Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Nonlinear Fracture Mechanics: Volume I Time-Dependent Fracture
By
A Saxena
A Saxena
1
Georgia Institute of Technology
,
Atlanta, GA 30332
;
symposium cochairman and editor
.
Search for other works by this author on:
JD Landes
JD Landes
2
University of Tennessee
,
Knoxville, TN 37996
;
symposium cochairman and editor
.
Search for other works by this author on:
JL Bassani
JL Bassani
3
University of Pennsylvania
,
Philadelphia, PA 19104
;
symposium cochairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-1174-6
ISBN:
978-0-8031-1174-5
No. of Pages:
489
Publisher:
ASTM International
Publication date:
1988

The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and a ceramic/ceramic composite bend specimens.

1.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
R. E.
,
Analysis of Crack Formation and Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,
Cement and Concrete Research
 0008-8846, Vol.
6
, No.
6
,
11
1976
, pp. 773782.
2.
Modeer
,
M.
,
A Fracture Mechanics Approach to Failure Analysis of Concrete Materials
, Report TVBM-1001,
University of Lund
, Lund, Sweden,
1979
.
3.
Petersson
,
P. E.
,
Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials
, doctoral dissertation,
University of Lund
, Lund, Sweden,
1981
.
4.
Wecharatana
,
M.
and
Shah
,
S. P.
,
Prediction of Nonlinear Fracture Process Zone in Concrete
,
Journal of Engineering Mechanics
, Vol.
109
(
S
),
10
1983
, pp. 12311246.
5.
Visalvanich
,
K.
and
Naaman
,
A. E.
,
Fracture Model for Fiber Reinforced Concrete
,
American Concrete Institute Journal
 0002-8061, March/April 1983, pp. 128138.
6.
Cho
,
K.-Z.
,
Kobayashi
,
A. S.
,
Hawkins
,
N. M.
,
Barker
,
D. B.
, and
Jeang
,
F.-L.
,
Fracture Process Zone of Concrete Cracks
,
Journal of Engineering Mechanics
, Vol.
110
, No.
8
,
08
1984
, pp. 11741184.
7.
Jeang
,
F.-L.
and
Hawkins
,
N. M.
,
Non-Linear Analysis of Concrete Fracture
, Report SM 85-2,
Department of Civil Engineering, University of Washington
, Seattle, WA,
07
1985
.
8.
Kobayashi
,
A. S.
,
Hawkins
,
N. M.
, and
Du
,
J. J.
,
An Impact Damage Model of Cement-Based Composites: Strain Rate Effects on Fracture
,
Mindess
S.
and
Shah
S. P.
, Eds.,
Material Research Society
,
Boston, MA
,
1986
, pp. 203216.
9.
Bentur
,
A.
,
Mindess
,
S.
, and
Banthia
,
N.
,
The Behaviour of Concrete Under Impact Loading: Experimental Procedures and Methods of Analysis
,
Materials and Structures
, Vol.
19
, No.
113
, September/October 1986, pp. 371378.
10.
Bassani
,
J. L.
and
Vitek
,
V.
,
Propagation of Crack Under Creep Conditions
,
Proceedings
, Ninth U.S. Congress of Applied Mechanics,
American Society of Mechanical Engineers
,
Los Angeles, CA
,
1982
, pp. 127133.
11.
Rice
,
R. L.
,
Pores as Fracture Origins in Ceramics
,
Journal of Material Sciences
 0022-2461, Vol.
19
,
1984
, pp. 895914.
12.
Evans
,
A. G.
and
Faber
,
K. T.
,
On the Crack Growth Resistance of Microcracking Brittle Materials
,
Journal of the American Ceramic Society
 0002-7820, Vol.
67
, No.
4
,
1984
, pp. 255260.
13.
Evans
,
A. G.
and
Hener
,
A. H.
,
Review-Transformation Toughening in Ceramics: Martensitic Transformations in Crack-Tip Stress Fields
,
Journal of the American Ceramic Society
 0002-7820, Vol.
63
,
1980
, pp. 241246.
14.
McMeeking
,
R.
and
Evans
,
A. G.
,
Mechanics of Transformation-Toughening in Brittle Materials
,
Journal of the American Ceramic Society
 0002-7820, Vol.
65
,
1982
, pp. 242248.
15.
Budiansky
,
B.
,
Hutchinson
,
J.
, and
Lambroupolos
,
J. C.
,
Continuum Theory of Dilatant Transformation Toughening in Ceramics
,
International Journal of Solids and Structures
 0020-7683, Vol.
19
,
1983
, pp. 337355.
16.
Cedolin
,
L.
,
Poli
,
S. D.
, and
Iori
,
I.
,
Experimental Determination of the Fracture Process Zone in Concrete
,
Cement and Concrete Research
 0008-8846, Vol.
13
,
1983
, pp. 557567.
17.
Barker
,
D. B.
,
Hawkins
,
N. M.
,
Jeang
,
F.-L.
,
Cho
,
K. Z.
, and
Kobayashi
,
A. S.
,
Concrete Fracture in CLWL Specimen
,
Journal of Engineering Mechanics
, Vol.
111
, No.
5
,
05
1985
, pp. 623638.
18.
Hughes
,
B. P.
and
Chapman
,
G. P.
,
The Complete Stress-Strain Curve for Concrete in Direct Tension
,
RILEM Bulletin
, No.
30
,
1966
, pp. 9597.
19.
Walraven
,
J.
,
Fundamental Analysis of Aggregate Interlock
,
Journal of Engineering Mechanics
, Vol.
107
,
11
1981
, pp. 22452270.
20.
Kobayashi
,
A. S.
,
Dynamic Fracture Analysis by Dynamic Finite-Element MethodGeneration and Propagation Analyses
,
Nonlinear and Dynamic Fracture Mechanics
,
Perrone
N.
and
Atluri
S. N.
, Eds., ASME AMD-35,
American Society of Mechanical Engineers
,
New York
,
1979
, pp. 1936.
21.
Jenkins
,
M. G.
,
Kobayashi
,
A. S.
,
White
,
K. W.
, and
Bradt
,
R. C.
,
Crack Initiation and Arrest in a SiC-Whisker/Al2O3-Matrix Ceramic/Ceramic Composite
,
Journal of the American Ceramic Society
 0002-7820, Vol.
70
, No.
6
,
06
1987
, pp. 393395.
22.
Mindess
,
S.
,
Rate of Loading Effects on the Fracture of Cementitious Materials
,
Application of Fracture Mechanics to Cementitious Composites
,
Shah
S. P.
, Ed.,
Martinus Nijhoff Publishers
,
Amsterdam, The Netherlands
,
09
1985
, pp. 617636.
23.
Mindess
,
S.
and
Bentur
,
A.
,
A Preliminary Study of the Fracture of Concrete Beams Under Impact Loading, Using High-Speed Photography
,
Cement and Concrete Research
 0008-8846, Vol.
15
, No.
3
,
1985
, pp. 474484.
24.
Mall
,
S.
,
Kobayashi
,
A. S.
, and
Urabe
Y.
,
Dynamic Photoelastic and Dynamic Finite-Element Analyses of Dynamic-Tear-Test Specimens
,
Experimental Mechanics
, Vol.
18
, No.
12
,
12
1978
, pp. 449456.
25.
Lewis
,
D.
, III
,
Cyclic Mechanical Fatigue in Ceramic-Ceramic CompositesAn Update
,
Ceramic Engineering and Science Proceedings
 0196-6219, JulyAugust, 1981, pp. 661701.
26.
Marshall
,
D. B.
and
Evans
,
A. G.
,
The Tensile Strength of Uniaxially Reinforced Ceramic Fiber Composites
,
Fracture Mechanics of Ceramics
, Vol.
7
,
Bradt
R. C.
,
Evans
A. G.
,
Hasselman
D. P. H.
, and
Lange
F. F.
, Eds.,
Plenum Press
,
New York
,
1986
, pp. 115.
27.
Sbaizero
,
O.
and
Evans
,
A. G.
,
Tensile and Shear Properties of Laminated Ceramic Matrix Composites
,
Journal of the American Ceramic Society
 0002-7820, Vol.
69
, No.
6
,
1986
, pp. 481486.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal