
J. Cell Biochem.
, Vol.
64
,
1997
, pp. 278–294.
64.
Quarto
,
R.
,
Mastrogiacomo
,
M.
,
Cancedda
,
R.
,
Kutepov
,
S. M.
,
Mukhachev
,
V.
,
Lavroukov
,
A.
,
Kon
,
E.
, and
Marcacci
,
M.
, “
Repair of Large Bone Defects with the Use of Autologous Bone Marrow Stromal Cells
,”
N. Engl. J. Med.
, Vol.
344
,
2001
, pp. 385–386.
65.
Yamada
,
Y.
,
Ueda
,
M.
,
Naiki
,
T.
,
Takahashi
,
M.
,
Hata
,
K. -I.
, and
Nagasaka
,
T.
, “
Autogenous Injectable Bone for Regeneration with Mesenchymal Stem Cells and Platelet-Rich Plasma: Tissue-Engineered Bone Regeneration
,”
Tissue Eng.
, Vol.
10
,
2004
, pp. 955–964.
66.
Yoon
,
E.
,
Dhar
,
S.
,
Chun
,
D. E.
,
Gharibjanian
,
N. A.
, and
Evans
,
G. R.
, “
In Vivo Osteogenic Potential of Human Adipose-Derived Stem Cells/Poly Lactide-Co-Glycolic Acid Constructs for Bone Regeneration in a Rat Critical-Sized Calvarial Defect Model
,”
Tissue Eng.
, Vol.
13
,
2007
, pp. 619–627.
67.
Breitbart
,
A. S.
,
Grande
,
D. A.
,
Mason
,
J. M.
,
Barcia
,
M.
,
James
,
T.
, and
Grant
,
R. T.
, “
Gene-Enhanced Tissue Engineering: Applications for Bone Healing Using Cultured Periosteal Cells Transduced Retrovirally with the BMP-7 Gene
,”
Ann. Plast. Surg.
, Vol.
42
,
1999
, pp. 488–495.
68.
Dragoo
,
J. L.
,
Choi
,
J. Y.
,
Lieberman
,
J. R.
,
Huang
,
J.
,
Zuk
,
P. A.
,
Zhang
,
J.
,
Hedrick
,
M. H.
, and
Benhaim
,
P.
, “
Bone Induction by BMP-2 Transduced Stem Cells Derived from Human Fat
,”
J. Orthop. Res.
, Vol.
21
,
2003
, pp. 622–629.
69.
Zhang
,
Y.
,
Cheng
,
X.
,
Wang
,
J.
,
Wang
,
Y.
,
Shi
,
B.
,
Huang
,
C.
,
Yang
,
X.
, and
Liu
,
T.
, “
Novel Chitosan/Collagen Scaffold Containing Transforming Growth Factor-β1 DNA for Periodontal Tissue Engineering
,”
Biochem. Biophys. Res. Commun.
, Vol.
344
,
2006
, pp. 362–369.
70.
Peng
,
H.
,
Wright
,
V.
,
Usas
,
A.
,
Gearhart
,
B.
,
Shen
,
H. -C.
,
Cummins
,
J.
, and
Huard
,
J.
, “
Synergistic Enhancement of Bone Formation and Healing by Stem Cell–Expressed VEGF and Bone Morphogenetic Protein-4
,”
J. Clin. Invest.
, Vol.
110
,
2002
, pp. 751–759.
71.
Jabbarzadeh
,
E.
,
Starnes
,
T.
,
Khan
,
Y. M.
,
Jiang
,
T.
,
Wirtel
,
A. J.
,
Deng
,
M.
,
Lv
,
Q.
,
Nair
,
L. S.
,
Doty
,
S. B.
, and
Laurencin
,
C. T.
, “
Induction of Angiogenesis in Tissue-Engineered Scaffolds Designed for Bone Repair: A Combined Gene Therapy–Cell Transplantation Approach
,”
Proc. Natl. Acad. Sci. U. S. A.
, Vol.
105
,
2008
, pp. 11099–110104.
72.
Lieberman
,
J. R.
,
Daluiski
,
A.
, and
Einhorn
,
T. A.
, “
The Role of Growth Factors in the Repair of Bone Biology and Clinical Applications
,”
J. Bone Joint Surg. Am.
, Vol.
84
,
2002
, pp. 1032–1044.
73.
Linkhart
,
T. A.
,
Mohan
,
S.
, and
Baylink
,
D. J.
, “
Growth Factors for Bone Growth and Repair: IGF, TGFβ and BMP
,”
Bone
, Vol.
19
,
1996
, pp. S1–S12.
74.
Lutolf
,
M. P.
,
Weber
,
F. E.
,
Schmoekel
,
H. G.
,
Schense
,
J. C.
,
Kohler
,
T.
,
Müller
,
R.
, and
Hubbell
,
J. A.
, “
Repair of Bone Defects Using Synthetic Mimetics of Collagenous Extracellular Matrices
,”
Nat. Biotechnol.
, Vol.
21
,
2003
, pp. 513–518.
75.
Peterson
,
B.
,
Zhang
,
J.
,
Iglesias
,
R.
,
Kabo
,
M.
,
Hedrick
,
M.
,
Benhaim
,
P.
, and
Lieberman
,
J. R.
, “
Healing of Critically Sized Femoral Defects, Using Genetically Modified Mesenchymal Stem Cells from Human Adipose Tissue
,”
Tissue Eng.
, Vol.
11
,
2005
, pp. 120–129.
76.
Cook
,
S. D.
,
Wolfe
,
M. W.
,
Salkeld
,
S. L.
, and
Rueger
,
D. C.
, “
Effect of Recombinant Human Osteogenic Protein-1 on Healing of Segmental Defects in Non-Human Primates
,”
J. Bone Joint Surg. Am.
, Vol.
77
,
1995
, pp. 734–750.
77.
Magin
,
M. N.
and
Delling
,
G.
, “
Improved Lumbar Vertebral Interbody Fusion Using rhOP-1: A Comparison of Autogenous Bone Graft, Bovine Hydroxylapatite (Bio-Oss), and BMP-7 (rhOP-1) in Sheep
,”
Spine
, Vol.
26
,
2001
, pp. 469–478.
78.
Hidaka
,
C.
,
Goshi
,
K.
,
Rawlins
,
B.
,
Boachie-Adjei
,
O.
, and
Crystal
,
R. G.
, “
Enhancement of Spine Fusion Using Combined Gene Therapy and Tissue Engineering BMP-7-Expressing Bone Marrow Cells and Allograft Bone
,”
Spine
, Vol.
28
,
2003
, pp. 2049–2057.
79.
Jiang
,
T.
,
Nukavarapu
,
S. P.
,
Deng
,
M.
,
Jabbarzadeh
,
E.
,
Kofron
,
M. D.
,
Doty
,
S. B.
,
Abdel-Fattah
,
W. I.
, and
Laurencin
,
C. T.
, “
Chitosan–Poly (Lactide-co-Glycolide) Microsphere-Based Scaffolds for Bone Tissue Engineering: In Vitro Degradation and In Vivo Bone Regeneration Studies
,”
Acta Biomater.
, Vol.
6
,
2010
, pp. 3457–3470.
80.
Midy
,
V.
and
Plouét
,
J.
, “
Vasculotropin/Vascular Endothelial Growth Factor Induces Differentiation in Cultured Osteoblasts
,”
Biochem. Biophys. Res. Commun.
, Vol.
199
,
1994
, pp. 380–386.
81.
Bouletreau
,
P. J.
,
Warren
,
S. M.
,
Spector
,
J. A.
,
Steinbrech
,
D. S.
,
Mehrara
,
B. J.
, and
Longaker
,
M. T.
, “
Factors in the Fracture Microenvironment Induce Primary Osteoblast Angiogenic Cytokine Production
,”
Plast. Reconstr. Surg.
, Vol.
110
,
2002
, pp. 139–148.
82.
Street
,
J.
,
Bao
,
M.
,
Bunting
,
S.
,
Peale
,
F. V.
,
Ferrara
,
N.
,
Steinmetz
,
H.
,
Hoeffel
,
J.
,
Cleland
,
J. L.
,
Daugherty
,
A.
,
van Bruggen
,
N.
,
Redmond
,
H. P.
,
Carano
,
R. A.
, and
Filvaroff
,
E. H.
, “
Vascular Endothelial Growth Factor Stimulates Bone Repair by Promoting Angiogenesis and Bone Turnover
,”
Proc. Natl. Acad. Sci. U. S. A.
, Vol.
99
,
2002
, pp. 9656–9661.
83.
Lomri
,
A.
,
Lemonnier
,
J.
,
Hott
,
M.
,
De Parseval
,
N.
,
Lajeunie
,
E.
,
Munnich
,
A.
,
Renier
,
D.
, and
Marie
,
P. J.
, “
Increased Calvaria Cell Differentiation and Bone Matrix Formation Induced by Fibroblast Growth Factor Receptor 2 Mutations in Apert Syndrome
,”
J. Clin. Invest.
, Vol.
101
,
1998
, pp. 1310–1317.
84.
Rodan
,
S. B.
,
Wesolowski
,
G.
,
Thomas
,
K. A.
,
Yoon
,
K.
, and
Rodan
,
G. A.
, “
Effects of Acidic and Basic Fibroblast Growth Factors on Osteoblastic Cells
,”
Connect. Tissue Res.
, Vol.
20
,
1989
, pp. 283–288.
85.
Yu
,
K.
,
Xu
,
J.
,
Liu
,
Z.
,
Sosic
,
D.
,
Shao
,
J.
,
Olson
,
E. N.
,
Towler
,
D. A.
, and
Ornitz
,
D. M.
, “
Conditional Inactivation of FGF Receptor 2 Reveals an Essential Role for FGF Signaling in the Regulation of Osteoblast Function and Bone Growth
,”
Development
, Vol.
130
,
2003
, pp. 3063–3074.
86.
Machwate
,
M.
,
Zerath
,
E.
,
Holy
,
X.
,
Pastoureau
,
P.
, and
Marie
,
P.
, “
Insulin-Like Growth Factor-I Increases Trabecular Bone Formation and Osteoblastic Cell Proliferation in Unloaded Rats
,”
Endocrinology
, Vol.
134
,
1994
, pp. 1031–1038.
87.
Langdahl
,
B.
,
Kassem
,
M.
,
Moller
,
M.
, and
Eriksen
,
E.
, “
The Effects of IGF-I and IGF-II on Proliferation and Differentiation of Human Osteoblasts and Interactions with Growth Hormone
,”
Eur. J. Clin. Invest.
, Vol.
28
,
1998
, pp. 176–183.
88.
Heldin
,
C. -H.
and
Westermark
,
B.
, “
Mechanism of Action and In Vivo Role of Platelet-Derived Growth Factor
,”
Physiol Rev.
, Vol.
79
,
1999
, pp. 1283–1316.
89.
Yilgor
,
P.
,
Tuzlakoglu
,
K.
,
Reis
,
R. L.
,
Hasirci
,
N.
, and
Hasirci
,
V.
, “
Incorporation of a Sequential BMP-2/BMP-7 Delivery System into Chitosan-Based Scaffolds for Bone Tissue Engineering
,”
Biomaterials
, Vol.
30
,
2009
, pp. 3551–3559.
90.
Richardson
,
T. P.
,
Peters
,
M. C.
,
Ennett
,
A. B.
, and
Mooney
,
D. J.
, “
Polymeric System for Dual Growth Factor Delivery
,”
Nat. Biotechnol.
, Vol.
19
,
2001
, pp. 1029–1034.
91.
Raiche
,
A.
and
Puleo
,
D.
, “
In Vitro Effects of Combined and Sequential Delivery of Two Bone Growth Factors
,”
Biomaterials
, Vol.
25
,
2004
, pp. 677–685.
92.
Gerber
,
H. -P.
,
Vu
,
T. H.
,
Ryan
,
A. M.
,
Kowalski
,
J.
,
Werb
,
Z.
, and
Ferrara
,
N.
, “
VEGF Couples Hypertrophic Cartilage Remodeling, Ossification and Angiogenesis during Endochondral Bone Formation
,”
Nat. Med.
, Vol.
5
,
1999
, pp. 623–628.
93.
Carano
,
R. A.
and
Filvaroff
,
E. H.
, “
Angiogenesis and Bone Repair
,”
Drug. Discov. Today
, Vol.
8
,
2003
, pp. 980–989.
94.
Kempen
,
D. H.
,
Lu
,
L.
,
Heijink
,
A.
,
Hefferan
,
T. E.
,
Creemers
,
L. B.
,
Maran
,
A.
,
Yaszemski
,
M. J.
, and
Dhert
,
W. J.
, “
Effect of Local Sequential VEGF and BMP-2 Delivery on Ectopic and Orthotopic Bone Regeneration
,”
Biomaterials
, Vol.
30
,
2009
, pp. 2816–2825.
95.
Langer
,
R.
, “
Editorial: Tissue Engineering: Perspectives, Challenges, and Future Directions
,”
Tissue Eng.
, Vol.
13
,
2007
, pp. 1–2.
96.
Laurencin
,
C. T.
and
Khan
,
Y.
, “
Regenerative Engineering
,”
Sci. Transl. Med.
, Vol.
4
,
2012
, p. 160ed9.
97.
Mahdavi
,
A.
,
Ferreira
,
L.
,
Sundback
,
C.
,
Nichol
,
J. W.
,
Chan
,
E. P.
,
Carter
,
D. J.
,
Bettinger
,
C. J.
,
Patanavanich
,
S.
,
Chiqnozha
,
L.
,
Ben-Joseph
,
E.
,
Galakatos
,
A.
,
Pryor
,
H.
,
Pomerantseva
,
I.
,
Masiakos
,
P. T.
,
Faquin
,
W.
,
Zumbuehl
,
A.
,
Hong
,
S.
,
Borenstein
,
J.
,
Vacanti
,
J.
,
Langer
,
R.
, and
Karp
,
J. M.
, “
A Biodegradable and Biocompatible Gecko-Inspired Tissue Adhesive
,”
Proc. Natl. Acad. Sci. U. S. A.
, Vol.
105
,
2008
, pp. 2307–2312.
98.
Xia
,
F.
and
Jiang
,
L.
, “
Bio-Inspired, Smart, Multiscale Interfacial Materials
,”
Adv. Mater.
, Vol.
20
,
2008
, pp. 2842–2858.
99.
Singh
,
A.
,
Krogman
,
N. R.
,
Sethuraman
,
S.
,
Nair
,
L. S.
,
Jacqueline
,
L.
,
Brown
,
P. W.
,
Laurencin
,
C. T.
, and
Allcock
,
H. R.
, “
Effect of Side Group Chemistry on the Properties of Biodegradable L-Alanine Cosubstituted Polyphosphazenes
,”
Biomacromolecules
, Vol.
7
,
2006
, pp. 914–918.
100.
Allcock
,
H. R.
,
Polyphosphazenes
,
Wiley Online Library
,
2006
.
101.
Langer
,
R.
and
Tirrell
,
D. A.
, “
Designing Materials for Biology and Medicine
,”
Nature
, Vol.
428
,
2004
, pp. 487–492.
102.
Anderson
,
D. G.
,
Levenberg
,
S.
, and
Langer
,
R.
, “
Nanoliter-Scale Synthesis of Arrayed Biomaterials and Application to Human Embryonic Stem Cells
,”
Nat. Biotechnol.
, Vol.
22
,
2004
, pp. 863–866.
103.
Burdick
,
J. A.
and
Anseth
,
K. S.
, “
Photoencapsulation of Osteoblasts in Injectable RGD-Modified PEG Hydrogels for Bone Tissue Engineering
,”
Biomaterials
, Vol.
23
,
2002
, pp. 4315–4323.
104.
Zhang
,
L.
,
Rakotondradany
,
F.
,
Myles
,
A. J.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Arginine-Glycine-Aspartic Acid Modified Rosette Nanotube–Hydrogel Composites for Bone Tissue Engineering
,”
Biomaterials
, Vol.
30
,
2009
, pp. 1309–1320.
105.
Rezania
,
A.
and
Healy
,
K. E.
, “
Biomimetic Peptide Surfaces That Regulate Adhesion, Spreading, Cytoskeletal Organization, and Mineralization of the Matrix Deposited by Osteoblast-Like Cells
,”
Biotechnol. Prog.
, Vol.
15
,
1999
, pp. 19–32.
106.
Park
,
Y. J.
,
Kim
,
K. H.
,
Lee
,
J. Y.
,
Ku
,
Y.
,
Lee
,
S. J.
,
Min
,
B. M.
, and
Chung
,
C. P.
, “
Immobilization of Bone Morphogenetic Protein-2 on a Nanofibrous Chitosan Membrane for Enhanced Guided Bone Regeneration
,”
Biotechnol. Appl. Biochem.
, Vol.
43
,
2006
, pp. 17–24.
107.
Kisiday
,
J.
,
Jin
,
M.
,
Kurz
,
B.
,
Hung
,
H.
,
Semino
,
C.
,
Zhang
,
S.
, and
Grodzinsky
,
A. J.
, “
Self-Assembling Peptide Hydrogel Fosters Chondrocyte Extracellular Matrix Production and Cell Division: Implications for Cartilage Tissue Repair
,”
Proc. Natl. Acad. Sci. USA
, Vol.
99
,
2002
, pp. 9996–10001.
108.
Zhang
,
S.
, “
Fabrication of Novel Biomaterials through Molecular Self-Assembly
,”
Nat. Biotechnol.
, Vol.
21
,
2003
, pp. 1171–1178.
109.
Hartgerink
,
J. D.
,
Beniash
,
E.
, and
Stupp
,
S. I.
, “
Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers
,”
Science
, Vol.
294
,
2001
, pp. 1684–1688.
110.
Deng
,
M.
,
Nair
,
L. S.
,
Nukavarapu
,
S. P.
,
Kumbar
,
S. G.
,
Jiang
,
T.
,
Weikel
,
A. L.
,
Krogman
,
N. R.
,
Allcock
,
H. R.
, and
Laurencin
,
C. T.
, “
In Situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering
,”
Adv. Funct. Mater.
, Vol.
20
,
2010
, pp. 2794–2806.
111.
Shi
,
J.
,
Alves
,
N. M.
, and
Mano
,
J. F.
, “
Thermally Responsive Biomineralization on Biodegradable Substrates
,”
Adv. Funct. Mater.
, Vol.
17
,
2007
, pp. 3312–3318.
112.
Chiu
,
Y. -L.
,
Chen
,
S. -C.
,
Su
,
C. -J.
,
Hsiao
,
C. -W.
,
Chen
,
Y. -M.
,
Chen
,
H. -L.
, and
Sung
,
H. W.
, “
pH-Triggered Injectable Hydrogels Prepared from Aqueous N-Palmitoyl Chitosan: In Vitro Characteristics and In Vivo Biocompatibility
,”
Biomaterials
, Vol.
30
,
2009
, pp. 4877–4888.
113.
Denuziere
,
A.
,
Ferrier
,
D.
, and
Domard
,
A.
, “
Chitosan-Chondroitin Sulfate and Chitosan-Hyaluronate Polyelectrolyte Complexes. Physico-Chemical Aspects
,”
Carbohydr, Polym.
, Vol.
29
,
1996
, pp. 317–323.
114.
Dias
,
C. I.
,
Mano
,
J. F.
, and
Alves
,
N. M.
, “
pH-Responsive Biomineralization onto Chitosan Grafted Biodegradable Substrates
,”
J. Mater. Chem.
, Vol.
18
,
2008
, pp. 2493–2499.
115.
Lendlein
,
A.
and
Langer
,
R.
, “
Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications
,”
Science
, Vol.
296
,
2002
, pp. 1673–1676.
116.
Lendlein
,
A.
,
Jiang
,
H.
, and
Jünger
,
O.
,
Langer
R.
, “
Light-Induced Shape-Memory Polymers
,”
Nature
, Vol.
434
,
2005
, pp. 879–882.
117.
Thornton
,
A. J.
,
Alsberg
,
E.
,
Albertelli
,
M.
, and
Mooney
,
D. J.
, “
Shape-Defining Scaffolds for Minimally Invasive Tissue Engineering
,”
Transplantation
, Vol.
77
,
2004
, pp. 1798–1803.
118.
Habibovic
,
P.
,
Sees
,
T. M.
,
van den Doel
,
M. A.
,
van Blitterswijk
,
C. A.
, and
de Groot
,
K.
, “
Osteoinduction by Biomaterials—Physicochemical and Structural Influences
,”
J. Biomed. Mater. Res. A
, Vol.
77
,
2006
, pp. 747–762.
119.
Habibovic
,
P.
and
de Groot
,
K.
, “
Osteoinductive Biomaterials—Properties and Relevance in Bone Repair
,”
J. Tissue Eng. Regen. Med.
, Vol.
1
,
2007
, pp. 25–32.
120.
Fujibayashi
,
S.
,
Neo
,
M.
,
Kim
,
H. -M.
,
Kokubo
,
T.
, and
Nakamura
,
T.
, “
Osteoinduction of Porous Bioactive Titanium Metal
,”
Biomaterials
, Vol.
25
,
2004
, pp. 443–450.
121.
Laurencin
,
C. T.
,
Kumbar
,
S. G.
, and
Nukavarapu
,
S. P.
, “
Nanotechnology and Orthopedics: A Personal Perspective
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
, Vol.
1
,
2009
, pp. 6–10.
122.
Jang
,
J. -H.
,
Castano
,
O.
, and
Kim
,
H. -W.
, “
Electrospun Materials as Potential Platforms for Bone Tissue Engineering
,”
Adv. Drug Deliv. Rev.
, Vol.
61
,
2009
, pp. 1065–1083.
123.
Huang
,
Z. M.
,
Zhang
,
Y. Z.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, “
A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites
,”
Composites Sci. Technol.
, Vol.
63
,
2003
, pp. 2223–2253.
124.
Deng
,
M.
,
James
,
R.
,
Laurencin
,
C. T.
, and
Kumbar
,
S. G.
, “
Nanostructured Polymeric Scaffolds for Orthopaedic Regenerative Engineering
,”
IEEE Trans. Nanobiosci.
, Vol.
11
,
2012
, pp. 3–14.
125.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res.
, Vol.
60
,
2002
, pp. 613–621.
126.
Merrell
,
J. G.
,
McLaughlin
,
S. W.
,
Tie
,
L.
,
Laurencin
,
C. T.
,
Chen
,
A. F.
, and
Nair
,
L. S.
, “
Curcumin-Loaded Poly(Epsilon-Caprolactone) Nanofibres: Diabetic Wound Dressing with Anti-Oxidant and Anti-Inflammatory Properties
,”
Clin. Exp. Pharmacol. Physiol.
, Vol.
36
,
2009
, pp. 1149–1156.
127.
Katti
,
D. S.
,
Robinson
,
K. W.
,
Ko
,
F. K.
, and
Laurencin
,
C. T.
, “
Bioresorbable Nanofiber-Based Systems for Wound Healing and Drug Delivery: Optimization of Fabrication Parameters
,”
J. Biomed. Mater. Res. B Appl. Biomater.
, Vol.
70
,
2004
, pp. 286–296.
128.
Kumbar
,
S. G.
,
James
,
R.
,
Nukavarapu
,
S. P.
, and
Laurencin
,
C. T.
, “
Electrospun Nanofiber Scaffolds: Engineering Soft Tissues
,”
Biomed. Mater.
, Vol.
3
,
2008
, p. 034002.
129.
Kumbar
,
S. G.
,
Nukavarapu
,
S. P.
,
James
,
R.
,
Nair
,
L. S.
, and
Laurencin
,
C. T.
, “
Electrospun Poly(Lactic Acid-co-Glycolic Acid) Scaffolds for Skin Tissue Engineering
,”
Biomaterials
, Vol.
29
,
2008
, pp. 4100–4107.
130.
Taylor
,
E. D.
,
Nair
,
L. S.
,
Nukavarapu
,
S. P.
,
McLaughlin
,
S.
, and
Laurencin
,
C. T.
, “
Novel Nanostructured Scaffolds as Therapeutic Replacement Options for Rotator Cuff Disease
,”
J. Bone Joint Surg. Am.
, Vol.
92
,
2010
, pp. 170–179.
131.
James
,
R.
,
Kumbar
,
S.
,
Laurencin
,
C.
,
Balian
,
G.
, and
Chhabra
,
A.
, “
Tendon Tissue Engineering: Adipose-Derived Stem Cell and GDF-5 Mediated Regeneration Using Electrospun Matrix Systems
,”
Biomed. Mater.
, Vol.
6
,
2011
, p. 025011.
132.
James
,
R.
,
Toti
,
U. S.
,
Laurencin
,
C. T.
, and
Kumbar
,
S. G.
, “
Electrospun Nanofibrous Scaffolds for Engineering Soft Connective Tissues
,”
Methods Mol. Biol.
, Vol.
726
,
2011
, pp. 243–258.
133.
Peach
,
M. S.
,
James
,
R.
,
Toti
,
U. S.
,
Deng
,
M.
,
Morozowich
,
N. L.
,
Allcock
,
H. R.
,
Laurencin
,
C. T.
, and
Kumbar
,
S. G.
, “
Polyphosphazene Functionalized Polyester Fiber Matrices for Tendon Tissue Engineering: In Vitro Evaluation with Human Mesenchymal Stem Cells
,”
Biomed. Mater.
, Vol.
7
,
2012
, p. 045016.
134.
Peach
,
M. S.
,
Kumbar
,
S. G.
,
James
,
R.
,
Toti
,
U. S.
,
Balasubramaniam
,
D.
,
Deng
,
M.
,
Ulery
,
B.
,
Mazzocca
,
A. D.
,
McCarthy
,
M. B.
,
Morozowich
,
N.L
,
Allcock
,
H. R.
, and
Laurencin
,
C. T.
, “
Design and Optimization of Polyphosphazene Functionalized Fiber Matrices for Soft Tissue Regeneration
,”
J. Biomed. Nanotechnol.
, Vol.
8
,
2012
, pp. 107–124.
135.
Wang
,
J.
,
Valmikinathan
,
C. M.
,
Liu
,
W.
,
Laurencin
,
C. T.
, and
Yu
,
X.
, “
Spiral-Structured, Nanofibrous, 3D Scaffolds for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. A.
, Vol.
93
,
2010
, pp. 753–762.
136.
Bhattacharyya
,
S.
,
Kumbar
,
S. G.
,
Khan
,
Y. M.
,
Nair
,
L. S.
,
Singh
,
A.
,
Krogman
,
N. R.
,
Brown
,
P. W.
,
Allcock
,
H. R.
, and
Laurencin
,
C. T.
, “
Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering
,”
J. Biomed. Nanotechnol.
, Vol.
5
,
2009
, pp. 69–75.
137.
Deng
,
M.
,
Kumbar
,
S. G.
,
Nair
,
L. S.
,
Weikel
,
A. L.
,
Allcock
,
H. R.
, and
Laurencin
,
C. T.
, “
Biomimetic Structures: Biological Implications of Dipeptide-Substituted Polyphosphazene-Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration
,”
Adv. Funct. Mater.
, Vol.
21
,
2011
, pp. 2641–2651.
138.
Brown
,
J. L.
,
Peach
,
M. S.
,
Nair
,
L. S.
,
Kumbar
,
S. G.
, and
Laurencin
,
C. T.
, “
Composite Scaffolds: Bridging Nanofiber and Microsphere Architectures to Improve Bioactivity of Mechanically Competent Constructs
,”
J. Biomed. Mater. Res. A
, Vol.
95
,
2010
, pp. 1150–1158.
139.
Valdimarsdottir
,
G.
and
Mummery
,
C.
, “
Functions of the TGFβ Superfamily in Human Embryonic Stem Cells
,”
Apmis
, Vol.
113
,
2005
, pp. 773–789.
140.
Hosseinkhani
,
H.
,
Hosseinkhani
,
M.
,
Tian
,
F.
,
Kobayashi
,
H.
, and
Tabata
,
Y.
, “
Ectopic Bone Formation in Collagen Sponge Self-Assembled Peptide—Amphiphile Nanofibers Hybrid Scaffold in a Perfusion Culture Bioreactor
,”
Biomaterials
, Vol.
27
,
2006
, pp. 5089–5098.
141.
Hutson
,
E. L.
,
Boyer
,
S.
, and
Genever
,
P. G.
, “
Rapid Isolation, Expansion, and Differentiation of Osteoprogenitors from Full-Term Umbilical Cord Blood
,”
Tissue Eng.
, Vol.
11
,
2005
, pp. 1407–1420.
142.
Tapp
,
H.
,
Hanley
,
E. N.
,
Patt
,
J. C.
, and
Gruber
,
H. E.
, “
Adipose-Derived Stem Cells: Characterization and Current Application in Orthopaedic Tissue Repair
,”
Exp. Biol. Med.
, Vol.
234
,
2009
, pp. 1–9.
143.
Wright
,
V. J.
,
Peng
,
H.
,
Usas
,
A.
,
Young
,
B.
,
Gearhart
,
B.
,
Cummins
,
J.
, and
Huard
,
J.
, “
BMP4-Expressing Muscle-Derived Stem Cells Differentiate into Osteogenic Lineage and Improve Bone Healing in Immunocompetent Mice
,”
Mol. Ther.
, Vol.
6
,
2002
, pp. 169–178.
144.
Gronthos
,
S.
,
Mankani
,
M.
,
Brahim
,
J.
,
Robey
,
P. G.
, and
Shi
,
S.
, “
Postnatal Human Dental Pulp Stem Cells (DPSCs) In Vitro and In Vivo
,”
Proc. Natl. Acad. Sci. USA
, Vol.
97
,
2000
, pp. 13625–13630.
145.
d'Aquino
,
R.
,
Papaccio
,
G.
,
Laino
,
G.
, and
Graziano
,
A.
, “
Dental Pulp Stem Cells: A Promising Tool for Bone Regeneration
,”
Stem Cell Rev.
, Vol.
4
,
2008
, pp. 21–26.
146.
Kobayashi
,
T.
and
Kronenberg
,
H.
, “
Minireview: Transcriptional Regulation in Development of Bone
,”
Endocrinology
, Vol.
146
,
2005
, pp. 1012–1017.
147.
Siddappa
,
R.
,
Martens
,
A.
,
Doorn
,
J.
,
Leusink
,
A.
,
Olivo
,
C.
,
Licht
,
R.
,
van Rijn
,
L.
,
Gaspar
,
C.
,
Fodde
,
R.
,
Janssen
,
F.
,
van Blitterswijk
,
C.
, and
de Boer
,
J.
, “
cAMP/PKA Pathway Activation in Human Mesenchymal Stem Cells In Vitro Results in Robust Bone Formation In Vivo
,”
Proc. Natl. Acad. Sci. U. S. A.
, Vol.
105
,
2008
, pp. 7281–7286.
148.
Lo
,
K. W. H.
,
Kan
,
H. M.
,
Ashe
,
K. M.
, and
Laurencin
,
C. T.
, “
The Small Molecule PKA-Specific Cyclic AMP Analogue As an Inducer of Osteoblast-Like Cells Differentiation and Mineralization
,”
J. Tissue Eng. Regen. Med.
, Vol.
6
,
2012
, pp. 40–48.
149.
Laurencin
,
C.
and
Khan
,
Y.
, “
Regenerative Engineering
,”
Sci. Transl. Med.
, Vol.
4
,
2012
, pp. 160ed9–ed9.
150.
Hou
,
P.
,
Li
,
Y.
,
Zhang
,
X.
,
Liu
,
C.
,
Guan
,
J.
,
Li
,
H.
,
Zhao
,
T.
,
Ye
,
J.
,
Yang
,
W.
,
Liu
,
K.
,
Ge
,
J.
Xu
,
J.
,
Zhang
,
Q.
,
Zhao
,
Y.
, and
Deng
,
H.
, “
Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds
,”
Science
, Vol.
341
,
2013
, pp. 651–654.
151.
Jiang
,
T.
,
Abdel-Fattah
,
W. I.
, and
Laurencin
,
C. T.
, “
In Vitro Evaluation of Chitosan/Poly (Lactic Acid-Glycolic Acid) Sintered Microsphere Scaffolds for Bone Tissue Engineering
,”
Biomaterials
, Vol.
27
,
2006
, pp. 4894–4903.
152.
Chan
,
G.
and
Mooney
,
D. J.
, “
New Materials for Tissue Engineering: Towards Greater Control over the Biological Response
,”
Trends Biotechnol.
, Vol.
26
,
2008
, pp. 382–392.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal