Skip to Main Content
Skip Nav Destination
ASTM Monographs
Physics and Chemistry of Micro-Nanotribology
By
Shizhu Wen
Shizhu Wen
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
Jianbin Luo
Jianbin Luo
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
Yuanzhong Hu
Yuanzhong Hu
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
ISBN-10:
0-8031-7006-8
ISBN:
978-0-8031-7006-3
Publisher:
ASTM International
Publication date:
2008

TECHNOLOGY DEVELOPMENT DEMANDS MORE EFficient machines capable of operating in more critical conditions, e.g., under heavier loads and higher operating temperatures or using lower-viscosity oils, which result in thinner lubricant films. As a result, machine components operate in a regime of mixed lubrication where hydrodynamic lubrication and asperity contact act simultaneously, and lubrication performances are dominated by surface roughness. Great efforts were made over the past years to understand the role of surface roughness in mixed lubrication, and it is a first but substantial step in exploring the microscopic mechanisms of tribology. The classical theory of hydrodynamic lubrication and the Reynolds equation were published in 1886, but the complete solutions for the problems that combine the effects of lubrication and solid deformation, known as the elastohydrodynamic lubrication (EHL), were not available until the 1960s. Only after that were the attentions shifted to understanding the role of surface roughness, which led to the concept of mixed lubrication (ML) that emerged in the 1970s, also termed as the partial EHL at that time [1]. The idea is simply to consider that the hydrodynamic film, which separates two surfaces in relative motion, is penetrated by surface roughness when the film thickness becomes smaller than the asperity height. As a result, the lubrication domain is divided into two subregions, the hydrodynamic lubrication areas and the asperity contact areas, and the applied normal load is shared by hydrodynamic pressure and asperity contacts. Impressive progress has been achieved in studies of mixed lubrication, but due to the highly random and irregular nature of surface roughness and the consequent difficulties in measurements and numerical solutions, mixed lubrication remains a still poorly understood regime. The existence of asperity contacts in mixed lubrication causes great many local events and significant consequences. For example, the parameters describing lubrication and contact conditions, such as film thickness, pressure, subsurface stress, and surface temperature, fluctuate violently and frequently over time and space domain. It is expected that these local events would have significant effects on the service life of machine elements, but experimental measurements are difficult because of the highly random and time-dependent nature of the signals. Only a few successes were reported so far in experimental studies of mixed lubrication, mostly limited to the artificially manufactured surface roughness. Numerical simulations are thus considered to be a powerful means for exploring mixed lubrication, especially for extracting the local information of lubrication. Considerable efforts have been devoted during past 20–30 years to developing numerical models of mixed lubrication. This chapter is contributed to the description of approaches in modeling mixed lubrication, namely the statistic or average model and deterministic model, and the applications of the model to the studying mixed lubrication and the transition of the lubrication regime.

1.
Tallian
,
T. E.
, “
The Theory of Partial Elastohydrodynamic Lubrication
,”
Wear
WEARCJ0043-1648, Vol.
19
, No.
1
,
1972
, pp. 91–108.
2.
Patir
,
N.
and
Cheng
,
H. S.
, “
Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
JLUTAT0022-2305, Vol.
100
, No.
1
,
1978
, pp. 12–17.
3.
Greenwood
,
J. A.
and
Williamson
,
J. B. P.
, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. London, Ser. A
PRLAAZ0950-1207, Vol.
295
,
1966
, pp. 300–319.
4.
Tzeng
,
S. T.
and
Saibel
,
E.
, “
Surface Roughness Effect on Slider Bearing Lubrication
,”
ASLE Trans.
ASLTA20569-8197, Vol.
10
,
1967
, p. 334.
5.
Christensen
,
H.
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
184
, 1969–70, p. 1013.
6.
Christensen
,
H.
and
Tonder
,
K.
, “
The Hydrodynamic Lubrication of Rough Bearing Surfaces of Finite Width
,”
Journal of Lubrication Technology, Trans. ASME Series F
JLUTAT0022-2305, Vol.
93
,
1971
, p. 324.
7.
Christensen
,
H.
and
Tonder
,
K.
, “
The Hydrodynamic Lubrication of Rough Journal Bearings
,”
Journal of Lubrication Technology, Trans. ASME Series F
JLUTAT0022-2305, Vol.
95
,
1973
, p. 324.
8.
Tonder
,
K.
and
Christensen
,
H.
, “
Waviness and Roughness in Hydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
186
,
1972
, p. 807.
9.
Patir
,
N.
, “
Effects of Surface Roughness on Partial Film Lubrication Using an Average Flow Model Based on Numerical Simulation
.” Ph.D. Thesis,
Northwestern University
,
1978
.
10.
Patir
,
N.
and
Cheng
,
H. S.
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
JLUTAT0022-2305, Vol.
101
, No.
2
,
1979
, pp. 220–230.
11.
Shi
,
F. H.
and
Salant
,
R. F.
, “
Numerical Study of a Rotary Lip Seal with a Quasi-Random Sealing Surface
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
123
, No.
3
,
2001
, pp. 517–524.
12.
Zhu
,
D.
and
Cheng
,
H. S.
, “
Effect of Surface Roughness on the Point Contact EHL
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
110
, No.
1
,
1988
, pp. 32–37.
13.
Chang
,
L.
, “
Deterministic Model for Line-Contact Partial Elasto-Hydrodynamic Lubrication
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
28
, No.
2
,
1995
, pp. 75–84.
14.
Hua
,
D. Y.
,
Qiu
,
L.
, and
Cheng
,
H. S.
, “
Modeling of Lubrication in Micro Contact
,”
Tribol. Lett.
TRLEFS1023-8883,Vol.
3
,
1997
, pp. 81–86.
15.
Jiang
,
X.
and
Hua
,
D. Y.
, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
121
,
1999
, pp. 481–491.
16.
Hu
,
Y. Z.
and
Zhu
,
D.
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
122
,
2000
, pp. 1–9.
17.
Zhu
,
D.
and
Hu
,
Y. Z.
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
TRTRE41040-2004, Vol.
44
, No.
3
,
2001
, pp. 383–390.
18.
Johnson
,
K. L.
,
Contact Mechanics
,
Cambridge University Press
,
1996
.
19.
Yang
,
P.
and
Wen
,
S.
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
112
,
1990
, pp. 631–636.
20.
Lai
,
W. T.
and
Cheng
,
H. S.
, “
Temperature Analysis in Lubricated Simple Sliding Rough Contacts
,”
ASLE Trans.
ASLTA20569-8197, Vol.
128
, No.
3
,
1984
, pp. 303–312.
21.
Qiu
,
L.
and
Cheng
,
H. S.
, “
Temperature Rise Simulation of Three-Dimensional Rough Surface in Mixed Lubricated Contact
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
120
, No.
2
,
1998
, pp. 310–318.
22.
Carslaw
,
H. S.
and
Jaeger
,
J. C.
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford at the Clarendon Press
,
London
,
1958
.
23.
Zhai
,
X.
and
Chang
,
L.
, “
A Transient Thermal Model for Mixed-Film Contacts
,”
Tribol. Trans.
TRTRE41040-2004, Vol.
43
, No.
3
,
2000
, pp. 427–434.
24.
Zhai
,
X.
and
Chang
,
L.
, “
Some Insights into Asperity Temperatures in Mixed-Film Lubrication
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
34
,
2001
, pp. 381–387.
25.
Zhao
,
J.
,
Farshid
,
S.
, and
Hoeprich
,
M. H.
, “
Analysis of EHL Circular Contact Start Up: Part 1—Mixed Contact Model with Pressure and Film Thickness Results
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
123
,
2001
, pp. 67–74.
26.
Zhao
,
J.
,
Farshid
,
S.
, and
Hoeprich
,
M. H.
, “
Analysis of EHL Circular Contact Start Up: Part 2—Surface Temperature Rise Model and Results
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
123
,
2001
, pp. 75–82.
27.
Wang
,
W. Z.
,
Liu
,
Y. C.
,
Wang
,
H.
, and
Hu
,
Y. Z.
, “
A Computer Thermal Model of Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
126
, No.
1
,
2004
, pp. 162–170.
28.
Dowson
,
D.
and
Hamroc
,
B. J.
, “
Numerical Evaluation of the Surface Deformation of Elastic Solids Subjected to a Hertz Contact Stress
,”
ASLE Trans.
ASLTA20569-8197, Vol.
19
,
1976
, pp. 279–286.
29.
Chang
,
L.
An Efficient and Accurate Formulation of the Surface Deformation Matrix in Elastohydrodynamic Point Contacts
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
111
,
1989
, pp. 642–647.
30.
Biswas
,
S.
and
Snidle
,
R. W.
, “
Calculation of Surface Deformation in Point Contact EHD
,”
ASME J. Lubr. Technol.
JLUTAT0022-2305, Vol.
99
,
1977
, pp. 313–317.
31.
Ai
,
X.
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts with Rough Surfaces by Using Semi-System and Multi-Grid Methods
,” Ph.D. Thesis,
Northwestern University
,
1993
.
32.
Ren
,
N.
and
Lee
,
S.
, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
115
,
1993
, pp. 597–601.
33.
Brandt
,
A.
and
Lubrecht
,
A. A.
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
JCTPAH0021-9991, Vol.
90
, No.
2
,
1990
, pp. 348–370.
34.
Lubrecht
,
A. A.
and
Ioannides
,
E. A.
, “
Fast Solution of the Dry Contact Problem and Associated Surface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
113
,
1991
, pp. 128–133.
35.
Ju
,
Y.
and
Farris
,
T. N.
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
118
,
1996
, pp. 320–328.
36.
Nogi
,
T.
and
Kato
,
T.
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact. Part 1: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
119
,
1997
, pp. 493–500.
37.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
WEARCJ0043-1648, Vol.
243
,
2000
, pp. 101–111.
38.
Wang
,
W. Z.
,
Wang
,
H.
,
Liu
,
Y. C.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
, “
A Comparative Study of the Methods for Calculation of Surface Elastic Deformation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
217
,
2003
, pp. 145–153.
39.
Venner
,
C. H.
and
Lubrecht
,
A. A.
,
Multilevel Methods in Lubrication
,
Elsevier
,
Amsterdam
,
2000
.
40.
Venner
,
C. H.
and
Lubrecht
,
A. A.
, “
Numerical Simulation of a Transverse Ridge in a Circular EHL Contact Under Rolling/Sliding Source
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
116
, No.
4
,
1994
, pp. 751–761.
41.
Holmes
,
M. J. A.
, “
Transient Analysis of the Point Contact Elastohydrodynamic Lubrication Problem Using Coupled Solution Methods
,” Ph.D. Thesis,
Cardiff University
,
2002
.
42.
Venner
,
C. H.
and
Lubrecht
,
A. A.
, “
Numerical Analysis of the Influence of Waviness on the Film Thickness of a Circular EHL Contact
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
118
, No.
4
,
1996
, pp. 153–161.
43.
Hu
,
Y. Z.
,
Barber
,
G. C.
, and
Zhu
,
D.
, “
Numerical Analysis for the Elastic Contact of Real Rough Surfaces
,”
Tribol. Trans.
TRTRE41040-2004, Vol.
42
, No.
3
,
1999
, pp. 443–452.
44.
Felix-Quinonez
,
A.
,
Ehret
,
P.
, and
Summers
,
J. L.
, “
On Three-Dimensional Flat-Top Defects Passing Through an EHL Point Contact: A Comparison of Modeling with Experiments
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
127
, No.
1
,
2005
, pp. 51–60.
45.
Choo
,
J. W.
,
Glovnea
,
R. P.
,
Olver
,
A. V.
, and
Spikes
,
H. A.
, “
The Effects of Three-Dimensional Model Surface Roughness Features on Lubricant Film Thickness in EHL Contacts
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
125
,
2003
, pp. 533–542.
46.
Thomas
,
T. R.
,
Rough Surfaces
,
Longman
,
New York
,
1982
.
47.
Hu
,
Y. Z.
and
Tonder
,
K.
, “
Simulation of 3-D Random Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
IMTME30890-6955, Vol.
32
,
1992
, pp. 82–90.
48.
Oppenheim
,
A. V.
and
Schaferm
,
R. W.
,
Digital Signal Processing
,
Englewood Cliffs
,
NJ: Prentice-Hall
,
1975
.
49.
Chilamakuri
,
S. K.
and
Bhushan
,
B.
, “
Contact Analysis of Non-Gaussian Random Surfaces
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
212
, No.
J1
,
1998
, pp. 19–32.
50.
Kaneta
,
M.
and
Nishikawa
,
H.
, “
Experimental Study on Micro-Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
213
,
1999
, pp. 371–381.
51.
Guangteng
,
G.
,
Cann
,
P. M.
,
Olver
,
A. V.
, and
Spikes
,
H. A.
, “
Lubricant Film Thickness in Rough Surface, Mixed Elastohydrodynamic Contact
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
122
,
2000
, pp. 65–76.
52.
Ehret
,
P.
,
Felix-Quinonez
,
A.
,
Lord
,
J.
,
Jolkin
,
A.
,
Larsson
,
R.
, and
Marklund
,
O.
, “
Experimental Analysis of Micro-Elastohydrodynamic Lubrication Conditions
,”
Proceedings of the International Tribology Conference
,
Nagasaki Japan
,
2000
, pp. 621–624.
53.
Felix
,
Q. A.
,
Ehret
,
P.
, and
Summers
,
J. L.
, “
New Experimental Results of a Single Ridge Passing Through an EHL Conjunction
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
125
,
2003
, pp. 252–259.
54.
Felix
,
Q. A.
,
Ehret
,
P.
, and
Summers
,
J. L.
, “
On Three-Dimensional Flat-Top Defects Passing Through an EHL Point Contact: A Comparison of Modeling with Experiments
,”
ASME J. Tribol.
JOTRE90742-4787, Vol.
127
,
2005
, pp. 51–60.
55.
Greenwood
,
J. A.
and
Morales-Espejel
,
G. E.
, “
The Behavior of Transverse Roughness in EHL Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
208
,
1994
, pp. 121–132.
56.
Hooke
,
C. J.
, “
Surface Roughness Modification in Elastohydrodynamic Line Contacts Operating in the Elastic Piezoviscous Regime
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
212
,
1998
, pp. 145–162.
57.
Hooke
,
C. J.
, “
Surface Roughness Modification in EHL Line Contacts—The Effect of Roughness Wavelength, Orientation and Operating Conditions
,”
Proceedings of the 25th Leeds-Lyon Symposium on Tribology
,
Lyon
,
1998
, pp. 193–202.
58.
Venner
,
C. H.
and
Lubrecht
,
A. A.
, “
Amplitude Reduction of Non-Isotropic Harmonic Patterns in Circular EHL Contacts, Under Pure Rolling
,”
Proceedings of the 25th Leeds-Lyon Symposium on Tribology
,
Lyon
,
1998
, pp. 151–162.
59.
Hooke
,
C. J.
and
Venner
,
C. H.
, “
Surface Roughness Attenuation in Line and Point Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
214
,
2000
, pp. 439–444.
60.
Morales-Espejel
,
G. E.
,
Venner
,
C. H.
, and
Greenwood
,
J. A.
, “
Kinematics of Transverse Real Roughness in Elastohydrodynamically Lubricated Line Contacts Using Fourier Analysis
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
214
, No.
J6
,
2000
, pp. 523–534.
61.
Spikes
,
H. A.
, “
Mixed Lubrication—An Overview
,”
Lubr. Sci.
LUSCEN0954-0075, Vol.
9
, No.
3
,
1997
, pp. 221–252.
62.
Hamrock
,
B. J.
and
Dowson
,
D.
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts—1: Theoretical Formulation
,”
ASME J. Lubr. Technol.
JLUTAT0022-2305, Vol.
98
, No.
2
,
1976
, pp. 223–229.
63.
Luo
,
J. B.
,
Qian
,
L. M.
,
Liu
,
S.
,
Wen
,
S. Z.
, and
Li
,
L. K. Y.
, “
The Failure of Fluid Film at Nano-scale
,”
Tribol. Trans.
TRTRE41040-2004, Vol.
42
, No.
4
,
1999
, pp. 912–916.
64.
Spikes
,
H. A.
, “
Thin Films in Elastohydrodynamic Lubrication: The Contribution of Experiment
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
PEJTET1350-6501, Vol.
213
,
1999
, pp. 335–352.
65.
Hartl
,
M.
,
Krupka
,
I.
,
Poliscuk
,
P.
, and
Liska
,
M.
, “
Thin Film Colorimetric Interferometry
,”
Tribol. Trans.
TRTRE41040-2004, Vol.
44
, No.
2
,
2001
, pp. 270–276.
66.
Zhu
,
D.
,
Hartl
,
M.
, and
Krupka
,
I.
, “
A Comparative Study on the EHL Film Thickness Results From Numerical Solutions and Experimental Measurements
,” presented at
2004 STLE Annual Meeting
,
Toronto, Canada
.
67.
Johnston
,
G. J.
,
Wayte
,
R.
, and
Spikes
,
H. A.
, “
The Measurement and Study of Very Thin Lubrication Films in Concentrated Contacts
,”
Tribol. Trans.
TRTRE41040-2004, Vol.
34
,
1991
, pp. 187–194.
68.
Luo
,
J. B.
and
Liu
,
S.
, “
The Investigation of Contact Ratio in Mixed Lubrication
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
39
, No.
5
,
2006
, pp. 409–416.
69.
Luo
,
J. B.
, “
Study on the Experimental Technique and Properties of Thin Film Lubrication
,” Ph.D. Thesis, Beijing:
Tsinghua University
,
1994
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal