Skip to Main Content
Skip Nav Destination
ASTM Monographs
Bone Graft Substitutes and Bone Regenerative Engineering
By
Cato T. Laurencin, M.D., Ph.D.
Cato T. Laurencin, M.D., Ph.D.
Editor
Search for other works by this author on:
Tao Jiang, Ph.D., MBA
Tao Jiang, Ph.D., MBA
Editor
Search for other works by this author on:
ISBN:
978-0-8031-7060-5
No. of Pages:
396
Publisher:
ASTM International
Publication date:
2014

Currently, total hip and knee replacements have revision rates of approximately 6 % after 5 years and 12 % after 10 years. However, these statistics do not account for the additional overwhelming lack of return to a normal active daily lifestyle after receiving such implants. Although patients do feel decreased pain in the long term after receiving such implants, those most physically active are not able to return to the active lifestyle they had before the event that led to the need to receive an implant. The related complications mainly result from implant loosening, infection, inflammation, and unmatched mechanical properties between the implant and juxtaposed bone leading to stress and strain imbalances. Recent advances in nanotechnology have provided the answers to the persistent problems seen with orthopedic implant failure. This chapter will cover recent advances in fabricating and using nanostructured metals, ceramics, and polymers for numerous orthopedic applications and discuss future research that is needed for the field to progress.

1.
Labek
,
G.
,
Thaler
,
M.
,
Janda
,
W.
,
Agreiter
,
M.
and
Stockl
,
B.
, “
Revision Rates after Total Joint Replacement: Cumulative Results from Worldwide Joint Register Datasets
,”
J. Bone Joint Surg. Br.
, Vol.
93
,
2011
, pp. 293–297.
2.
Bauer
,
T. W.
and
Muschler
,
G. F.
, “
Bone Graft Materials—An Overview of the Basic Science
,”
Clin. Orthop. Rel. Res.
, Vol.
371
,
2000
, pp. 10–27.
3.
Branemark
,
P. I.
, “
Osseointegration and Its Experimental Background
,”
J. Prosthet. Dent.
, Vol.
50
,
1983
, pp. 399–410.
4.
Branemark
,
R.
,
Branemark
,
P. I.
,
Rydevik
,
B.
, and
Myers
,
R. R.
, “
Osseointegration in Skeletal Reconstruction and Rehabilitation: A Review
,”
J. Rehabil. Res. Dev.
, Vol.
38
,
2001
, pp. 175–181.
5.
Patel
,
J. C.
,
Watson
,
K.
,
Joseph
,
E.
,
Garcia
,
J.
, and
Wollstein
,
R.
, “
Long-Term Complications of Distal Radius Bone Grafts
,”
J. Hand Surg. Am.
, Vol.
28A
,
2003
, pp. 784–788.
6.
Del Bravo
,
V.
,
Graci
,
C.
,
Spinelli
,
M. S.
,
Muratori
,
F.
, and
Maccauro
,
G.
, “
Histological and Ultrastructural Reaction to Different Materials for Orthopaedic Application
,”
Int. J. Immunopath. Pharmacol.
, Vol.
24
,
2011
, pp. 91–94.
7.
Bauer
,
T. W.
and
Schils
,
J.
, “
The Pathology of Total Joint Arthroplasty—II. Mechanisms of Implant Failure
,”
Skeletal Radiol.
, Vol.
28
,
1999
, pp. 483–497.
8.
Christenson
,
E. M.
,
Anseth
,
K. S.
,
van den Beucken
,
L.
,
Chan
,
C. K.
,
Ercan
,
B.
, and
Jansen
,
J. A.
, “
Nanobiomaterial Applications in Orthopedics
,”
J. Orthop. Res.
, Vol.
25
,
2007
, pp. 11–22.
9.
Buehler
,
M. J.
, “
Nature Designs Tough Collagen: Explaining the Nanostructure of Collagen Fibrils
,”
Proc. Natl. Acad. Sci. U. S. A.
, Vol.
103
,
2006
, pp. 12285–12290.
10.
Zhang
,
L. J.
and
Webster
,
T. J.
, “
Nanotechnology and Nanomaterials: Promises for Improved Tissue Regeneration
,”
Nano Today
, Vol.
4
,
2009
, pp. 66–80.
11.
Park
,
G. E.
and
Webster
,
T. J.
, “
A Review of Nanotechnology for the Development of Better Orthopedic Implants
,”
J. Biomed. Nanotechnol.
, Vol.
1
,
2005
, pp. 18–29.
12.
Pareta
,
R. A.
,
Reising
,
A. B.
,
Miller
,
T.
,
Storey
,
D.
, and
Webster
,
T. J.
, “
An Understanding of Enhanced Osteoblast Adhesion on Various Nanostructured Polymeric and Metallic Materials Prepared by Ionic Plasma Deposition
,”
J. Biomed. Mater. Res. A
, Vol.
92A
,
2010
, pp. 1190–1201.
13.
Murugan
,
R.
and
Ramakrishna
,
S.
, “
Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies
,”
Tissue Eng.
, Vol.
12
,
2006
, pp. 435–447.
14.
Chun
,
A. L.
,
Moralez
,
J. G.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Helical Rosette Nanotubes: A More Effective Orthopaedic Implant Material
,”
Nanotechnology
, Vol.
15
,
2004
, pp. S234–S239.
15.
Price
,
R. L.
,
Waid
,
M. C.
,
Haberstroh
,
K. M.
, and
Webster
,
T. J.
, “
Selective Bone Cell Adhesion on Formulations Containing Carbon Nanofibers
,”
Biomaterials
, Vol.
24
,
2003
, pp. 1877–1887.
16.
Stanford
,
C. M.
, “
Surface Modification of Biomedical and Dental Implants and the Processes of Inflammation, Wound Healing and Bone Formation
,”
Int. J. Mol. Sci.
, Vol.
11
,
2010
, pp. 354–369.
17.
Montanaro
,
L.
,
Campoccia
,
D.
, and
Arciola
,
C. R.
, “
Nanostructured Materials for Inhibition of Bacterial Adhesion in Orthopedic Implants: A Minireview
,”
Int. J. Artif. Organs
, Vol.
31
,
2008
, pp. 771–776.
18.
Knothe
,
U.
,
Tate
,
M. L. K.
, and
Perren
,
S. M.
, “
300 Years of Intramedullary Fixation—From Aztec Practice to Standard Treatment Modality
,”
Eur. J. Trauma
, Vol.
26
,
2000
, pp. 217–225.
19.
Cuckler
,
J. M.
, “
Metal-on-Metal Surface Replacement: A Triumph of Hope over Reason: Affirms
,”
Orthopedics
, Vol.
34
,
2011
, pp. E439–E441.
20.
Purdue
,
P. E.
,
Koulouvaris
,
P.
,
Potter
,
H. G.
,
Nestor
,
B. J.
, and
Sculco
,
T. A.
, “
The Cellular and Molecular Biology of Periprosthetic Osteolysis
,”
Clin. Orthop. Rel. Res.
, Vol.
454
,
2007
, pp. 251–261.
21.
Papageorgiou
,
I.
,
Yin
,
Z. R.
,
Ladon
,
D.
,
Baird
,
D.
,
Lewis
,
A. C.
, and
Sood
A.
, “
Genotoxic Effects of Particles of Surgical Cobalt Chrome Alloy on Human Cells of Different Age In Vitro
,”
Mutat. Res.
, Vol.
619
,
2007
, pp. 45–58.
22.
Variola
,
F.
,
Brunski
,
J. B.
,
Orsini
,
G.
,
de Oliveira
,
P. T.
,
Wazen
,
R.
, and
Nanci
A.
, “
Nanoscale Surface Modifications of Medically Relevant Metals: State-of-the Art and Perspectives
,”
Nanoscale
, Vol.
3
,
2011
, pp. 335–353.
23.
Webster
,
T. J.
and
Ejiofor
,
J. U.
, “
Increased Osteoblast Adhesion on Nanophase Metals: Ti, Ti6Al4V, and CoCrMo
,”
Biomaterials
, Vol.
25
,
2004
, pp. 4731–4739.
24.
Cohen
,
A.
,
Liu-Synder
,
P.
,
Storey
,
D.
, and
Webster
,
T. J.
, “
Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings
,”
Nanoscale Res. Lett.
, Vol.
2
,
2007
, pp. 385–390.
25.
Minagar
,
S.
,
Wang
,
J.
,
Berndt
,
C. C.
,
Ivanova
,
E. P.
, and
Wen
,
C.
, “
Cell Response of Anodized Nanotubes on Titanium and Titanium Alloys
,”
J. Biomed. Mater. Res. A
, Vol.
101
,
2013
, pp. 2726–2739.
26.
Yu
,
W. Q.
,
Jiang
,
X. Q.
,
Zhang
,
F. Q.
, and
Xu
,
L.
, “
The Effect of Anatase TiO2 Nanotube Layers on MC3T3-E1 Preosteoblast Adhesion, Proliferation, and Differentiation
,”
J. Biomed. Mater. Res. A
, Vol.
94A
,
2010
, pp. 1012–1022.
27.
Rani
,
V. V. D.
,
Vinoth-Kumar
,
L.
,
Anitha
,
V. C.
,
Manzoor
,
K.
,
Deepthy
,
M.
, and
Shantikumar
,
V. N.
, “
Osteointegration of Titanium Implant Is Sensitive to Specific Nanostructure Morphology
,”
Acta Biomater.
, Vol.
8
,
2012
, pp. 1976–1989.
28.
Webster
,
T. J.
,
Schadler
,
L. S.
,
Siegel
,
R. W.
, and
Bizios
,
R.
, “
Mechanisms of Enhanced Osteoblast Adhesion on Nanophase Alumina Involve Vitronectin
,”
Tissue Eng.
, Vol.
7
,
2001
, pp. 291–301.
29.
Mendonca
,
G.
,
Mendonca
,
D. B. S.
,
Simoes
,
L. G. P.
,
Araujo
,
A. L.
,
Leite
,
E. R.
, and
Golin
,
A. L.
, “
Nanostructured Implant Surface Effect on Osteoblast Gene Expression and Bone-to-Implant Contact In Vivo
,”
Mater. Sci. Eng. C
, Vol.
31
,
2011
, pp. 1809–1818.
30.
Webster
,
T. J.
,
Ergun
,
C.
,
Doremus
,
R. H.
,
Siegel
,
R. W.
, and
Bizios
,
R.
, “
Enhanced Functions of Osteoblasts on Nanophase Ceramics
,”
Biomaterials
, Vol.
21
,
2000
, pp. 1803–1810.
31.
Webster
,
T. J.
,
Ergun
,
C.
,
Doremus
,
R. H.
,
Siegel
,
R. W.
, and
Bizios
,
R.
, “
Specific Proteins Mediate Enhanced Osteoblast Adhesion on Nanophase Ceramics
,”
J. Biomed. Mater. Res.
, Vol.
51
,
2000
, pp. 475–483.
32.
Sato
M.
, “
Nanophase Hydroxyapatite Coatings for Dental and Orthopedic Applications
,” Dissertations and Theses,
Purdue University
, West Lafayette, IN,
2006
.
33.
Slosarczyk
,
A.
,
Klisch
,
M.
,
Blazewicz
,
M.
,
Piekarczyk
,
J.
,
Stobierski
,
L.
, and
Rapacz-Kmita
,
A.
, “
Hot Pressed Hydroxyapatite-Carbon Fibre Composites
,”
J. European Ceram. Soc.
, Vol.
20
,
2000
, pp. 1397–1402.
34.
von der Mark
,
K.
,
Park
,
J.
,
Bauer
,
S.
, and
Schmuki
,
P.
, “
Nanoscale Engineering of Biomimetic Surfaces: Cues from the Extracellular Matrix
,”
Cell Tissue Res.
, Vol.
339
,
2010
, pp. 131–153.
35.
Suchanek
,
W.
and
Yoshimura
,
M.
, “
Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants
,”
J. Mater. Res.
, Vol.
13
,
1998
, pp. 94–117.
36.
Kadler
,
K. E.
,
Holmes
,
D. F.
,
Trotter
,
J. A.
, and
Chapman
,
J. A.
, “
Collagen Fibril Formation
,”
Biochem. J.
, Vol.
316
,
1996
, pp. 1–11.
37.
De Greef
,
T. F. A.
,
Smulders
,
M. M. J.
,
Wolffs
,
M.
,
Schenning
,
A. P. H. J.
,
Sijbesma
,
R. P.
, and
Meijer
,
E. W.
, “
Supramolecular Polymerization
,”
Chem. Rev.
, Vol.
109
,
2009
, pp. 5687–5754.
38.
Cordier
,
P.
,
Tournilhac
,
F.
,
Soulie-Ziakovic
,
C.
, and
Leibler
,
L.
, “
Self-Healing and Thermoreversible Rubber from Supramolecular Assembly
,”
Nature
, Vol.
451
,
2008
, pp. 977–980.
39.
Burnworth
,
M.
,
Tang
,
L.
,
Kumpfer
,
J. R.
,
Duncan
,
A. J.
,
Beyer
,
F. L.
, and
Fiore
,
G. L.
, “
Optically Healable Supramolecular Polymers
,”
Nature
, Vol.
472
,
2011
, pp. 334–337.
40.
Capito
,
R. M.
,
Azevedo
,
H. S.
,
Velichko
,
Y. S.
,
Mata
,
A.
, and
Stupp
,
S. I.
, “
Self-Assembly of Large and Small Molecules into Hierarchically Ordered Sacs and Membranes
,”
Science
, Vol.
319
,
2008
, pp. 1812–1816.
41.
Aida
,
T.
,
Meijer
,
E. W.
, and
Stupp
,
S. I.
, “
Functional Supramolecular Polymers
,”
Science
, Vol.
335
,
2012
, pp. 813–817.
42.
Hartgerink
,
J. D.
,
Beniash
,
E.
, and
Stupp
,
S. I.
, “
Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers
,”
Science
, Vol.
294
,
2001
, pp. 1684–1688.
43.
Hartgerink
,
J. D.
,
Beniash
,
E.
, and
Stupp
,
S. I.
, “
Peptide-Amphiphile Nanofibers: A Versatile Scaffold for the Preparation of Self-Assembling Materials
,”
Proc. Natl. Acad. Sci. U. S. A.
, Vol.
99
,
2002
, pp. 5133–5138.
44.
Lee
,
S. S.
,
Huang
,
B. J.
,
Kaltz
,
S. R.
,
Sur
,
S.
,
Newcomb
,
C. J.
, and
Stock
,
S. R.
, “
Bone Regeneration with Low Dose BMP-2 Amplified by Biomimetic Supramolecular Nanofibers within Collagen Scaffolds
,”
Biomaterials
, Vol.
34
,
2013
, pp. 452–459.
45.
Chun
,
A. L.
,
Moralez
,
J. G.
,
Webster
,
T. J.
, and
Fenniri
,
H.
, “
Helical Rosette Nanotubes: A Biomimetic Coating for Orthopedics?
,”
Biomaterials
, Vol.
35
,
2005
, pp. 7304–7309.
46.
Sun
,
L. L.
,
Zhang
,
L. J.
,
Hemraz
,
U. D.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Bioactive Rosette Nanotube-Hydroxyapatite Nanocomposites Improve Osteoblast Functions
,”
Tissue Eng. A
, Vol.
18
,
2012
, pp. 1741–1750.
47.
Zhang
,
L.
,
Rakotondradany
,
F.
,
Myles
,
A. J.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Arginine-Glycine-Aspartic Acid Modified Rosette Nanotube-Hydrogel Composites for Bone Tissue Engineering
,”
Biomaterials
, Vol.
30
,
2009
, pp. 1309–1320.
48.
Zhang
,
L. J.
,
Ramsaywack
,
S.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Enhanced Osteoblast Adhesion on Self-Assembled Nanostructured Hydrogel Scaffolds
,”
Tissue Eng. A
, Vol.
14
,
2008
, pp. 1353–1364.
49.
Zhang
.
L. J.
,
Rodriguez
,
J.
,
Raez
,
J.
,
Myles
,
A. J.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Biologically Inspired Rosette Nanotubes and Nanocrystalline Hydroxyapatite Hydrogel Nanocomposites as Improved Bone Substitutes
,”
Nanotechnology
, Vol.
20
,
2009
, p. 175101.
50.
Li
,
L. M.
,
Beniash
,
E.
,
Zubarev
,
E. R.
,
Xiang
,
W. H.
,
Rabatic
,
B. M.
, and
Zhang
,
G. Z.
, “
Assembling a Lasing Hybrid Material with Supramolecular Polymers and Nanocrystals
,”
Nat. Mater.
, Vol.
2
,
2003
, pp. 689–694.
51.
Jun
,
H. W.
,
Yuwono
,
V.
,
Paramonov
,
S. E.
, and
Hartgerink
,
J. D.
, “
Enzyme-Mediated Degradation of Peptide-Amphiphile Nanofiber Networks
,”
Adv. Mater.
, Vol.
17
,
2005
, pp. 2612–2617.
52.
Song
,
S.
,
Chen
,
Y. P.
,
Yan
,
Z. M.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Self-Assembled Rosette Nanotubes for Incorporating Hydrophobic Drugs in Physiological Environments
,”
Int. J. Nanomed.
, Vol.
6
,
2011
, pp. 101–107.
53.
Meng
,
X. L.
,
Stout
,
D. A.
,
Sun
,
L. L.
,
Beingessner
,
R. L.
,
Fenniri
,
H.
, and
Webster
,
T. J.
, “
Novel Injectable Biomimetic Hydrogels with Carbon Nanofibers and Self Assembled Rosette Nanotubes for Myocardial Applications
,”
J. Biomed. Mater. Res. A
, Vol.
101A
,
2013
, pp. 1095–1102.
54.
Yang
,
L.
,
Sheldon
,
B. W.
, and
Webster
,
T. J.
, “
Orthopedic Nano Diamond Coatings: Control of Surface Properties and Their Impact on Osteoblast Adhesion and Proliferation
,”
J. Biomed. Mater. Res. A
, Vol.
91A
,
2009
, pp. 548–556.
55.
Yang
,
L.
and
Webster
,
T. J.
, “
Nanotechnology Controlled Drug Delivery for Treating Bone Diseases
,”
Expert Opin. Drug Del.
, Vol.
6
,
2009
, pp. 851–864.
56.
Wagner
,
H. D.
,
Lourie
,
O.
,
Feldman
,
Y.
, and
Tenne
,
R.
, “
Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix
,”
Appl. Phys. Lett.
, Vol.
72
,
1998
, pp. 188–190.
57.
Price
,
R. L.
,
Ellison
,
K.
,
Haberstroh
,
K. M.
, and
Webster
,
T. J.
, “
Nanometer Surface Roughness Increases Select Osteoblast Adhesion on Carbon Nanofiber Compacts
,”
J. Biomed. Mater. Res. A
, Vol.
70A
,
2004
, pp. 129–138.
58.
Price
,
R. L.
,
Haberstroh
,
K. M.
, and
Webster
,
T. J.
, “
Improved Osteoblast Viability in the Presence of Smaller Nanometre Dimensioned Carbon Fibres
,”
Nanotechnology
, Vol.
15
,
2004
, pp. 892–900.
59.
Yang
,
L.
,
Sheldon
,
B. W.
, and
Webster
,
T. J.
, “
The Impact of Diamond Nanocrystallinity on Osteoblast Functions
,”
Biomaterials
, Vol.
30
,
2009
, pp. 3458–3465.
60.
Vaijayanthimala
,
V.
, and
Chang
,
H. C.
, “
Functionalized Fluorescent Nanodiamonds for Biomedical Applications
,”
Nanomedicine
, Vol.
4
,
2009
, pp. 47–55.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal