Skip to Main Content
Skip Nav Destination
ASTM Monographs
Bone Graft Substitutes and Bone Regenerative Engineering
By
Cato T. Laurencin, M.D., Ph.D.
Cato T. Laurencin, M.D., Ph.D.
Editor
Search for other works by this author on:
Tao Jiang, Ph.D., MBA
Tao Jiang, Ph.D., MBA
Editor
Search for other works by this author on:
ISBN:
978-0-8031-7060-5
No. of Pages:
396
Publisher:
ASTM International
Publication date:
2014

Bone is a highly complex composite of natural materials that exhibit rich hierarchical cellular components. The process of bone healing encompasses a cascade of controlled events that requires the interplay of many elements, including cells, growth factors, and extracellular matrix. However, the healing that occurs at the injury site is governed by the fracture gap, where, if large enough (segmental bone defects), it can lead to a non-union. These injuries are caused mainly by trauma, cancer, and congenital defects. Thus, the treatment of segmental bone defects poses a tremendous challenge in the field of orthopedic surgery. Available clinical treatments such as allografts, autografts, and xenografts, alone or in combination with growth factors, are currently used. However, these treatment options are associated with many complications, including disease transmission, donor site morbidity, and immunological rejection. The failure also stems from the lack of appropriate scaffolding material; chemical and physical cues; and, most importantly, lack of an appropriate cell population. Regenerative engineering has emerged as a great alternative to the current treatments and is governed by a fundamental understanding of many aspects of embryonic development. Two major components are required to best mimic the developmental process: an abundant supply of uncommitted progenitor cells (PCs) and extracellular matrix scaffolding appropriate for the regenerated tissue. Other components include the use of growth factors that control and promote bone formation/regeneration. Over the past few decades, tissue engineering has developed various natural and synthetic graft materials that potentially can be used in the clinical setting. Although bone marrow aspirate (BMA) is commonly used in the clinic, the use of patient-derived osteogenic cells for bone tissue engineering is not clinically practiced. This chapter is dedicated to examining the major osteoblastic PC sources and their potential use for the repair and regeneration of bone defects.

1.
Lakes
,
R.
, “
Materials with Structural Hierarchy
,”
Nature
, Vol.
361
,
1993
, pp. 511–515.
2.
Schindeler
,
A.
,
McDonald
,
M. M.
,
Bokko
,
P.
, and
Little
,
D. G.
, “
Bone Remodeling during Fracture Repair: The Cellular Picture
,”
Semin. Cell Develop. Biol.
, Vol.
19
,
2008
, pp. 459–466.
3.
Gerstenfeld
,
L. C.
,
Cullinane
,
D. M.
,
Barnes
,
G. L.
,
Graves
,
D. T.
, and
Einhorn
,
T. A.
, “
Fracture Healing as a Post-Natal Developmental Process: Molecular, Spatial and Temporal Aspects of Its Regulation
,”
J. Cell. Biochem.
, Vol.
88
,
2003
, pp. 873–884.
4.
Evans
,
M. J.
and
Kaufman
,
M. H.
, “
Establishment in Culture of Pluripotential Cells from Mouse Embryos
,”
Nature
, Vol.
292
,
1981
, pp. 154–156.
5.
Thomson
,
J. A.
,
Itskovitz-Eldor
,
J.
,
Shapiro
,
S. S.
,
Waknitz
,
M. A.
,
Swiergiel
,
J. J.
,
Marshall
,
V. S.
, and
Jones
,
J. M.
, “
Embryonic Stem Cell Lines Derived from Human Blastocysts
,”
Science
, Vol.
282
,
1998
pp. 1145–1147.
6.
Draper
,
J. S.
,
Moore
,
H. D.
,
Ruban
,
L. N.
,
Gokhale
,
P. J.
, and
Andrews
,
P. W.
, “
Culture and Characterization of Human Embryonic Stem Cells
,”
Stem Cells Dev.
, Vol.
13
,
2004
, pp. 325–336.
7.
Hoffman
,
L. M.
and
Carpenter
,
M. K.
, “
Characterization and Culture of Human Embryonic Stem Cells
,”
Nat. Biotechnol.
, Vol.
23
,
2005
, pp. 699–708.
8.
Zhao
,
W.
,
Ji
,
X.
,
Zhang
,
F.
,
Li
,
L.
, and
Ma
,
L.
, “
Embryonic Stem Cell Markers
,”
Molecules
, Vol.
17
,
2012
, pp. 6196–6236.
9.
Becker
,
K. A.
,
Ghule
,
P. N.
,
Therrien
,
J. A.
,
Lian
,
J. B.
,
Stein
,
J. L.
,
Van Wijnen
,
A. J.
, and
Stein
,
G. S.
, “
Self-Renewal of Human Embryonic Stem Cells Is Supported by a Shortened G1 Cell Cycle Phase
,”
J. Cell. Physiol.
, Vol.
209
,
2006
, pp. 883–893.
10.
Hwang
,
Y. -S.
,
Polak
,
J. M.
, and
Mantalaris
,
A.
, “
In Vitro Direct Osteogenesis of Murine Embryonic Stem Cells Without Embryoid Body Formation
,”
Stem Cells Dev.
, Vol.
17
,
2008
, pp. 963–970.
11.
Bielby
,
R. C.
,
Boccaccini
,
A. R.
,
Polak
,
J. M.
, and
Buttery
,
L. D. K.
, “
In Vitro Differentiation and In Vivo Mineralization of Osteogenic Cells Derived from Human Embryonic Stem Cells
,”
Tissue Eng.
, Vol.
10
,
2004
, pp. 1518–1525.
12.
Ahn
,
S. E.
,
Kim
,
S.
,
Park
,
K. H.
,
Moon
,
S. H.
,
Lee
,
H. J.
,
Kim
,
G. J.
,
Lee
,
Y. J.
,
Cha
,
K. Y.
, and
Chung
,
H. M.
, “
Primary Bone-Derived Cells Induce Osteogenic Differentiation without Exogenous Factors in Human Embryonic Stem Cells
,”
Biochem. Biophys. Res. Commun.
, Vol.
340
,
2006
, pp. 403–408.
13.
Liisa
,
T.
Kuhn
,
L. T.
,
Liu
,
Y.
,
Boyd
,
N. L.
,
Dennis
,
J. E.
,
Jianga
,
X.
,
Xin
,
X.
,
Charlesa
,
L. F.
,
Wang
,
L.
,
Aguila
,
H. L.
,
Rowe
,
D. W.
,
Lichtler
,
A. C.
, and
Goldberg
,
A. J.
, “
Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells
,”
Biochem. Biophys. Res. Commun.
, Vol.
340
,
2013
, pp. 403–408.
14.
Barta
,
T.
,
Vinarsky
,
V.
,
Holubcova
,
Z.
,
Dolezalova
,
D.
,
Verner
,
J.
,
Pospisilova
,
S.
,
Dvorak
,
P.
, and
Hampl
,
A.
, “
Human Embryonic Stem Cells Are Capable of Executing G1/S Checkpoint Activation
,”
Stem Cells
, Vol.
28
,
2010
, pp. 1143–1152.
15.
Barta
,
T.
,
Dolezalova
,
D.
,
Holubcova
,
Z.
, and
Hampl
,
A.
, “
Cell Cycle Regulation in Human Embryonic Stem Cells: Links to Adaptation to Cell Culture
,”
Exp. Biol. Med.
, Vol.
238
,
2013
, pp. 271–275.
16.
Drukker
,
M.
,
Immunological Consideration for Cell Therapy Using Human Embryonic Stem Cells Derivatives
,
Harvard Stem Cell Institution
:
Cambridge, MA
,
2008
.
17.
Caplan
,
A. I.
, “
New Era of Cell-Based Orthopedic Therapies
,”
Tissue Eng. Part B Rev.
, Vol.
15
,
2009
, pp. 195–200.
18.
Docheva
,
D.
,
Haasters
,
F.
, and
Schieker
,
M.
, “
Mesenchymal Stem Cells and Their Cell Surface Receptors
,”
Curr. Rheumat. Rev.
, Vol.
4
,
2008
, pp. 1–6.
19.
Arvidson
,
K.
,
Abdallah
,
B. M.
,
Applegate
,
L. A.
,
Baldini
,
N.
,
Cenni
,
E.
,
Gomez-Barrena
,
E.
,
Granchi
,
D.
,
Kassem
,
M.
,
Konttinen
,
Y. T.
,
Mustafa
,
K.
,
Pioletti
,
D. P.
,
Sillat
,
T.
, and
Finne-Wistrand
,
A.
, “
Bone Regeneration and Stem Cells
,”
J. Cell. Molec. Med.
, Vol.
15
,
2011
, pp. 718–746.
20.
Amini
,
A. R.
,
Laurencin
,
C. T.
, and
Nukavarapu
,
S. P.
, “
Bone Tissue Engineering: Recent Advances and Challenges
,”
Crit. Rev. Biomed. Eng.
, Vol.
40
,
2012
, pp. 363–408.
21.
Steinert
,
A. F.
,
Rackwitz
,
L.
,
Gilbert
,
F.
,
Noeth
,
U.
, and
Tuan
,
R. S.
, “
Concise Review: The Clinical Application of Mesenchymal Stem Cells for Musculoskeletal Regeneration: Current Status and Perspectives
,”
Stem Cells Trans. Med.
, Vol.
1
,
2012
, pp. 237–247.
22.
Caplan
,
A. I.
and
Dennis
,
J. E.
, “
Mesenchymal Stem Cells As Trophic Mediators
,”
J. Cell. Biochem.
, Vol.
98
,
2006
, pp. 1076–1084.
23.
Doherty
,
M. J.
,
Ashton
,
B. A.
,
Walsh
,
S.
,
Beresford
,
J. N.
,
Grant
,
M. E.
, and
Canfield
,
A. E.
, “
Vascular Pericytes Express Osteogenic Potential In Vitro and In Vivo
,”
J. Bone Mineral Res.
, Vol.
13
,
1998
, pp. 828–838.
24.
Caplan
,
A. I.
, “
Adult Mesenchymal Stem Cells for Tissue Engineering Versus Regenerative Medicine
,”
J. Cell. Physiol.
, Vol.
213
,
2007
, pp. 341–347.
25.
Pittenger
,
M. F.
, “
Mesenchymal Stem Cells from Adult Bone Marrow
,”
Methods Mol. Biol.
, Vol.
449
,
2008
, pp. 27–44.
26.
Mauney
,
J. R.
,
Volloch
,
V.
, and
Kaplan
,
D. L.
, “
Role of Adult Mesenchymal Stem Cells in Bone Tissue-Engineering Applications: Current Status and Future Prospects
,”
Tissue Eng.
, Vol.
11
,
2005
, pp. 787–802.
27.
Brittberg
,
M.
,
Lindahl
,
A.
,
Nilsson
,
A.
,
Ohlsson
,
C.
,
Isaksson
,
O.
, and
Peterson
,
L.
, “
Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation
,”
N. Engl. J. Med.
, Vol.
331
,
1994
, pp. 889–895.
28.
Ringe
,
J.
,
Leinhase
,
I.
,
Stich
,
S.
,
Loch
,
A.
,
Neumann
,
K.
,
Haisch
,
A.
,
Haeupl
,
T.
,
Manz
,
R.
,
Kaps
,
C.
, and
Sittinger
,
M.
, “
Human Mastoid Periosteum-Derived Stem Cells: Promising Candidates for Skeletal Tissue Engineering
,”
J. Tissue Eng. Regen. Med.
, Vol.
2
,
2008
, pp. 136–146.
29.
Shi
,
X.
,
Chen
,
S.
,
Zhao
,
Y.
,
Lai
,
C.
, and
Wu
,
H.
, “
Enhanced Osteogenesis by a Biomimic Pseudo-Periosteum-Involved Tissue Engineering Strategy
,”
Adv. Healthcare Mat.
, Vol.
2
,
2013
, pp. 1229–1235.
30.
Chen
,
D.
,
Shen
,
H.
,
Shao
,
J.
,
Jiang
,
Y.
,
Lu
,
J.
,
He
,
Y.
, and
Huang
,
C.
, “
Superior Mineralization and Neovascularization Capacity of Adult Human Metaphyseal Periosteum-Derived Cells for Skeletal Tissue Engineering Applications
,”
Int. J. Molec. Med.
, Vol.
27
,
2011
, pp. 707–713.
31.
Kubis
,
N.
,
Tomita
,
Y.
,
Tran-Dinh
,
A.
,
Planat-Benard
,
V.
,
André
,
M.
,
Karaszewski
,
B.
,
Waeckel
,
L.
,
Pénicaud
,
L.
,
Silvestre
,
J. -S.
,
Casteilla
,
L.
,
Seylaz
,
J.
, and
Pinard
,
E.
, “
Vascular Fate of Adipose Tissue-Derived Adult Stromal Cells in the Ischemic Murine Brain: A Combined Imaging-Histological Study
,”
NeuroImage
, Vol.
34
,
2007
, pp. 1–11.
32.
Gimble
,
J. M.
, and
Guilak
,
F.
, “
Adipose-Derived Adult Stem Cells: Isolation, Characterization, and Differentiation Potential
,”
Cytotherapy
, Vol.
5
,
2003
, pp. 362–369.
33.
Yoon
,
E.
,
Dhar
,
S.
,
Chun
,
D. E.
,
Gharibjanian
,
N. A.
, and
Evans
,
G. R. D.
, “
In Vivo Osteogenic Potential of Human Adipose-Derived Stem Cells/Poly Lactide-co-Glycolic Acid Constructs for Bone Regeneration in a Rat Critical-Sized Calvarial Defect Model
,”
Tissue Eng.
, Vol.
13
,
2007
, pp. 619–627.
34.
Jeon
,
O.
,
Rhie
,
J. W.
,
Kwon
,
I. -K.
,
Kim
,
J. -H.
,
Kim
,
B. -S.
, and
Lee
,
S. -H.
, “
In Vivo Bone Formation following Transplantation of Human Adipose-Derived Stromal Cells That Are Not Differentiated Osteogenically
,”
Tissue Eng. A
, Vol.
14
,
2008
, pp. 1285–1294.
35.
Sarugaser
,
R.
,
Lickorish
,
D.
,
Baksh
,
D.
,
Hosseini
,
M. M.
, and
Davies
,
J. E.
, “
Human Umbilical Cord Perivascular (HUCPV) Cells: A Source of Mesenchymal Progenitors
,”
Stem Cells
, Vol.
23
,
2005
, pp. 220–229.
36.
Baksh
,
D.
,
Yao
,
R.
, and
Tuan
,
R. S.
, “
Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow
,”
Stem Cells
, Vol.
25
,
2007
, pp. 1384–1392.
37.
Chen
,
W.
,
Liu
,
J.
,
Manuchehrabadi
,
N.
,
Weir
,
M. D.
,
Zhu
,
Z.
, and
Xu
,
H. H. K.
, “
Umbilical Cord and Bone Marrow Mesenchymal Stem Cell Seeding on Macroporous Calcium Phosphate for Bone Regeneration in Rat Cranial Defects
,”
Biomaterials
, Vol.
34
,
2013
, pp. 9917–9925.
38.
Kanczler
,
J. M.
, and
Oreffo
,
R. O. C.
, “
Osteogenesis and Angiogenesis: The Potential for Engineering Bone
,”
Eur. Cell Mater.
, Vol.
15
,
2008
, pp. 100–114.
39.
Lee
,
D. Y.
,
Cho
,
T. -J.
,
Kim
,
J. A.
,
Lee
,
H. R.
,
Yoo
,
W. J.
,
Chung
,
C. Y.
, and
Choi
,
I. H.
, “
Mobilization of Endothelial Progenitor Cells in Fracture Healing and Distraction Osteogenesis
,”
Bone
, Vol.
42
,
2008
, pp. 932–941.
40.
Usami
,
K.
,
Mizuno
,
H.
,
Okada
,
K.
,
Narita
,
Y.
,
Aoki
,
M.
,
Kondo
,
T.
,
Mizuno
,
D.
,
Mase
,
J.
,
Nishiguchi
,
H.
,
Kagami
,
H.
, and
Ueda
,
M.
, “
Composite Implantation of Mesenchymal Stem Cells with Endothelial Progenitor Cells Enhances Tissue-Engineered Bone Formation
,”
J. Biomed. Mater. Res. A
, Vol.
90A
,
2009
, pp. 730–741.
41.
Zaidi
,
N.
and
Nixon
,
A. J.
, “
Stem Cell Therapy in Bone Repair and Regeneration
,”
Ann. N. Y. Acad. Sci.
, Vol.
1117
,
2007
, pp. 62–72.
42.
Geuze
,
R. E.
,
Wegman
,
F.
,
Oner
,
F. C.
,
Dhert
,
W. J. A.
, and
Alblas
,
J.
, “
Influence of Endothelial Progenitor Cells and Platelet Gel on Tissue-Engineered Bone Ectopically in Goats
,”
Tissue Eng. A
, Vol.
15
,
2009
, pp. 3669–3677.
43.
Seebach
,
C.
,
Henrich
,
D.
,
Kaehling
,
C.
,
Wilhelm
,
K.
,
Tami
,
A. E.
,
Alini
,
M.
, and
Marzi
,
I.
, “
Endothelial Progenitor Cells and Mesenchymal Stem Cells Seeded onto Beta-TCP Granules Enhance Early Vascularization and Bone Healing in a Critical-Sized Bone Defect in Rats
,”
Tissue Eng. A
, Vol.
16
,
2010
, pp. 1961–1970.
44.
Amini
,
A. R.
,
Laurencin
,
C. T.
, and
Nukavarapu
,
S. P.
, “
Differential Analysis of Peripheral Blood- and Bone Marrow-Derived Endothelial Progenitor Cells for Enhanced Vascularization in Bone Tissue Engineering
,”
J. Orthop. Res.
, Vol.
30
,
2012
, pp. 1507–1515.
45.
Yamanaka
,
S.
, and
Takahashi
,
K.
, “
Induction of Pluripotent Stem Cells from Mouse Fibroblast Cultures [article in Japanese]
,”
Tanpakushitsu Kakusan Koso
, Vol.
51
,
2006
, pp. 2346–2351.
46.
Takahashi
,
K.
,
Tanabe
,
K.
,
Ohnuki
,
M.
,
Narita
,
M.
,
Ichisaka
,
T.
,
Tomoda
,
K.
, and
Yamanaka
,
S.
, “
Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors
,”
Cell
, Vol.
131
,
2007
, pp. 861–872.
47.
Yoshida
,
Y.
and
Yamanaka
,
S.
, “
Recent Stem Cell Advances: Induced Pluripotent Stem Cells for Disease Modeling and Stem Cell-Based Regeneration
,”
Circulation
, Vol.
122
,
2010
, pp. 80–87.
48.
Yamanaka
,
S.
, “
Induced Pluripotent Stem Cells: Past, Present, and Future
,”
Cell Stem Cell
, Vol.
10
,
2012
, pp. 678–684.
49.
Laurencin
,
C. T.
,
Attawia
,
M. A.
,
Lu
,
L. Q.
,
Borden
,
M. D.
,
Lu
,
H. H.
,
Gorum
,
W. J.
, and
Lieberman
,
J. R.
, “
Poly(lactide-co-glycolide)/Hydroxyapatite Delivery of BMP-2-Producing Cells: A Regional Gene Therapy Approach to Bone Regeneration
,”
Biomaterials
, Vol.
22
,
2001
, pp. 1271–1277.
50.
Park
,
J.
,
Ries
,
J.
,
Gelse
,
K.
,
Kloss
,
F.
,
Mark
,
K. v. d.
,
Wiltfang
,
J.
,
Neukam
,
F.
, and
Schneider
,
H.
, “
Bone Regeneration in Critical Size Defects by Cell-Mediated BMP-2 Gene Transfer: A Comparison of Adenoviral Vectors and Liposomes
,”
Gene Therapy
, Vol.
10
,
2003
, pp. 1089–1098.
51.
Lieberman
,
J. R.
,
Daluiski
,
A.
,
Stevenson
,
S.
,
Jolia
,
L.
,
Wu
,
L.
,
McAllister
,
P.
,
Lee
,
Y. P.
,
Kabo
,
M. J.
,
Finerman
,
G. A. M.
,
Berk
,
A. J.
, and
Witte
,
O. N.
, “
The Effect of Regional Gene Therapy with Bone Morphogenetic Protein-2-Producing Bone-Marrow Cells on the Repair of Segmental Femoral Defects in Rats
,”
J. Bone Joint Surg.
, Vol.
81A
,
1999
, pp. 905–917.
52.
Peng
,
H. R.
,
Wright
,
V.
,
Usas
,
A.
,
Gearhart
,
B.
,
Shen
,
H. C.
,
Cummins
,
J.
, and
Huard
,
J.
, “
Synergistic Enhancement of Bone Formation and Healing by Stem Cell-Expressed VEGF and Bone Morphogenetic Protein-4
,”
J. Clin. Invest.
, Vol.
110
,
2002
, pp. 751–759.
53.
Jäger
,
M.
,
Herten
,
M.
,
Fochtmann
,
U.
,
Fischer
,
J.
,
Hernigou
,
P.
,
Zilkens
,
C.
,
Hendrich
,
C.
, and
Krauspe
,
R.
, “
Bridging the Gap: Bone Marrow Aspiration Concentrate Reduces Autologous Bone Grafting in Osseous Defects
,”
J. Orthop. Res.
, Vol.
29
,
2011
, pp. 173–180.
54.
Ridgway
,
J.
,
Butcher
,
A.
,
Chen
,
P. -S.
,
Horner
,
A.
, and
Curran
,
S.
, “
Novel Technology to Provide an Enriched Therapeutic Cell Concentrate from Bone Marrow Aspirate
,”
Biotechnol. Prog.
, Vol.
26
,
2010
, pp. 1741–1748.
55.
Mikael
,
P. E.
and
Nukavarapu
,
S. P.
, “
Advanced Scaffold Design for Cartilage Mediated Bone Tissue Engineering
,”
MRS Fall Meeting & Exhibit
,
Boston, MA
, December 3,
2013
.
56.
Dorcemus
,
D.
and
Nukavarapu
,
S. P.
, “
Novel and Unique Matrix Design for Osteochondral Tissue Engineering
,” MRS Symposium Proceedings. Vol.
1621
,
2014
, pp. 17–23.
57.
Mazzucco
,
L.
,
Balbo
,
V.
,
Cattana
,
E.
,
Guaschino
,
R.
, and
Borzini
,
P.
, “
Not Every PRP-Gel Is Born Equal. Evaluation of Growth Factor Availability for Tissues Through Four PRP-Gel Preparations: Fibrinet, RegenPRPKit, Plateltex and One Manual Procedure
,”
Vox Sanguinis
, Vol.
97
,
2009
, pp. 110–118.
58.
Marx
,
R.
,
Carlson
,
E.
,
Eichstaedt
,
R.
,
Schimmele
,
S.
,
Strauss
,
J.
, and
Georgeff
,
K.
, “
Platelet Rich Plasma: Growth Factor Enhancement for Bone Grafts
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
, Vol.
85
,
1998
, pp. 638–646.
59.
Yamada
,
Y.
,
Ueda
,
M.
,
Naiki
,
T.
,
Takahashi
,
M.
,
Hata
,
K. I.
, and
Nagasaka
,
T.
, “
Autogenous Injectable Bone for Regeneration with Mesenchymal Stem Cells and Platelet-Rich Plasma: Tissue-Engineered Bone Regeneration
,”
Tissue Eng.
, Vol.
10
,
2004
, pp. 955–964.
60.
Martin
,
J. R.
,
Houdek
,
M. T.
, and
Sierra
,
R. J.
, “
Use of Concentrated Bone Marrow Aspirate and Platelet Rich Plasma During Minimally Invasive Decompression of the Femoral Head in the Treatment of Osteonecrosis
,”
Croat. Med, J.
, Vol.
54
,
2013
, pp. 219–224.
61.
Igwe
,
J.
,
Mikael
,
P.
, and
Nukavarapu
,
S.
, “
Design, Fabrication and In Vitro Evaluation of a Novel Polymer-Hydrogel Hybrid Scaffold for Bone Tissue Engineering
,”
J. Tissue Eng. Regen. Med.
, Vol.
8
,
2014
, pp. 131–142.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal