Skip to Main Content
Skip Nav Destination
ASTM Monographs
Physics and Chemistry of Micro-Nanotribology
By
Shizhu Wen
Shizhu Wen
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
Jianbin Luo
Jianbin Luo
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
Yuanzhong Hu
Yuanzhong Hu
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
ISBN-10:
0-8031-7006-8
ISBN:
978-0-8031-7006-3
Publisher:
ASTM International
Publication date:
2008

MOSTLY, THE PERFORMANCE OF A MECHANICAL system depends on, to a large extent, surface properties and interfacial behavior of/between its individual components. Especially, in the application of micro/nano tribology, surface behaviors of materials often play a key role in the actualization of designed functions. Techniques of thin solid coatings are extensively used in many fields, which provide desired surface properties by producing thin layers on different substrates. The materials of such layers differ from that of the substrates and their thicknesses are generally in the scale of nanometre to micrometre. Figure 1 gives a typical system of thin solid coating/substrate. By selecting coating materials and deposition methods, desired properties such as low friction, wear resistance, corrosion resistance, etc., could be attained. As one of the most attractive hot spots in material science and technology, research on thin solid coatings has been extensively carried out and the emphasis is generally put on seeking proper coating materials and corresponding preparation techniques. Nowadays, numerous coating materials such as metals, polymers, alloys, ceramics, and their hybrids are available for various applications. As for techniques of coating production, physical vapor deposition (PVD), chemical vapor deposition (CVD), and their derived techniques are extensively used. In the past few decades, some new thin coating materials appeared and attracted great attention. The most attractive coating should be called a diamond-like carbon coating (DLC). With both sp2 and sp3 structures, DLC coatings exhibited many excellent properties like low friction coefficient, high hardness, good bio-consistence, and so on, which make it a useful coating material for a wide range of applications. Carbon nitrides are another kind of coating material, on which much attention was paid in the past 20 years. Carbon nitride is practically a material first worked out by calculation. Being claimed possibly to have a bulk modulus greater than diamond, this exciting “calculated material” has attracted great attention since its first prediction in 1989 [1] and considerable research has been directed toward its synthesis as the form of surface coatings.

1.
Liu
,
A. Y.
and
Cohen
,
M. L.
, “
Prediction of New Compressibility Solids
,”
Science
SCIEAS0036-8075, Vol.
245
,
1989
, pp. 841–842.
2.
Aisenberg
,
S.
and
Chabot
,
R.
, “
Ion-beam Deposition of Thin Films of Diamond-like Carbon
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
42
,
1971
, pp. 2953–2958.
3.
Kaufmann
,
H. R.
, “
Technology of Ion Beam Sources Used in Sputtering
,”
J. Vac. Sci. Technol.
JVSTAL0022-5355, Vol.
15
,
1978
, pp. 272–276.
4.
Monaghan
,
D. P.
,
Teer
,
D. G.
,
Laing
,
K. C.
,
Efeoglu
,
I.
, and
Arnell
,
R. D.
, “
Deposition of Graded Alloy Nitride Films by Closed Field Unbalanced Magnetron Sputtering
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
59
,
1993
, pp. 21–25.
5.
Qi
,
J.
,
Luo
,
J. B.
,
Wen
,
S. Z.
,
Wang
,
J.
, and
Li
,
W. Z.
, “
Mechanical and Tribological Properties of Non-hydrogenated DLC Films Synthesized by IBAD
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
128/129
,
2000
, pp. 324–328.
6.
Coll
,
B. F.
and
Chhowalla
,
M.
, “
Modelization of Reaction-Kinetics of Nitrogen and Titanium During Tin Arc Deposition
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
68
,
1994
, pp. 131–140.
7.
Chhowalla
,
M.
,
Robertson
,
J.
,
Chen
,
C.W.
,
Silva
,
S. R. P.
, and
Amaratunga
,
G. A. J.
, “
Influence of Ion Energy and Substrate Temperature on the Optical and Electronic Properties of Tetrahedral Amorphous Carbon (ta-C) Films
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
81
,
1997
, pp. 39–145.
8.
Brown
,
I. G.
, “
Cathodic Arc Deposition of Films
,”
Ann. Rev. Mater. Sci.
ARMSCX0084-6600, Vol.
28
,
1998
, pp. 243–269.
9.
Boxman
,
R. L.
,
Zhitomirsky
,
V.
,
Alterkop
,
B.
,
Gidalevich
,
E.
,
Beilis
,
O.
,
Keidar
,
M.
, and
Goldsmith
,
S.
, “
Recent Progress in Filtered Vacuum Arc Deposition
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
86/87
,
1996
, pp. 243–253.
10.
Fallon
,
P. J.
,
Veerasamy
,
V. S.
,
Davis
,
C. A.
,
Robertson
,
J.
,
Amaratunga
,
G. A. J.
,
Milne
,
W. I.
, and
Koskinen
,
J.
, “
Properties of Filtered-Ion-Beam-Deposited Diamond-like Carbon as a Function of Ion Energy
,”
Phys. Rev. B
PRBMDO0163-1829, Vol.
48
,
1993
, pp. 4777–4782.
11.
Shi
,
X.
,
Flynn
,
D.
,
Tay
,
B. K.
,
Prawer
,
S.
,
Nugent
,
K.W.
,
Silva
,
S. R. P.
,
Lifshitz
,
Y.
, and
Milne
,
W. I.
, “
Mechanical Properties and Raman Spectra of Tetrahedral Amorphous Carbon Films with High sp3 Fraction Deposited Using a Filtered Cathodic Arc
,”
Philos. Mag. B
PMABDJ1364-2812, Vol.
76
,
1997
, pp. 351–361.
12.
Polo
,
M. C.
,
Andujar
,
J. L.
,
Robertson
,
J.
, and
Milne
,
W. I.
, “
Preparation of Tetrahedral Amorphous Carbon Films by Filtered Cathodic Vacuum Arc Deposition
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
9
,
2000
, pp. 663–667.
13.
Robertson
,
J.
, “
Diamond-like Amorphous Carbon
,”
Materials Sci. Eng. R
MIGIEA0927-796X, Vol.
37
,
2002
, pp. 129–281.
14.
Friedmann
,
T. A.
,
Sullivan
,
J. P.
,
Knapp
,
J. A.
,
Tallant
,
D. R.
,
Follstaedt
,
D. M.
,
Medlin
,
D. L.
, and
Mirkarimi
,
P. B.
, “
Thick Stress-free Amorphous-Tetrahedral Carbon Films with Hardness Near that of Diamond
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
71
,
1997
, pp. 3820–3822.
15.
Scheibe
,
H. J.
, and
Schultrich
,
B.
, “
DLC Film Deposition by Laser-arc and Study of Properties
,”
Thin Solid Films
THSFAP0040-6090, Vol.
246
,
2005
, pp. 92–102.
16.
Jiang
,
N. N.
,
Shao
,
T. M.
, and
Chen
,
D. R.
, “
Pulsed Laser Arc Deposition of Diamond-like Carbon Films
,”
J. Inorg. Mater.
INOMAF0020-1685,
2005
, Vol.
20
, No.
1
, pp. 187–192.
17.
Catherine
,
U.
, and
Couderc
,
C.
, “
Electrical Characteristics and Growth Kinetics in Discharges Used for Plasma Deposition of Amorphous Carbon
,”
Thin Solid Films
THSFAP0040-6090, Vol.
144
,
1986
, pp. 265–280.
18.
Qi
,
J.
,
Lai
,
K. H.
,
Lee
,
C. S.
,
Bello
,
I.
,
Lee
,
S. T.
,
Luo
,
J. B.
, and
Wen
,
S. Z.
, “
Mechanical Properties of a-C:H Multilayer Films
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
10
,
2001
, pp. 1833–1838.
19.
Koidl
,
P.
,
Wild
,
Ch.
,
Dischler
,
B.
,
Wagner
,
J.
, and
Ramsteiner
,
M.
, “
Plasma Deposition, Properties and Structure of Amorphous Hydrogenated Carbon Films
,”
Mater. Sci. Forum
MSFOEP0255-5476, Vol.
52
,
1990
, pp. 41–70.
20.
Jiang
,
X.
,
Zou
,
J. W.
,
Reichelt
,
K.
, and
Grunberg
,
P.
, “
The Study of Mechanical Properties of a-C:H Films by Brillouin Scattering and Ultralow Load Indentation
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
66
,
1989
, pp. 4729–4735.
21.
Weiler
,
M.
,
Lang
,
K.
,
Li
,
E.
, and
Robertson
,
J.
, “
Deposition of Tetrahedral Hydrogenated Amorphous Carbon Using a Novel Electron Cyclotron Wave Resonance Reactor
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
72
,
1998
, pp. 1314–1316.
22.
Erdemir
,
A.
, “
Design Criteria for Superlubricity in Carbon Films and Related Microstructures
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
37
,
2004
, pp. 577–583.
23.
Gangopadhyay
,
A.
, “
Mechanical and Tribological Properties of Amorphous Carbon Films
,”
Tribol. Lett.
TRLEFS1023-8883, Vol.
5
,
1998
, pp. 25–39.
24.
Tay
,
B. K.
,
Sheeja
,
D.
,
Choong
,
Y. S.
,
Lau
,
S. P.
, and
Shi
,
X.
, “
Pin-on-disk Characterization of Amorphous Carbon Films Prepared by Filtered Cathodic Vacuum Arc Technique
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
9
,
2000
, pp. 819–824.
25.
Enke
,
K.
, “
Some New Results on the Fabrication of and the Mechanical, Electrical and Optical Properties of I-Carbon Layers
,”
Thin Solid Films
THSFAP0040-6090, Vol.
80
,
1981
, pp. 227–234.
26.
Erdemir
,
A.
, “
The Role of Hydrogen in Tribological Properties of Diamond-like Carbon Films
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
146/147
,
2001
, pp. 292–297.
27.
Grill
,
A.
, “
Tribology of Diamond-like Carbon and Related Materials: An Updated Review
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
94/95
,
1997
, pp. 507–513.
28.
Voevodin
,
A. A.
,
Phelps
,
A. W.
,
Zabinski
,
J. S.
, and
Donley
,
M. S.
, “
Friction Induced Phase Transformation of Pulsed Laser Deposited Diamond-like Carbon
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
5
,
1996
, pp. 1264–1269.
29.
Grischke
,
M.
,
Bewilogua
,
K.
,
Trojan
,
K.
, and
Dimigen
,
H.
, “
Application-oriented Modifications of Deposition Processes for Diamond-like Carbon-based Coatings
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
74/75
,
1996
, pp. 739–745.
30.
Oguri
,
K.
, and
Ariai
,
T.
, “
Friction Coefficient of Si-C, Ti-C and Ge-C Coatings with Excess Carbon Formed by Plasma-assisted Chemical Vapour Deposition
,”
Thin Solid Films
THSFAP0040-6090, Vol.
208
,
1992
, pp. 158–160.
31.
Goranchev
,
B.
,
Reichelt
,
K.
,
Chevallier
,
J.
,
Hornshoj
,
P.
,
Dimigen
,
H.
, and
Hubsch
,
H.
, “
R. F. Reactive Sputter Deposition of Hydrogenated Amorphous Silicon Carbide Films
,”
Thin Solid Films
THSFAP0040-6090, Vol.
139
,
1986
, pp. 275–285.
32.
Donnet
,
C.
, “
Recent Progress on the Tribology of Doped Diamond-like and Carbon Alloy Coatings: A Review
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
100/101
,
1998
, pp. 180–186.
33.
Dimigen
,
H.
,
Hubsch
,
H.
, and
Memming
,
R.
, “
Tribological and Electrical Properties of Metal-containing Hydrogenated Carbon Films
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
36
,
1987
, pp. 1056–1058.
34.
Dimigen
,
H.
, and
Klages
,
C. P.
, “
Microstructure and Wear Behavior of Metal-containing Diamond-like Coatings
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
49
,
1991
, pp. 543–547.
35.
Klaffke
,
D.
,
Wasche
,
R.
, and
Czichos
,
H.
, “
Wear Behaviour of I-Carbon Coatings
,”
Wear
WEARCJ0043-1648, Vol.
153
,
1992
, pp. 149–162.
36.
Sjostrom
,
H.
,
Hultman
,
L.
,
Sundgren
,
J. E.
, and
Wallenberg
,
L. R.
, “
Microstructure of Amorphous C:H and Metal-containing C:H Films Deposited on Steel Substrates
,”
Thin Solid Films
THSFAP0040-6090, Vol.
232
,
1993
, pp. 169–179.
37.
Zhenyu
Zhang
,
Xinchun
Lu
,
Jianbin
Luo
,
Yang
Liu
,
Chenhui
Zhang
, “
Preparation and Characterization of La2O3 Doped Diamond-Like Carbon Nanofilms (I): Structure Analysis
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
16
, No.
11
,
2007
, pp. 1905–1911.
38.
Grill
,
A.
, “
Diamond-like Carbon: State of the Art
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
8
,
1999
, pp. 428–434.
39.
Kimock
,
F. M.
, and
Knapp
,
B. J.
, “
Commercial Applications of Ion Beam Deposited Diamond-like Carbon (DLC) Coatings
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
56
,
1993
, pp. 273–279.
40.
Evans
,
A. C.
,
Franks
,
J.
, and
Revell
,
P. J.
, “
Diamond-like Carbon Applied to Bioengineering Materials
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
47
,
1991
, pp. 662–667.
41.
Thomson
,
L. A.
,
Law
,
C. F.
, and
Rushton
,
N.
, “
Biocompatibility of Diamond-like Carbon Coating
,”
Biomaterials
BIMADU0142-9612, Vol.
12
,
1991
, pp. 37–40.
42.
Grill
,
A.
,
Patel
,
V.
, and
Jahnes
,
C.
, “
Novel Low K Dielectrics Based on Diamond-like Carbon Materials
,”
J. Electrochem. Soc.
JESOAN0013-4651, Vol.
145
,
1998
, pp. 1649–1653.
43.
Robertson
,
J.
, “
Requirements of Ultrathin Carbon Coatings for Magnetic Storage Technology
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
36
,
2003
, pp. 405–415.
44.
Robertson
,
J.
, “
Ultrathin Carbon Coatings for Magnetic Storage Technology
,”
Thin Solid Films
THSFAP0040-6090, Vol.
383
,
2001
, pp. 81–88.
45.
Goglia
,
P. R.
,
Berkowitz
,
J.
,
Hoehn
,
J.
,
Xidis
,
A.
, and
Stover
,
L.
, “
Diamond-like Carbon Applications in High Density Hard Disc Recording Heads
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
10
,
2001
, pp. 271–277.
46.
Fung
,
M. K.
,
Chan
,
W. C.
,
Lai
,
K. H.
,
Bello
,
I.
,
Lee
,
C. S.
,
Wong
,
N. B.
, and
Lee
,
S. T.
, “
Deposition of Ultra-thin Diamond-like Carbon Protective Coating on Magnetic Disks by Electron Cyclotron Resonance Plasma Technique
,”
J. Non-Cryst. Solids
JNCSBJ0022-3093, Vol.
254
,
1999
, pp. 167–173.
47.
Cutiongco
,
E. C.
,
Li
,
D.
, and
Chung
,
Y. W.
, “
Tribological Behavior of Amorphous Carbon Nitride Overcoats for Magnetic Thin-film Rigid Disks
,”
J. Tribol.
JOTRE90742-4787, Vol.
118
,
1996
, pp. 543–548.
48.
Papakonstantinou
,
P.
,
Zhao
,
J. F.
,
Richardot
,
A.
,
McAdams
,
E. T.
, and
McLaughlin
,
J. A.
, “
Evaluation of Corrosion Performance of Ultra-thin Si-DLC Overcoats with Electrochemical Impedance Spectroscopy
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
11
,
2002
, pp. 1124–1129.
49.
Chamberlain
,
G.
, “
Carbon Coating Reported to be Nearfrictionless
,”
Des. News
DIGNAO0011-9407, Vol.
54
, No.
1
,
1998
, p. 15.
50.
Erdemir
,
A.
,
Eryilmaz
,
O. L.
, and
Fenske
,
G.
, “
Synthesis of Diamond-like Carbon Films with Superlow Friction and Wear Properties
,”
J. Vac. Sci. Technol. A
JVTAD60734-2101, Vol.
18
, No.
4
,
2000
, pp. 1987–1992.
51.
Erdemir
,
A.
,
Nilufer
,
I. B.
,
Eryilmaz
,
O.
,
Beschliesser
,
L. M.
, and
Fenske
,
G. R.
, “
Friction and Wear Performance of Diamond-like Carbon Films Grown in Various Source Gas Plasmas
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
121
,
1999
, pp. 589–593.
52.
Heimberg
,
J. A.
,
Wahl
,
K. J.
,
Singer
,
I. L.
, and
Erdemir
,
A.
, “
Friction Behavior of Diamond-like Carbon Coatings: Time and Speed Effects
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
78
,
2001
, pp. 2449–2451.
53.
Eryilmaz
,
O. L.
, and
Erdemir
,
A.
, “
Surface Analytical Investigation of Nearly-Frictionless Carbon Films After Tests in Dry and Humid Nitrogen
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
201
, No.
16–17
,
2007
, pp. 7401–7407.
54.
Teter
,
D. M.
, Computation Alchemy: “
The Search for New Superhard Materials
,”
MRS Bull.
MRSBEA0883-7694, Vol.
23
, No.
1
,
1998
, pp. 22–27.
55.
Haines
,
J.
,
Leger
,
J. M.
, and
Bocquillon
,
G.
, “
Synthesis and Design of Superhard Materials
,”
Annu. Rev. Mater. Res.
ARMRCU1531-7331, Vol.
31
,
2001
, pp. 1–23.
56.
Cohen
,
M. L.
, “
Calculation of Bulk Moduli of Diamond and Zinc-blended Solids
,”
Phys. Rev. B
PRBMDO0163-1829, Vol.
32
,
1985
, pp. 7988–7991.
57.
Muhl
,
S.
, and
Méndez
,
J. M.
, “
A Review of the Preparation of Carbon Nitride Films
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
8
,
1999
, pp. 1809–1830.
58.
Niu
,
C. M.
,
Yuan
,
Z. L.
, and
Charles
,
M. L.
, “
Experimental Realization of the Covalent Solid Carbon Nitride
,”
Science
SCIEAS0036-8075, Vol.
261
,
1993
, pp. 334–337.
59.
Yu
,
K. M.
,
Cohen
,
M. L.
,
Haller
,
E. E.
,
Hansen
,
W. L.
,
Liu
,
A.Y.
, and
Wu
,
I. C.
, “
Observation of Crystalline C3N4
,”
Phys. Rev. B
PRBMDO0163-1829, Vol.
49
, No.
7
,
1994
, pp. 5034–5037.
60.
Wei
Aixiang
,
Chen
Dihu
,
Ke
Ning
,
Peng
Shaoqi
,
Wong
S. P.
, “
Characteristics of Carbon Nitride Films Prepared by Magnetic Filtered Plasma Stream
,”
Thin Solid Films
THSFAP0040-6090, Vol.
323
, No.
1–2
,
1998
, pp. 217–221.
61.
Yen
,
T.-Y.
, and
Chou
,
C.-P.
, “
Growth and Characterization of Carbon Nitride Thin Films Prepared by Arc-Plasma Jet Chemical
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
67
, No.
19
,
1995
, pp. 2801–2803.
62.
Fu
,
Y. Q.
,
Wei
,
J.
,
Yan
,
B. B.
, and
Loh
,
N. L.
, “
Characterization and Tribological Evaluation of Duplex Treatment by Depositing Carbon Nitride Films on Plasma Nitrided Ti-6Al-4V
,”
J. Mater. Sci.
JMTSAS0022-2461, Vol.
35
, No.
9
,
2000
, pp. 2215–2227.
63.
Gonzalez
,
P.
,
Soto
,
R.
,
Leon
,
B.
, and
Perez
,
A. M.
, “
Comparison of Pulsed Laser Deposition CNx Films Grown from Organic and Inorganic Targets
,”
J. Vac. Sci. Technol. A
JVTAD60734-2101, Vol.
19
, No.
2
,
2001
, pp. 499–502.
64.
Chowdhury
,
A. K. M. S.
,
Monclus
,
M.
,
Cameron
,
D. C.
,
Gilvarry
,
J.
,
Murphy
,
M. J.
,
Barradas
,
N. P.
, and
Hashmi
,
M. S. J.
, “
The Composition and Bonding Structure of CNx Films and Their Influence on the Mechanical Properties
,”
Thin Solid Films
THSFAP0040-6090, Vol.
308–309
,
1997
, pp. 130–134.
65.
McCulloch
,
D. G.
, and
Merchant
,
A. R.
, “
The Effect of Annealing on the Structure of Cathodic Arc Deposited Amorphous Carbon Nitride Films
,”
Thin Solid Films
THSFAP0040-6090, Vol.
290
,
1996
, pp. 99–102.
66.
Aoi
,
Y.
,
Ono
,
K.
,
Sakurada
,
K.
,
Kamijo
,
E.
,
Sasaki
,
M.
, and
Sakayama
,
K.
, “
Effects of Heat Treatment on Structure of Amorphous CNx Thin Films by Pulsed Laser Deposition
,”
Thin Solid Films
THSFAP0040-6090, Vol.
389
, No.
1–2
,
2001
, pp. 62–67.
67.
Wan
,
L.
, and
Egerton
,
R. F.
, “
Preparation and Characterization of Carbon Nitride Thin Films
,”
Thin Solid Films
THSFAP0040-6090, Vol.
279
, No.
1–2
,
1996
, pp. 34–42.
68.
Cheng
,
D. G.
,
Lu
,
F. X.
,
Yang
,
L. Y.
,
Song
,
B.
, and
Tong
,
Y. M.
, “
Preparation and Characterization of Magnetron Sputtered CNx Films
,”
Journal of University of Science and Technology Beijing
, Vol.
19
, No.
1
,
1997
, pp. 100–104.
69.
Ming
,
Y.
, and
Kramer
,
D. J.
, “
Properties of Carbon Nitride Films Deposited With and Without Electron Resonance Plasma Assistance
,”
Thin Solid Films
THSFAP0040-6090, Vol.
382
,
2001
, pp. 4–12.
70.
Hubička
,
Z.
,
Šícha
,
M.
,
Pajasová
,
L.
,
Soukup
,
L.
,
Jastrabík
,
L.
,
Chvostová
,
D.
, and
Wagner
,
T.
, “
CNx Coatings Deposited by Pulsed RF Supersonic Plasma Jet: Hardness, Nitrogenation and Optical Properties
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
142–144
,
2001
, pp. 681–687.
71.
Hajek
,
V.
,
Rusnak
,
K.
,
Vlcek
,
J.
,
Martinu
,
L.
, and
Hawthrone
,
H. M.
, “
Tribological Study of CNx Films Prepared by Reactive dc Magnetron Sputtering
,”
Wear
WEARCJ0043-1648, Vol.
213
,
1997
, pp. 80–89.
72.
Wang
,
X.
,
Martin
,
P. J.
, and
Kinder
,
T. J.
, “
Optical and Mechanical Properties of Carbon Nitride Films Prepared by Ion-Assisted Arc Deposition and Magnetron Sputtering
,”
Thin Solid Films
THSFAP0040-6090, Vol.
256
, No.
1–2
,
1995
, pp. 148–154.
73.
Popov
,
C.
,
Zambov
,
L. M.
,
Plass
,
M. F.
, and
Kulisch
,
W.
, “
Optical, Electrical and Mechanical Properties of Nitrogen-rich Carbon Nitride Films Deposited by Inductively Coupled Plasma Chemical Vapor Deposition
,”
Thin Solid Films
THSFAP0040-6090, Vol.
377–378
,
2000
, pp. 156–162.
74.
Mingwu
,
Bai
,
Koji
,
Kato
,
Noritsugu
,
Umehara
,
Yoshihiko
,
Miyake
,
Xu
,
Junguo
, and
Hiromitsu
,
Tokisue
, “
Dependence of Microstructure and Nanomechanical Properties of Amorphous Carbon Nitride Thin Films on Vacuum Annealing
,”
Thin Solid Films
THSFAP0040-6090, Vol.
376
,
2000
, pp. 170–178.
75.
Czyzniewski
,
A.
,
Precht
,
W.
,
Pancielejko
,
M.
,
Myslinski
,
P.
, And
Walkowiak
,
W.
, “
Structure, Composition and Tribological Properties of Carbon Nitride Films
,”
Thin Solid Films
THSFAP0040-6090, Vol.
317
, No.
1–2
,
1998
, pp. 384–387.
76.
Toshiyuki
,
Hayashi
,
Akihito
,
Matsumuro
,
Mutsuo
,
Muramatsu
,
Masao
,
Kohzaki
, and
Katsumi
,
Yamaguchi
, “
Wear Resistance of Carbon Nitride Thin Films Formed by Ion Beam Assisted Deposition
,”
Thin Solid Films
THSFAP0040-6090, Vol.
376
, No.
1–2
,
2000
, pp. 152–158.
77.
Fernández
,
A.
,
Fernández
,
R. C.
, and
Sánchez
,
L. J. C.
, “
Preparation, Microstructural Characterisation and Tribological Behaviour of CNx Coatings
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
163–164
,
2003
, pp. 527–534.
78.
Yan
,
X. B.
,
Xu
,
T.
,
Chen
,
G.
,
Yang
,
S. R.
,
Liu
,
H.W.
, and
Xue
,
Q. J.
, “
Preparation and Characterization of Electrochemically Deposited Carbon Nitride Films on Silicon Substrate
,”
J. Phys. D
JPAPBE0022-3727, Vol.
37
, No.
6
,
2004
, pp. 907–913.
79.
Koskinen
,
J.
,
Hirvonen
,
J. P.
,
Levoska
,
J.
, and
Torri
,
P.
, “
Tribological Characterization of Carbon-Nitrogen Coatings Deposited by Using Vacuum Arc Discharge
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
5
, No.
6–8
,
1996
, pp. 669–673.
80.
Tokoroyama
,
T.
,
Umehara
Fuwa, Y.
, and
Nakamura
,
T.
, “
Effect of the Shear Strength of Coating of CNx on Friction Sliding Against Si3N4 Pin in Nitrogen
,”
Proceedings of WTC2005
,
Washington, DC
,
09
2005
, WTC2005-63419.
81.
Ramsey
,
M. E.
,
Poindexter
,
E.
,
Pelt
,
J. S.
,
Marin
,
J.
, and
Durbin
,
S. M.
, “
Hydrophobic CNx Thin Film Growth by Inductively-coupled RF Plasma Enhanced Pulsed Laser Deposition
,”
Thin Solid Films
THSFAP0040-6090, Vol.
360
, No.
1–2
,
2000
, pp. 82–88.
82.
Tétard
,
F.
,
Djemia
,
P.
,
Besland
,
M. P.
,
Tessier
,
P. Y.
, and
Angleraud
,
B.
, “
Characterizations of CNx Thin Films Made by Ionized Physical Vapor Deposition
,”
Thin Solid Films
THSFAP0040-6090, Vol.
482
, No.
1–2
,
2005
, pp. 192–196.
83.
Husein
,
F.
,
Imad
,
Zhou
,
YuanZhong
,
Li
,
Fan
,
Ryne, C.
,
Allen
,
Chung Chan
,
Jacob
,
I., Kleiman
,
Yu
,
Gudimenko
, and
Clark
,
V., Cooper
, “
Synthesis of Carbon Nitride Thin Film by Vacuum Arcs
,”
Mater. Sci. Eng., A
MSAPE30921-5093, Vol.
209
,
1996
, pp. 10–15.
84.
Tessier
,
P. Y.
,
Pichon
,
L.
,
Villechaise
,
P.
,
Linez
,
P.
,
Angleraud
,
B.
,
Mubumbila
,
N.
,
Fouquet
,
V.
,
Straboni
,
A.
,
Milhet
,
X.
, and
Hildebrand
,
H. F.
, “
Carbon Nitride Thin Films as Protective Coatings for Biomaterials: Synthesis, Mechanical and Biocompatibility Characterizations
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
12
,
2003
, pp. 1066–1069.
85.
Zheng
,
C. L.
,
Cui
,
F. Z.
,
Meng
,
B.
,
Ge
,
J.
,
Liu
,
D. P.
, and
Lee
,
I. S.
, “
Hemocompatibility of C-N Films Fabricated by Ion Beam Assisted Deposition
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
193
, No.
1–3
,
2005
, pp. 361–365.
86.
Côté
,
M.
, and
Cohen
,
M. L.
, “
Carbon Nitride Compounds with 1:1 Stoichiometry
,”
Phys. Rev. B
PRBMDO0163-1829, Vol.
55
, No.
9
1997
, pp. 5684–5687.
87.
Teter
,
D. M.
, and
Hemley
,
R. J.
, “
Low-Compressibility Carbon Nitrides
,”
Science
SCIEAS0036-8075, Vol.
271
,
1996
, pp. 53–55.
88.
Riedel
,
R.
,
Kleebe
,
H. J.
,
Schonfelder
,
H.
, and
Aldinger
,
F.
, “
A Covalent Micro-Nanocomposite Resistant to High-Temperature Oxidation
,”
Nature
NATUAS0028-0836, Vol.
374
, No.
6522
,
1995
, pp. 526–528.
89.
Chen
,
L. C.
,
Chen
,
C. K.
,
Wei
,
S. L.
,
Bhusari
,
D. M.
,
Chen
,
K. H.
,
Chen
,
Y. F.
,
Jong
,
Y. C.
, and
Huang
,
Y. S.
, “
Crystalline Silicon Carbon Nitride: A Wide Band Gap Semiconductor
,”
Applied Physica Letters
APPLAB0003-6951, Vol.
72
, No.
19
,
1998
, pp. 2463–2465.
90.
Chen
,
L. C.
,
Chen
,
K. H.
,
Wei
,
S. L.
,
Kichambare
,
P. D.
,
Wu
,
J. J.
,
Lu
,
T. R.
, and
Kuo
,
C. T.
, “
Crystalline SiCN: A hard material rivals to cubic BN
,”
Thin Solid Films
THSFAP0040-6090, Vol.
355–356
,
1999
, pp. 112–116.
91.
Koehler
,
J. S.
, “
Attempt to Design a Strong Solid
,”
Phys. Rev. B
PRBMDO0163-1829, Vol.
2
,
1970
, pp. 547–551.
92.
Lehoczky
,
S. L.
, “
Strength Enhancement in Thin-Layered Al-Cu Laminates
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
49
, No.
11
,
1978
, pp. 5479–5485.
93.
Lehoczky
,
S. L.
, “
Retardation of Dislocation Generation and Motion in Thin-Layered Metal Laminates
,”
Phys. Rev. Lett.
PRLTAO0031-9007, Vol.
41
, No.
26
,
1978
, pp. 1814–1818.
94.
Bull
,
S. J.
, and
Jones
,
A. M.
, “
Multilayer Coatings for Improved Performance
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
78
,
1996
, pp. 173–184.
95.
Martinez
,
E.
,
Romero
,
J.
,
Lousa
,
A.
, and
Esteve
,
J.
, “
Wear Behavior of Nanometric CrN/Cr Multilayers
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
163/164
,
2003
, pp. 571–577.
96.
Tsakalakos
,
T.
, and
Hilliard
,
J. E.
, “
Elastic Modulus in Composition-Modulated Copper-Nickel Foils
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
54
,
1983
, pp. 734–737.
97.
Kueny
,
A.
,
Grimsditch
,
M.
,
Miyano
,
K.
,
Banerjee
,
I.
,
Falco
,
C. M.
, and
Schuller
,
I. K.
, “
Anomalous Behavior of Surface Acoustic Waves in Cu/Nb Superlattices
,”
Phys. Rev. Lett.
PRLTAO0031-9007, Vol.
48
, No.
3
,
1982
, pp. 166–170.
98.
Jensen
,
H.
,
Sobota
,
J.
, and
Sorensen
,
G.
, “
A Study of Film Growth and Tribological Characterization of Nanostructured C-N/TiNx Multilayer coatings
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
94/95
,
1997
, pp. 174–178.
99.
Miyake
,
S.
, “
Tribology of Carbon Nitride and Boron Nitride Nanoperiod Multilayer Films and Its Application to Nanoscale Processing
,”
Thin Solid Films
THSFAP0040-6090, Vol.
493
,
2005
, pp. 160–169.
100.
Shinn
,
M.
,
Hultman
,
L.
, and
Barnett
,
S. A.
, “
Growth, Structure, and Microhardness of Epitaxial TiN/NbN Superlattices
,”
J. Mater. Res.
JMREEE0884-2914, Vol.
7
, No.
4
,
1992
, pp. 901–911.
101.
Helmersson
,
U.
,
Todorova
,
S.
,
Barnett
,
S. A.
,
Sundgren
,
J. E.
,
Markert
,
L. C.
, and
Greene
,
J. E.
, “
Growth of Single-Crystal TiN/VN Strained-Layer Superlattices With Extremely High Mechanical Hardness
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
62
, No.
2
,
1987
, pp. 481–484.
102.
Shih
,
K. K.
, and
Dove
,
D. B.
, “
Ti/Ti-N Hf/Hf-N andW/W-N Multilayer Films With High Mechanical Hardness
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
61
, No.
6
,
1992
, pp. 654–656.
103.
Misra
,
A.
,
Verdier
,
M.
,
Lu
,
Y. C.
,
Kung
,
H.
,
Mitchell
,
T. E.
,
Nastasi
,
M. A.
, and
Embury
,
J. D.
, “
Structure and Mechanical Properties of Cu-X (X=Nb,Cr,Ni) Nanolayered Composites
,”
Scripta Mater.
SCMAF71359-6462,Vol.
39
,
1998
, pp. 555–560.
104.
Shinn
,
M.
, and
Barnett
,
S. A.
, “
Effect of Superlattice Layer Elastic Moduli on Hardness
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
64
,
1994
, pp. 61–63.
105.
He
,
J. L.
,
Wang
,
J.
,
Li
,
W. Z.
, and
Li
,
H. D.
, “
Simulation of Nacre with TiN/Pt Multilayers and a Study of Their Mechanical Properties
,”
Mater. Sci. Eng., B
MSBTEK0921-5107, Vol.
49
,
1997
, pp. 128–134.
106.
Madan
,
A.
,
Wang
,
Y. Y.
,
Barnett
,
S. A.
,
Engstrom
,
C.
,
Ljungcrantz
,
H.
,
Hultman
,
L.
, and
Grimsditch
,
M.
, “
Enhanced Mechanical Hardness in Epitaxial Nonisostructural Mo/N and W/N Superlattices
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
84
,
1998
, pp. 776–785.
107.
Wang
,
J.
,
Li
,
W. Z.
, and
Li
,
H. D.
, “
Mechanical Properties of TiC/Metal Multilayers Synthesized by Ion Beam Sputtering Technique
,”
J. Vac. Sci. Technol. B
JVTBD91071-1023, Vol.
19
, No.
1
,
2001
, pp. 250–254.
108.
Barnett
,
S. A.
, “
Deposition And Mechanical Properties Of Superlattice Thin Films
,”
Physics of Thin Films, Vol. 17, Mechanic and Dielectric Properties
,
Francombe
M. H.
and
Vossen
J. L.
, Eds.,
Academic Press, Inc.
,
1993
, pp. 2–77.
109.
Holleck
,
H.
,
Lahres
,
M.
, and
Woll
,
P.
, “
Multilayer Coatings— Influence of Fabrication Parameters on Constitution and Properties
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
41
,
1990
, pp. 179–190.
110.
Berger
,
M.
,
Wiklundl
,
U.
,
Eriksson
,
M.
,
Wngqvist
,
H.
, and
Jacobson
,
S.
, “
The Multilayer Effect in Abrasion—Optimising the Combination of Hard and Tough Phases
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
116/119
,
1999
, pp. 1138–1144.
111.
Leyland
,
A.
, and
Matthews
,
A.
, “
Thick, Ti/TiN Multilayered Coatings for Abrasive and Erosive Wear Resistance
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
70
,
1994
, pp. 19–25.
112.
Miyake
,
S.
, “
Improvement of Mechanical Properties of Nanometer Period Multilayer Films at Interfaces of Each Layer
,”
J. Vac. Sci. Technol. B
JVTBD91071-1023, Vol.
21
, No.
2
,
2003
, pp. 785–789.
113.
Miyake
,
S.
,
Sekine
,
Y.
,
Noshiro
,
J.
, and
Watanabe
,
S.
, “
Low-Friction and Long-Life Solid Lubricant Films Structured of Nanoperiod Tungsten Disulfide and Molybdenum Disulfide Multilayer
,”
Jpn. J. Appl. Phys.
JJAPA50021-4922, Vol.
43
,
2004
, pp. 4338–4343.
114.
Holmber
,
K.
,
Matthews
,
A.
, and
Ronkainen
,
H.
, “
Coatings Tribology—Contact Mechanisms and Surface Design
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
31
,
1998
, pp. 107–120.
115.
Matthews
,
A.
, and
Eskildsen
,
S. S.
, “
Engineering Applications for Diamond-Like Carbon
,”
Diamond Relat. Mater.
DRMTE30925-9635, Vol.
3
,
1994
, pp. 902–911.
116.
Leyland
,
A.
,
Sudin
,
M. B.
,
James
,
A. S.
,
Kalantary
,
M. R.
,
Wells
,
P. B.
,
Housden
,
J.
,
Garside
,
B.
, and
Matthews
,
A.
, “
TiN and CrN PVD Coatings on Electroless Nickel Coated Steel Substrates
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
60
,
1993
, pp. 474–479.
117.
Sudin
,
M. B.
,
Leyland
,
A.
,
James
,
A. S.
,
Matthews
,
A.
,
Housden
,
J.
, and
Garside
,
B.
, “
Substrate Surface Finish Effects in Duplex Coatings of PAPVD TiN and CrN with Electroless Nickel-Phosphorus Interlayers
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
81
,
1996
, pp. 215–224.
118.
Veprek
,
S.
, and
Reiprich
,
S.
, “
A Concept for the Design of Novel Superhard Coatings
,”
Thin Solid Films
THSFAP0040-6090, Vol.
268
,
1995
, pp. 64–71.
119.
Veprek
,
S.
,
Reiprich
,
S.
, and
Li
,
S.
, “
Superhard Nanocrystalline Composite Materials: The TiN/Si3N4 System
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
66
,
1995
, pp. 2640–2642.
120.
Veprek
,
S.
, “
The Search for Novel, Superhard Materials
,”
J. Vac. Sci. Technol. A
JVTAD60734-2101, Vol.
17
,
1999
, pp. 2401–2420.
121.
Veprek
,
S.
,
Heijman
,
M. G. J.
,
Karvankova
,
P.
, and
Prochazka
,
J.
, “
Different Approaches to Superhard Coatings and Nanocomposites
,”
Thin Solid Films
THSFAP0040-6090, Vol.
476
,
2005
, pp. 1–29.
122.
Veprek
,
S.
, “
Conventional and New Approaches Towards the Design of Novel Superhard Materials
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
97
,
1997
, pp. 15–22.
123.
Veprek
,
S.
, and
Argon
,
A. S.
, “
Mechanical Properties of Superhard Nanocomposites
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
146/147
,
2001
, pp. 175–182.
124.
Veprek
,
S.
,
Haussmann
,
M.
, and
Reiprich
,
S.
, “
Superhard Nanocrystalline W2N/Amorphous Si3N4 Composite Materials
,”
J. Vac. Sci. Technol. A
JVTAD60734-2101, Vol.
14
,
1996
, pp. 46–51.
125.
Veprek
,
S.
,
Haussmann
,
M.
,
Reiprich
,
S.
,
Li
,
S.
, and
Dian
,
J.
, “
Novel Thermodynamically Stable and Oxidation Resistant Superhard Coating Materials
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
86/87
,
1996
, pp. 394–401.
126.
Veprek
,
S.
,
Nesladek
,
P.
,
Niederhofer
,
A.
,
Glatz
,
F.
,
Jilek
,
M.
, and
Sima
,
M.
, “
Recent Progress in the Superhard Nanocrystalline Composites: Towards Their Industrialization and Understanding of the Origin of the Superhardness
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
108/109
,
1998
, pp. 138–147.
127.
Diserens
,
M.
,
Patscheider
,
J.
, and
Levy
,
F.
, “
Mechanical Properties and Oxidation Resistance of Nanocomposite TiN-SiNx Physical-Vapor-Deposited Thin Films
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
120/121
,
1999
, pp. 158–165.
128.
Rebouta
,
L.
,
Tavares
,
C. J.
,
Aimo
,
R.
,
Wang
,
Z.
,
Pischow
,
K.
,
Alves
,
E.
,
Rojas
,
T. C.
, and
Odriozola
,
J. A.
, “
Hard Nanocomposite Ti-Si-N Coatings Prepared by DC Reactive Magnetron Sputtering
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
133/134
,
2000
, pp. 234–239.
129.
Vaz
,
F.
,
Rebouta
,
L., Ph.
,
Goudeau
,
Giratdeau, T.
,
Pacaud
,
J.
,
Riviere
,
J. P.
, and
Traverse
,
A.
, “
Structural Transitions in Hard Si-Based Tin Coating: The Effect of Bias Voltage and Temperature
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
146/147
,
2001
, pp. 274–279.
130.
Holubar
,
P.
,
Jilek
,
M.
, and
Sima
,
M.
, “
Present and Possible Future Applications of Superhard Nanocomposite Coatings
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
133/134
,
2000
, pp. 145–151.
131.
Zhang
,
C. H.
,
Luo
,
J. B.
,
Li
,
W. Z.
, and
Chen
,
D. R.
, “
Mechanical Properties of Nanocomposite TiN/Si3N4 Films Synthesized by Ion Beam Assisted Deposition (IBAD)
,”
J. Tribol.
JOTRE90742-4787, Vol.
125
,
2003
, pp. 445–447.
132.
Musil
,
J.
,
Zeman
,
P.
,
Hruby
,
H.
, and
Mayrhofer
,
P. H.
, “
ZrN/Cu Nanocomposite Film—A Novel Superhard Material
,”
Surf. Coat. Technol.
SCTEEJ0257-8972,Vol.
120/121
,
1999
, pp. 179–183.
133.
Musil
,
J.
,
Karvankova
,
P.
, and
Kasl
,
J.
, “
Hard and Superhard Zr-Ni-N Nanocomposite Films
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
139
,
2001
, pp. 101–109.
134.
Musil
,
J.
, and
Polakova
,
H.
, “
Hard Nanocomposite Zr-Y-N Coatings, Correlation Between Hardness and Structure
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
127
,
2000
, pp. 99–106.
135.
Karvankova
,
P.
,
Mannling
,
H. D.
,
Eggs
,
C.
, and
Veprek
,
S.
, “
Thermal Stability of ZrN-Ni and CrN-Ni Superhard Nanocomposite Coatings
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
146/147
,
2001
, pp. 280–285.
136.
Hauert
,
R.
,
Patscheider
,
J.
,
Knoblauch
,
L.
, and
Diserens
,
M.
, “
New Coatings by Nanostructuring
,”
Adv. Mater.
ADVMEW0935-9648, Vol.
11
,
1999
, pp. 175–177.
137.
Hu
,
X. P.
,
Li
,
G.Y.
,
Dai
,
J.W.
,
Ding
,
Z. M.
, and
Gu
,
M.Y.
, “
Influences of Si Content and Substrate Temperature on Ti-Si-N Nanocomposite Films
,”
J. Shang Hai Jiao Tong Univ.
, Vol.
37
,
2003
, pp. 252–256 (in Chinese).
138.
Kim
,
S. H.
,
Kim
,
J. K.
, and
Kim
,
K. H.
, “
Influence of Deposition Conditions on the Microstructure and Mechanical Properties of Ti-Si-N Films by DC Reactive Magnetron Sputtering
,”
Thin Solid Films
THSFAP0040-6090, Vol.
420/421
,
2002
, pp. 360–365.
139.
Jiang
,
N.
,
Shen
,
Y. G.
,
Mai
,
Y. W.
,
Chan
,
T.
, and
Tung
,
S. C.
, “
Nanocomposite Ti-Si-N Films Deposited by Reactive Unbalanced Magnetron Sputtering at Room Temperature
,”
Mater. Sci. Eng., B
MSBTEK0921-5107, Vol.
106
,
2004
, pp. 163–171.
140.
Klug
,
H. P.
, and
Alexander
,
L. E.
,
X-Ray Diffraction Procedures
,
Wiley
,
New York
,
1974
, p. 687.
141.
Taylor
,
J. A.
,
Lancaster
,
G. M.
,
Ignatiev
,
A.
, and
Rabalais
,
J. W.
, “
Interactions of Ion Beams with Surfaces. Reactions of Nitrogen with Silicon and Its Oxides
,”
J. Chem. Phys.
JCPSA60021-9606, Vol.
68
,
1978
, pp. 1776–1784.
142.
Veprek
,
S.
,
Niederhofer
,
A.
,
Moto
,
K.
,
Bolom
,
T.
,
Mannling
,
H. D.
,
Nesladek
,
P.
,
Dollinger
,
G.
, and
Bergmaier
,
A.
, “
Composition, Nanostructure and Origin of the Ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 Nanocomposites with Hv=80 to ⩾ 105 GPa
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
133/134
,
2000
, pp. 152–159.
143.
Zhang
,
C. H.
,
Liu
,
Z. J.
,
Li
,
K. Y.
,
Shen
,
Y. G.
, and
Luo
,
J. B.
, “
Microstructure, Surface Morphology, and Mechanical Properties of Nanocrystalline TiN/Amorphous Si3N4 Composite Films Synthesized by Ion Beam Assisted Deposition
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
95
,
2004
, pp. 1460–1467.
144.
Veprek
,
S.
, and
Argon
,
A. S.
, “
Towards the Understanding of Mechanical Properties of Super- and Ultrahard Nacocomposites
,”
J. Vac. Sci. Technol. B
JVTBD91071-1023, Vol.
20
,
2002
, pp. 650–664.
145.
Zhang
,
C. H.
, “
Studies on the Properties and Applications of TiN/Si3N4 Nancomposite Coatings
,” Ph.D. thesis,
Tsinghua University
, Beijing, China,
2003
.
146.
Zhang
,
C. H.
,
Lu
,
X. C.
,
Wang
,
H.
,
Luo
,
J. B.
,
Shen
,
Y. G.
, and
Li
,
K. Y.
, “
Microstructure, Mechanical Properties, and Oxidation Resistance of Nanocomposite Ti-Si-N Coatings
,”
Appl. Surf. Sci.
ASUSDD0378-5963, Vol.
252
,
2006
, pp. 6141–6153.
147.
Choi
,
J. B.
,
Cho
,
K.
,
Kim
,
Y.
,
Kim
,
K. H.
, and
Song
,
P. K.
, “
Microstructure Effect on the High Temperature Oxidation Resistance of Ti-Si-N Coating Layers
,”
Jpn. J. Appl. Phys.
JJAPA50021-4922, Vol.
42
,
2003
, pp. 6556–6559.
148.
Kim
,
K. H.
, and
Park
,
B. H.
, “
Mechanical Properties and Oxidation Behavior of Ti-Si-N Films Prepared by Plasma-Assisted CVD
,” s
Chem. Vap. Dep.
CVDEFX0948-1907, Vol.
5
,
1999
, pp. 275–279.
149.
Huang
,
C. T.
, and
Duh
,
J. G.
, “
Stress and Oxidation Behaviours of R.F.-Sputtered (Ti,Al)N Films
,”
Surf. Coat. Technol.
SCTEEJ0257-8972, Vol.
81
,
1996
, pp. 164–171.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal