Skip to Main Content
Skip Nav Destination
ASTM Monographs
Physics and Chemistry of Micro-Nanotribology
By
Shizhu Wen
Shizhu Wen
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
Jianbin Luo
Jianbin Luo
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
Yuanzhong Hu
Yuanzhong Hu
1State Key Laboratory of Tribology,
Tsinghua University
,
Beijing,
China
.
Search for other works by this author on:
ISBN-10:
0-8031-7006-8
ISBN:
978-0-8031-7006-3
Publisher:
ASTM International
Publication date:
2008

OIL FILM WITH A THICKNESS IN THE NANOSCALE has been well studied from the beginning of the 1990s [1–3]. Thin film lubrication (TFL), as the lubrication regime between elastohydrodynamic lubrication (EHL) and boundary lubrication, has been proposed from 1996 [3,4]. The lubrication phenomena in such a regime are different from those in elastohydrodynamic lubrication (EHL) in which the film thickness is strongly related to the speed, viscosity of lubricant, etc., and also are different from that in boundary lubrication in which the film thickness is mainly determined by molecular dimension and characteristics of the lubricant molecules. In lubrication history, research has been mainly focused for a long period on two fields—fluid lubrication and boundary lubrication. In boundary lubrication (BL), lubrication models proposed by Bowdeon and Tabor [5], Adamson [6], Kingsbury [7], Cameron [8], and Homola and Israelachvili [9] indicated the research progressed in the principle of boundary lubrication and the comprehension about the failure of lubricant film. In fluid lubrication, elastohydrodynamic lubrication proposed by Grubin in 1949 has been greatly developed by Dowson and Higginson [10], Hamrock and Dowson [11], Archard and Cowking [12], Cheng and Sternlicht [13], Yang and Wen [14], and so on. The width of the chasm between fluid lubrication and boundary lubrication has been greatly reduced by these works. The research on micro-EHL and mixed lubrication has been trying to complete the whole lubrication theory system. Nevertheless, the transition from EHL to boundary lubrication is also an unsolved problem in the system of lubrication theory. Thin film lubrication [3,4] bridges the EHL and boundary lubrication [15]. Thin film lubrication (TFL) investigated by Johnston et al. [1], Wen [2], Luo et al. [3,4,16–19], Tichy [20–22], Matsuoka and Kato [23], Hartal et al. [24], Gao and Spikes [25] et al. has become a new research area of lubrication in the 1990s. However, some significant progress can retrospect to 60 years ago. In the 1940s, it had been proven by using the X-ray diffraction pattern that a fatty acid could form a polymolecular film on a mercury surface and the degree of molecular order increased from outside towards the metal surface [26]. Allen and Drauglis [27] in 1996 proposed an “ordered liquid” model to explain the experimental results of Fuks on thin liquid film. However, they thought the thickness of ordered liquid is more than 1 μm, which is much larger than that shown in Refs. [4,17,18]. The surface force apparatus (SFA) developed by Israelachvili and Tabor [28] to measure the van der Waals force and later becoming a more advanced one [29] has been well used in the tribological test of thin liquid layer in molecular order. Using SFA, Alsten et al. [30], Granick [31], and Luengo et al. [32] observed that the adsorptive force between two solid surfaces was strongly related to the distance between the two solid surfaces and the temperature of the lubricant. In 1989, Luo and Yan [33] proposed a fuzzy friction region model to describe the transition from EHL to boundary lubrication. In their model, the transition region was considered as a process in which the characteristics of lubricant changed with the variation of quantitative parameters, e.g., the film thickness. Johnston et al. [1] found that EHL phenomenon did not exist with films less than 15 nm thick. Tichy [20–22] proposed the models of thin lubricant film according to the improved EHL theory. Luo and Wen [3,4,18,34,35] have got the relationship between the transition thickness from EHL to TFL and the viscosity of lubricant, and proposed a physical model of TFL, and a lubricationmap of different lubrication regimes.

1.
Johnston
,
G. J.
,
Wayte
,
R.
, and
Spikes
,
H. A.
, “
The Measurement and Study of Very Thin Lubricant Films in Concentrate Contact
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
34
,
1991
, pp. 187–194.
2.
Wen
,
S. Z.
, “
On Thin Film Lubrication
,”
Proceedings of 1st International Symposium on Tribology
,
International Academic Publisher
,
Beijing, China
,
1993
, pp. 30–37.
3.
Luo
,
J. B.
, “
Study on the Measurement and Experiments of Thin Film Lubrication
,” Ph.D. thesis (directed by S.Z. Wen),
Tsinghua University
, Beijing, China,
1994
, pp. 10–50.
4.
Luo
,
J. B.
,
Wen
,
S. Z.
, and
Huang
,
P.
, “
Thin Film Lubrication, Part I: The Transition between EHL and Thin Film Lubrication
,”
Wear
WEARCJ0043-1648, Vol.
194
,
1996
, pp. 107–115.
5.
Bowden
,
F. P.
, and
Tabor
,
D.
,
The Friction and Lubrication of Solid
,
Oxford University Press
,
1954
, pp. 233–250.
6.
Adamson
,
A. W.
,
The Physical Chemistry of Surfaces
,
Interscience
, 3rd ed.,
New York
,
1976
, pp. 447–448.
7.
Kingsbury
,
E. P.
, “
Some Aspects of the Thermal of a Boundary Lubrication
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
29
,
1958
, pp. 888–891.
8.
Cammera
,
A.
, “
A Theory of Boundary Lubrication
,”
ASLE Trans.
ASLTA20569-8197, Vol.
2
,
1959
, pp. 195–198.
9.
Homola
,
A. M.
, and
Israelachvili
,
J. N.
, “
Fundamental Studies in Tribology: The Transition from Interfacial Friction of Undamaged Molecularly Smooth Surfaces to ’Normal’ Friction with Wear
,”
Proceedings of the 5th International Congress on Tribology
,
Finland
,
1989
, pp. 28–49.
10.
Dowson
,
D.
, and
Higginson
,
G. R.
, “
A Numerical Solution to the Elastohydrodynamic Problem
,”
J. Mech. Eng. Sci.
JMESAL0022-2542, Vol.
1
,
1959
, pp. 6–15.
11.
Hamrock
,
B. J.
, and
Dowson
,
D.
, “
Isothermal Elastohydrodynamic Lubrication of Point Contact: Part I—Theoretical Formulation
,”
ASME J. Lubr. Technol.
JLUTAT0022-2305, Vol.
98
,
1976
, pp. 375–383.
12.
Archard
,
J. F.
, and
Cowking
,
E.W.
, “
Elastohydrodynamic Lubrication at Point Contacts
,”
Proceedings, Institute of Mechanical Engineering
PIMLAA0020-3483, Vol.
180
(Part 3B),
1966
, pp. 1965–1966.
13.
Cheng
,
H. S.
, and
Sternlicht
,
B.
, “
A Numerical Solution for the Pressure, Temperature and Film Thickness between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, under Heavy Loads
,”
ASME Trans. J. of Basic Engineering
JBAEAI0021-9223, Vol.
87
,
1965
, pp. 695–707.
14.
Yang
,
P. R.
, and
Wen
,
S. Z.
, “
A Generalized Reynolds Equation Based on Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
Trans. ASME, J. Tribol.
JOTRE90742-4787, Vol.
112
,
1990
, pp. 631–639.
15.
Hu
,
Y. Z.
, and
Granick
,
S.
, “
Microscopic Study of Thin Film Lubrication and Its Contributions to Macroscopic Tribology
,”
Tribology Letter
TRLEFS1023-8883, Vol.
5
,
1998
, pp. 81–88.
16.
Luo
,
J. B.
, and
Wen
,
S. Z.
, “
Study on the Mechanism and Characteristics of Thin Film Lubrication at Nanometer Scale
,”
Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci.
SCASEY1001-6511, Vol.
35
,
1996
, pp. 1312–1322.
17.
Luo
,
J. B.
,
Wen
,
S. Z.
, and
Li
,
K. Y.
, “
The Effect of Substrate Energy on the Film Thickness at Nanometer Scale
,”
Lubr. Sci.
LUSCEN0954-0075, Vol.
10
,
1998
, pp. 23–29.
18.
Luo
,
J. B.
,
Huang
,
P.
, and
Wen
,
S. Z.
, “
Characteristics of Liquid Lubricant Films at the Nano-Scale
,”
Trans. ASME, J. Tribol.
JOTRE90742-4787, Vol.
121
,
1999
, pp. 872–878.
19.
Luo
,
J. B.
,
Qian
,
L. M.
,
Lui
,
S.
, and
Wen
,
S. Z.
, “
The Failure of Liquid Film at Nano-Scale
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
42
,
1999
, pp. 912–916.
20.
Tichy
,
J. A.
, “
Modeling of Thin Film Lubrication
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
38
,
1995
, pp. 108–118.
21.
Tichy
,
J. A.
, “
A Surface Layer Model for Thin Film Lubrication
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
38
,
1995
, pp. 577–582.
22.
Tichy
,
J. A.
, “
A Porous Media Model of Thin Film Lubrication
,”
Trans. ASME, J. Tribol.
JOTRE90742-4787, Vol.
117
,
1995
, pp. 16–21.
23.
Matsuoka
,
H.
, and
Kato
,
T.
, “
An Ultral-thin Liquid Film Lubrication Theory—Calculation Method of Solvation Pressure and Its Application to the EHL Problem
,”
Trans. ASME, J. Tribol.
JOTRE90742-4787, Vol.
119
,
1997
, pp. 217–226.
24.
Hartl
,
M.
,
Krupka
,
I.
,
Poliscuk
,
R.
,
Molimard
,
J.
,
Querry
,
M.
, and
Vergne
,
P.
, “
Thin Film Colorimetric Interferometry
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
44
,
2001
, pp. 270–276.
25.
Gao
,
G. T.
, and
Spikes
,
H. A.
, “
Boundary Film Formation by Lubricant Base Fluid
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
39
,
1996
, pp. 448–454.
26.
Iliuc
,
I.
,
Tribology of Thin Layers
,
Elsevier Scientific Publishing Company
,
1980
, pp. 58–59 (translated from the Romanian).
27.
Allen
,
C. M.
, and
Drauglis
,
E.
, “
Boundary Layer Lubrication: Monolayer or Multilayer
,”
Wear
WEARCJ0043-1648, Vol.
14
,
1969
, pp. 363–384.
28.
Israelachvili
,
J. N.
, and
Tabor
,
D.
, “
The Measurement of van der Waals Dispersion Force in the Range of 1.5 nm to 130 nm
,”
Proc. R. Soc. London
PRLAAZ0950-1207, Ser. A, Vol.
331
,
1972
, pp. 19–38.
29.
Israelachvili
,
J.
,
Intermolecular and Surface Force
, 2nd ed.,
Academic Press
,
San Diego, CA
,
1992
.
30.
Alsten
,
J. V.
, and
Granick
,
S.
, “
Friction Measured with a Surface Forces Apparatus
,”
Tribol. Trans.
TRTRE41040-2004, Vol.
32
,
1989
, pp. 246–250.
31.
Granick
,
S.
, “
Motions and Relaxation of Confined Liquid
,”
Science
SCIEAS0036-8075, Vol.
253
,
1991
, pp. 1374–1379.
32.
Luengo
,
G.
,
Schmitt
,
F.
, and
Hill
,
R.
, “
Thin Film Rheology and Tribology of Confined Polymer Melts: Contrasts with Bulk Properties
,”
Macromolecules
MAMOBX0024-9297, Vol.
30
,
1997
, pp. 2482–2494.
33.
Luo
,
J. B.
, and
Yan
,
C. N.
, “
Fuzzy View Point in Lubricating Theory
,”
Lubrication Engineering
LUENAG0024-7154, Vol.
4
,
1989
, pp. 1–4 (in Chinese).
34.
Luo
,
J. B.
,
Lu
,
X. C.
, and
Wen
,
S. Z.
, “
Developments and Unsolved Problems in Nano-Lubrication
,”
Progress in Natural Science
PNASEA1002-0071, Vol.
11
,
2001
, pp. 173–183.
35.
Liu
,
S. H.
,
Ma
,
L. R.
,
Zhang
,
C. H.
 et al
, “
Effect of Surface Hydrophilicity on the Confined Water Film
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
91
,
2007
, pp. 253110.
36.
Gao
,
G.
, and
Spikes
,
H. A.
, “
The Control of Friction by Molecular Fractionation of Base Fluid Mixtures at Metal Surface
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
40
,
1997
, pp. 461–469.
37.
Hartl
,
M.
,
Krupka
,
I.
,
Poliscuk
,
R.
, and
Liska
,
M.
, “
An Automatic System for Real-Time Evaluation of EHD Film Thickness and Shape Based on the Colorimetric Interferometry
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
42
,
1999
, pp. 303–309.
38.
Thompson
,
P. A.
,
Grest
,
G. S.
, and
Robbin
,
M. O.
, “
Phase Transitions and Universal in Confined Films
,”
Phys. Rev. Lett.
PRLTAO0031-9007, Vol.
68
,
1992
, pp. 3448–3451.
39.
Hu
,
Y. Z.
, and
Granick
,
S.
, “
Microscopic Study of Thin Film Lubrication and Its Contributions to Macroscopis
,”
Tribology Letters
TRLEFS1023-8883, Vol.
5
,
1998
, pp. 81–88.
40.
Luo
,
J. B.
, and
Wen
,
S. Z.
, “
Progress and Problems in Nano-Tribology
,”
Chinese Science Bulletin
CSBUEF1001-6538, Vol.
43
,
1998
, pp. 369–378.
41.
Jost
,
H. P.
, “
Tribology: The First 25 Years and Beyond— Achievements, Shortcomings and Future Tasks
,”
“Tribology 2000,” 8th International Colloquium, Technische Akademic Esslingen
,
1992
, pp. 14–16.
42.
Hardy
,
W. B.
, and
Doubleday
,
I.
, “
Boundary Lubrication—The Paraffin Series
,”
Proc. R. Soc. London
PRLAAZ0950-1207, Ser. A, Vol.
100
,
1922
, pp. 550–574.
43.
Bhushan
,
B.
,
Introduction to Tribology
,
John Wiley & Sons, Inc.
,
New York
,
2005
.
44.
Hamrock
,
B. J.
, and
Dowson
,
D.
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III—Full Flooded Results
,”
ASME J. Lubr. Technol.
JLUTAT0022-2305, Vol.
99
,
1977
, pp. 264–276.
45.
Hartl
,
M.
,
Křupka
,
I.
, and
Liška
,
M.
, “
Experimental Study of Boundary Layers Formation by Thin Film Colorimetric Interferometry
,”
Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci.
SCASEY1001-6511, Vol.
44
(supp),
2001
, pp. 412–417.
46.
Wedeven
,
L. D.
,
Evans
,
D.
, and
Cameron
,
A.
, “
Optical Analysis of Ball Bearing Starvation
,”
ASME J. Lubr. Technol.
JLUTAT0022-2305, Vol.
93
,
1971
, pp. 349–363.
47.
Gao
,
G. T.
, and
Spikes
,
H.
, “
Fractionation of Liquid Lubricants at Solid Surfaces
,”
Wear
WEARCJ0043-1648, Vol.
200
,
1996
, pp. 336–345.
48.
Shen
,
M. W.
,
Luo
,
J. B.
, and
Wen
,
S. Z.
, “
Effects of Surface Physicochemical Properties on the Tribological Properties of Liquid Paraffin Film in the Nanoscale
,”
Surf. Interface Anal.
SIANDQ0142-2421, Vol.
32
,
2001
, pp. 286–288.
49.
Yao
,
Y. B.
,
Xie
,
T.
, and
Gao
,
Y. M.
,
Handbook of Physicochemistry
,
Science and Technology Press of Shanghai
,
Shanghai, China
,
1985
.
50.
Shen
,
M. W.
,
Luo
,
J. B.
,
Wen
,
S. Z.
, and
Yao
,
J. B.
, “
Nano-Tribological Properties and Mechanisms of the Liquid Crystal as an Additive
,”
Chinese Science Bulletin
CSBUEF1001-6538, Vol.
46
,
2001
, pp. 1227–1232.
51.
Luo
,
J. B.
,
Shen
,
M. W.
, and
Wen
,
S. Z.
, “
Tribological Properties of Nanoliquid Film under an External Electric Field
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
96
,
2004
, pp. 6733–6738.
52.
Demus
,
D.
,
Goodby
,
J.
, and
Gray
,
G. W.
,
Handbook of Liquid Crystals
,
New York
:
Wiley-VCH
,
1998
;
Biresaw
,
G.
, “
Tribology & the Liquid-Crystalline State
,”
ACS Symposium Series 441
,
Lavoisier
,
1990
.
53.
Morishita
,
S.
,
Nakano
,
K.
, and
Kimura
,
Y.
, “
Electroviscous Effect of Nematic Liquid Crystal
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
26
,
1993
, pp. 399–403.
54.
Kimura
,
Y.
,
Nakano
,
K.
, and
Kato
,
T.
, “
Control of Friction Coefficient by Applying Electric Fields across Liquid Crystal Boundary Films
,”
Wear
WEARCJ0043-1648, Vol.
175
,
1994
, pp. 143–149.
55.
Mori
,
S.
, and
Iwata
,
H.
, “
Relationship between Tribological Performance of Liquid Crystals and Their Molecular Structure
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
29
,
1996
, pp. 35–39.
56.
Bermudez
,
M. D.
,
Gines
,
M. N.
,
Vilches
,
C.
, and
Jose
,
F.
, “
Tribological Properties of Liquid Crystals as Lubricant Additives
,”
Wear
WEARCJ0043-1648, Vol.
212
,
1997
, pp. 188–194.
57.
Wen
,
S. Z.
, and
Yang
,
P. R.
, “
Elastohydrodynamic Lubrication
,”
Tsinghua University Press
, Beijing, China,
1992
, pp. 261–288.
58.
Hu
,
Y. Z.
,
Wang
,
H.
,
Guo
,
Y.
, and
Zheng
,
L. Q.
, “
Simulation of Lubricant Rheology in Thin Film Lubrication, Part I: Simulation of Poiseuille Flow
,”
Wear
WEARCJ0043-1648, Vol.
196
,
1996
, pp. 243–248.
59.
Chen
,
P. W.
,
Yun
,
S. R.
, and
Huang
,
F. L.
, “
The Properties and Application of Ultrafine Diamond Synthesized by Detonation
,”
Ultrahard Materials and Engineering
, Vol.
3
,
1997
, pp. 1–5.
60.
Shen
,
M. W.
,
Luo
,
J. B.
, and
Wen
,
S. Z.
, “
The Tribological Properties of Oils Added with Diamond Nano-Particles
,”
STLE Tribol. Trans.
TRTRE41040-2004, Vol.
44
,
2001
, pp. 494–498.
61.
Liu
,
J. J.
,
Cheng
,
Y. Q.
, and
Chen
,
Y.
, “
The Generation of Wear Debris of Different Morphology in the Running-In Proccess of Iron and Steels
,”
Wear
WEARCJ0043-1648, Vol.
154
,
1982
, pp. 259–267.
62.
Ryason
,
P. R.
,
Chan
,
I. Y.
, and
Gilmore
,
J. T.
, “
Polishing Wear by Soot
,”
Wear
WEARCJ0043-1648, Vol.
137
,
1990
, pp. 15–24.
63.
Bair
,
S.
,
Khonsari
,
M.
, and
Winer
,
W. O.
, “
High-Pressure Rheology of Lubricants and Limitations of the Reynolds Equation
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
31
,
1998
, pp. 573–586.
64.
Yoshimura
,
D.
,
Yokoyama
,
T.
,
Nishi
,
T.
,
Ishii
,
H.
,
Ozawa
,
R.
,
Hamaguchi
,
H.
, and
Seki
,
K.
, “
Electronic Structure of Ionic Liquids at the Surface Studied by UV Photoemission
,”
J. Electron Spectrosc. Relat. Phenom.
JESRAW0368-2048, Vol.
144–147
,
2005
, pp. 319–322.
65.
Wasserscheid
,
P.
, and
Welton
,
T.
,
Ionic Liquids in Synthesis
,
Wiley-VCH
,
Weinheim
,
2003
.
66.
Crosthwaite
,
J. M.
,
Muldoon
,
M. J.
,
Dixon
,
J. K.
,
Anderson
,
J. L.
, and
Brennecke
,
J. F.
, “
Phase Transition and Decomposition Temperatures, Heat Capacities and Viscosities of Pyridinium Ionic Liquids
,”
Journal Chem. Thermodynamics
JCTDAF0021-9614, Vol.
37
, No. (
6
),
2005
, pp. 559–568.
67.
Welton
,
T.
, “
Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis
,”
Chemical Review
CHREAY0009-2665, Vol.
99
, No. (
8
),
1999
, pp. 2071–2083.
68.
Pinilla
,
C.
,
Del Popolo
,
M. G.
,
Lynden-Bell
,
R. M.
, and
Kohanoff
,
J.
, “
Structure and Dynamics of a Confined Ionic Liquid. Topics of Relevance to Dye-Sensitized Solar Cells
,”
J. Phys. Chem. B
JPCBFK1089-5647, Vol.
109
, No. (
38
),
2005
, pp. 17922–17927.
69.
Ye
,
C. F.
,
Liu
,
W. M.
,
Chen
,
Y. X.
 et al
, “
Room-Temperature Ionic Liquids: A Novel Versatile Lubricant
,”
Chem. Commun. (Cambridge)
CHCOFS1359-7345, Vol.
21
,
2001
, pp. 2244–2245.
70.
Phillips
,
B. S.
, and
Zabinski
,
J. S.
, “
Ionic Liquid Lubrication Effects on Ceramics in a Water Environment
,”
Tribology Letters
TRLEFS1023-8883, Vol.
17
,
2004
, pp. 533–541.
71.
Zhang
,
X. H.
,
Zhang
,
X. J.
,
Liu
,
Y. H.
,
Schaefer
,
J. A.
, and
Wen
,
S. Z.
, “
Impact of Confined Liquid Thin Film Upon Bioadhesive Force between Insects and Smooth Solid Surface
,”
Acta Phys. Sin.
WLHPAR1000-3290, Vol.
56
,
2007
, pp. 4722–4727.
72.
Qu
,
J.
,
Truhan
,
J.
,
Dai
,
S.
 et al
, “
Ionic Liquids with Ammonium Cations as Lubricants Or Additives
,”
Tribol. Lett.
TRLEFS1023-8883, Vol.
22
,
2006
, pp. 207–214.
73.
Morishita
,
S.
,
Matsumura
,
Y.
, and
Shiraishi
,
T.
, “
Control of Film Thickness of a Sliding Bearing Using Liquid Crystal as Lubricant
,”
Journal of Japanese Society of Tribologists
, Vol.
47
,
2002
, pp. 846–851 (in Japanese).
74.
Lavielle
,
L.
, “
Electric Field Effect on the Friction of a Polythylene-Terpolymer Film on a Steel Substrate
,”
Wear
WEARCJ0043-1648, Vol.
176
,
1994
, pp. 89–93.
75.
Morishita
,
S.
,
Nakano
,
K.
, and
Kimura
,
Y.
, “
Electroviscous Effect of Nematic Liquid Crystals
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
26
,
1993
, pp. 399–403.
76.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
, “
Spreading of Nanofluids on Solids
,”
Nature
NATUAS0028-0836, Vol.
423
,
2003
, pp. 156–159.
77.
Chang
,
Q. Y.
,
Meng
,
Y. G.
, and
Wen
,
S. Z.
, “
Influence of Interfacial Potential on the Tribological Behavior of Brass/Silicon Dioxide Rubbing Couple
,”
Applied Surface Science
ASUSEE0169-4332, Vol.
202
,
2002
, pp. 120–125.
78.
Luo
,
J. B.
,
He
,
Y.
,
Zhong
,
M.
, and
Jin
,
Z. M.
, “
Gas Bubble Phenomenon in Nanoscale Liquid Film under External Electric Field
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
88
,
2006
, pp. 25116–25119.
79.
Shen
,
M. W.
, “
Study on Film-Forming Mechanisms and Tribological Properties of Lubricating Film in the Nanoscale
,”
Tsinghua University
Ph.D. thesis (directed by S. Z.Wen and J. B. Luo) Beijing, China,
2000
.
80.
He
,
Y.
,
Luo
,
J. B.
, and
Xie
,
G. X.
, “
Characteristics of Thin Liquid Film under an External Electric Field
,”
Tribol. Int.
TRBIBK0301-679X, Vol.
40
, No.
10–12
,
2007
, pp. 1718–1723.
81.
Xie
,
G. X.
,
Luo
,
J. B.
,
Liu
,
S. H.
,
Zhang
,
C. H.
,
Lu
,
X. C.
, and
Guo
,
D.
, “
Effect of External Electric Field on Liquid Film Confined within Nanogap
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
103
,
2008
, p. 094306.
82.
Gidon
,
S.
,
Lemonnier
,
O.
,
Rolland
,
B.
,
Bichet
,
O.
, and
Dressler
,
C.
, “
Electrical Probe Storage Using Joule Heating in Phase Change Media
,”
Appl. Phys. Lett.
APPLAB0003-6951, Vol.
85
,
2004
, pp. 6392–6394.
83.
Mustafa
,
M. M.
, and
Wright
,
C. D.
, “
An Analytical Model for Nanoscale Electrothermal Probe Recording on Phase-Change Media
,”
J. Appl. Phys.
JAPIAU0021-8979, Vol.
99
,
2006
, pp. 03430101–03430112.
84.
Landau
,
L.
, and
Lifshitz
,
E.
,
Statistical Physics
,
Pergamon Press
,
New York
,
1964
, pp. 322–323.
85.
Moghaddam
,
S.
, and
Ohadi
,
M. M.
, “
Effect of Electrode Geometry on Performance of an EHD Thin-Film Evaporator
,”
Journal of Microelectromechical Systems
JMIYET1057-7157, Vol.
15
,
2005
, pp. 978–986.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal