Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Advanced Triaxial Testing of Soil and Rock
By
RT Donaghe
RT Donaghe
1
U.S. Army Corps of Engineers, Waterways Experiment Station
,
Vicksburg Miss.
;
symposium cochairman and coeditor
Search for other works by this author on:
RC Chaney
RC Chaney
2
Telonicher Marine Laboratory, Humboldt State University
,
Arcata, California
;
symposium cochairman and coeditor
Search for other works by this author on:
ML Silver
ML Silver
3Department of Civil Engineering,
University of Illinois
,
Chicago, Illinois
;
symposium cochairman and coeditor
Search for other works by this author on:
ISBN-10:
0-8031-0983-0
ISBN:
978-0-8031-0983-4
No. of Pages:
904
Publisher:
ASTM International
Publication date:
1988

The stress states and their changes that can be attained in the conventional triaxial testing method are reviewed and compared to those attained in other more sophisticated testing methods. These advanced tests have been developed to extend the ranges of the stress states and the changes in these states that can be controlled. In conventional triaxial testing on solid cylinder specimens σ2′ is equal either to σ1′ or to σ3′ and only a jump rotation of 90° in the principal stress directions can be achieved. It is argued that in spite of this limitation the triaxial testing method is still a useful means to measure the strength and deformation characteristics of soils. The results, however, should be corrected to account for the actual states of stress in the field. Furthermore, some recent advances in the methods and equipment for triaxial testing and other related kinds of testing are reviewed with an emphasis on the importance of automation and simplification. Several examples are presented where automated controlled stress and/or strain path tests can be performed by means of a simple triaxial apparatus using various electronic transducers, microcomputers, and pneumatic pressurizing systems.

1.
Saada
,
A. S.
and
Townsend
,
F. C.
, “
State of the Art; Laboratory Strength Testing of Soils
,” in
Laboratory Shear Strength of Soil
, ASTM STP 740,
American Society for Testing and Materials
,
Philadelphia
,
1980
, pp. 7-77.
2.
Arthur
,
J. R. F.
, “
Cubical Devices: Versatility and Constraints
,” in this volume, pp. 743-765.
3.
Arthur
,
J. R. F.
,
Chua
,
K. S.
, and
Dunstan
,
T.
, “
Induced Anisotropy in a Sand
,”
Geotechnique
 0016-8505, Vol.
27
, No.
1
,
1977
, pp. 13-30.
4.
Arthur
,
J. R. F.
,
Chua
,
K. S.
,
Dunstan
,
T.
, and
Rodriguez
,
del C. J. I.
, “
Principal Stress Rotation: A Missing Parameter
,”
Proceedings
,
American Society of Civil Engineers
, Vol.
106
, No. GT4,
1980
, pp. 419-433.
5.
Bishop
,
A. W.
and
Eldin
,
A. K. G.
, “
The Effect of Stress History on the Relation Between ϕ and the Porosity of Sand
,”
Proceedings
,
Third International Conference on Soil Mechanics and Foundation Engineering
,
Switzerland
, Vol.
1
,
1953
, pp. 100-105.
6.
Bishop
,
A. W.
and
Green
,
G. E.
, “
The Influence of End Restraint on the Compression Strength of a Cohesionless Soil
,”
Geotechnique
 0016-8505, Vol.
15
, No.
3
,
1965
, pp. 243-266.
7.
Bishop
,
A. W.
and
Henkel
,
D. J.
,
The Measurement of Soil Properties in the Triaxial Test
,
Arnold
,
London
,
1962
.
8.
Hettler
,
A.
and
Vardoulakis
,
I.
, “
Behaviour of Dry Sand Tested in a Large Triaxial Apparatus
,”
Geotechnique
 0016-8505, Vol.
34
, No.
2
,
1984
, pp. 183-198.
9.
Lade
,
P. V.
, “
Localization Effects in Triaxial Tests on Sand
,”
Proceedings
,
International Union of Theoretical and Applied Mechanics Conference on Deformation and Failure of Granular Materials
,
Delft
,
1982
, pp. 461-471.
10.
Barden
,
L.
,
Ismail
,
H.
, and
Tong
,
P.
, “
Plane Strain Deformation of Granular Material at Low and High Pressures
,
Geotechnique
 0016-8505, Vol.
19
, No.
4
,
1969
, pp. 441-452.
11.
Green
,
G. E.
and
Reades
,
D. W.
, “
Boundary Conditions, Anisotropic and Sample Shape Effects on the Stress-Strain Behavior of Sand in Triaxial Compression and Plane Strain
,
Geotechnique
 0016-8505, Vol.
25
, No.
2
,
1975
, pp. 233-256.
12.
Barden
,
L.
and
Khayatt
,
A. J.
, “
Incremental Strain Rate Ratios and Strength of Sand in the Triaxial Test
,”
Geotechnique
 0016-8505, Vol.
16
, No.
4
,
1966
, pp. 338-357.
13.
Cornforth
,
D. H.
, “
Some Experiments on the Influence of Strain Condition on the Strength of Sand
,”
Geotechnique
 0016-8505, Vol.
32
, No.
4
,
1982
, pp. 291-303.
14.
Ichihara
,
M.
and
Matsuzawa
,
H.
, “
Behavior of Dry Sand in Plane Strain and Triaxial Compression
,”
Journal of the Japanese Society of Civil Engineers
, No.
173
,
1970
, pp. 47-59 (in Japanese).
15.
Lee
,
K. L.
and
Seed
,
H. B.
, “
Drained Strength Characteristics of Sands
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
93
, No.
SM6
,
1967
, pp. 117-141.
16.
Arthur
,
J. R. F.
and
Menzies
,
B. K.
, “
Inherent Anisotropy in a Sand
,”
Geotechnique
 0016-8505, Vol.
22
, No.
1
,
1972
, pp. 115-129.
17.
Lam
,
W.-K.
and
Tatsuoka
,
F.
, “
Effects of Initial Anisotropic Fabric and σ2 on Strength and Deformation Characteristics of Sand
,”
Soils and Foundations
, Vol.
28
, No.
1
,
1988
, pp. 89-106.
18.
Oda
,
M.
, “
Initial Fabrics and Their Relations to Mechanical Properties of Granular Material
,”
Soils and Foundations
, Vol.
12
, No.
1
,
1972
, pp. 18-36.
19.
Oda
,
M.
, “
The Mechanism of Fabric Changes during Compressional Deformation of Sand
,”
Soils and Foundations
, Vol.
12
, No.
2
,
1972
, pp. 1-18.
20.
Shankariah
,
D. B.
and
Ramamurthy
,
T.
, “
Axisymmetric Compression and Extension of Anisotropic Sand
,”
Indian Geotechnical Journal
, Vol.
II
,
1980
, pp. 77-81.
21.
Arthur
,
J. R. F.
and
Assadi
,
A.
, “
Ruptured Sand Sheared in Plane Strain
,”
Proceedings
,
Ninth International Conference
,
SMFE
,
Tokyo
, Vol.
1
,
1977
, pp. 19-22.
22.
Oda
,
M.
,
Koishikawa
,
I.
, and
Higuchi
,
T.
, “
Experimental Study on Anisotropic Shear Strength of Sand by Plane Strain Test
,”
Soils and Foundations
, Vol.
18
, No.
1
,
1978
, pp. 25-38.
23.
Oda
,
M.
, “
Anisotropic Strength of Cohesionless Sands
,”
Journal, GE Division, Proceedings, ASCE
, Vol.
107
, No.
GT9
, Sept., 1981, pp. 1219-1231.
24.
Tatsuoka
,
F.
,
Sakamoto
,
M.
,
Kawamura
,
T.
, and
Fukushima
,
S.
, “
Strength and Deformation Characteristics of Sand in Plane Strain Compression at Extremely Low Pressures
,”
Soils and Foundations
, Vol.
26
, No.
1
,
1986
, pp. 65-84.
25.
Green
,
G. E.
, “
Strength and Deformation of Sand Measured in an Independent Stress Control Cell
,”
Proceedings
,
Roscoe Memorial Symposium
,
Cambridge, England
,
1971
, pp. 285-323.
26.
Ko
,
H. Y.
and
Scott
,
R. F.
, “
Deformation of Sand in Shear
,”
Journal, SMFE Division, Proceedings, ASCE
, Vol.
93
, No.
SM5
,
1967
, pp. 283-310.
27.
Lade
,
P. V.
and
Duncan
,
J. M.
, “
Cubical Triaxial Tests on Cohesionless Soil
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
99
, No.
SM10
,
1973
, pp. 793-811.
28.
Matsuoka
,
H.
and
Nakai
,
T.
, “
A New Failure Criterion for Soils in Three-dimensional Stresses
,”
Proceedings
,
International Union of Theoretical and Applied Mechanics Symposium on Deformation and Failure of Granular Materials
,
Delft
,
1982
, pp. 253-263.
29.
Miyamori
,
K.
, “
Shear Strength and Deformation Characteristics of Sand under Three Dimensional Stress Condition
,”
Journal of the Japanese Society of Civil Engineers
, No.
225
,
1976
, pp. 81-91 (in Japanese).
30.
Nagaraj
,
T. S.
and
Somashekar
,
B. V.
, “
Shear Strength of Soils under General Stress Field
,”
Proceedings
,
Ninth International Conference on Soil Mechanics and Foundation Engineering
,
Tokyo
, Vol.
1
,
1977
, pp. 225-228.
31.
Procter
,
D. C.
and
Barden
,
L.
, “
Correspondence
,”
Geotechnique
 0016-8505, Vol.
19
, No.
3
,
1969
, pp. 424-426.
32.
Ramamurthy
,
T.
and
Rawat
,
P. C.
, “
Shear Strength of Sand under General Stress System
,”
Proceedings
,
Eighth International Conference on Soil Mechanics and Foundation Engineering
,
Moscow
, Vol.
1.2
,
1973
, pp. 339-342.
33.
Reades
,
D. W.
and
Green
,
G. E.
, “
Independent Stress Control and Triaxial Extension Tests on Sand
,”
Geotechnique
 0016-8505, Vol.
26
, No.
4
,
1976
, pp. 551-576.
34.
Sutherland
,
H. B.
and
Mesdary
,
M. S.
, “
The Influence of the Intermediate Principal Stress on the Strength of Sand
,”
Proceedings
,
Seventh International Conference on Soil Mechanics and Foundation Engineering
,
Mexico
, Vol.
1
,
1969
, pp. 391-399.
35.
Wu
,
T. H.
,
Loh
,
A. K.
, and
Malvern
,
L. E.
, “
Study of Failure Envelopes of Soils
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
89
, No.
SM1
,
1963
, pp. 145-181.
36.
Yamada
,
Y.
and
Ishihara
,
K.
, “
Anisotropic Deformation Characteristics of Sand under Three Dimensional Stress Condition
,”
Soils and Foundations
, Vol.
19
, No.
2
,
1979
, pp. 79-94.
37.
Frydman
,
S.
,
Zeitlen
,
J. G.
, and
Alpan
,
I.
, “
The Yielding Behavior of Particulate Media
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
10
, No.
341
,
1973
, pp. 341-362.
38.
Kirkpatrick
,
W. M.
, “
The Condition of Failure for Sands
,”
Proceedings
,
Fourth International Conference on Soil Mechanics and Foundation Engineering
,
London
, Vol.
1
,
1957
, pp. 172-178.
39.
Stroud
,
M. A.
, “
The Behavior of Sand at Low Stress Levels in the Simple Shear Apparatus
,” Ph.D. thesis,
University of Cambridge
,
1971
.
40.
Yound
,
T. L.
and
Craven
,
T. N.
, “
Lateral Stress in Sands During Cyclic Loading, Technical Note
,”
Journal, GE Division, Proceedings, ASCE
, Vol.
101
, No.
GT2
,
1975
, pp. 217-221.
41.
Moussa
,
A.
, “
Radial Stress in Sand in Constant Volume Static and Cyclic Simple Shear Tests
,”
Norwegian Geotechnical Institute Internal Report
, 51505-10,
1974
.
42.
Budhu
,
M.
, “
Simple Shear Deformation of Sand
,” Ph.D. thesis,
University of Cambridge
,
1979
.
43.
Cole
,
E. R.
, “
The Behaviour of Soils in the Simple-Shear Apparatus
,” Ph.D. thesis,
University of Cambridge
,
1967
.
44.
Finn
,
W. D. L.
,
Pickering
,
J.
, and
Bransby
,
P. L.
, “
Sand Liquefaction in Triaxial and Simple Shear Test
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
97
, No.
SM4
, April, 1971, pp. 639-659.
45.
Peacock
,
W. H.
and
Seed
,
H. B.
, “
Sand Liquefaction under Cyclic Loading Simple Shear Conditions
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
94
, No.
SM3
,
1968
, pp. 689-708.
46.
Roscoe
,
K. H.
, “
An Apparatus for the Application of Simple Shear to Soil Samples
,”
Proceedings
,
Third International Conference on Soil Mechanics and Foundation Engineering
,
Zurich
, Vol.
1
,
1953
, pp. 186-191.
47.
Silver
,
M. L.
and
Seed
,
H. B.
, “
Deformation Characteristics of Sands under Cyclic Loading
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
97
, No.
SM8
,
1971
, pp. 1081-1098.
48.
Drnevich
,
V. P.
, “
Undrained Cyclic Shear of Saturated Sand
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
98
, No.
SM8
,
1972
, pp. 807-825.
49.
Hight
,
D. W.
,
Gens
,
A.
, and
Symes
,
M. J. P. R.
, “
The Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils
,”
Geotechnique
 0016-8505, Vol.
33
, No.
4
,
1983
, pp. 183-198.
50.
Ishibashi
,
I.
and
Sherif
,
M. A.
, “
Soil Liquefaction by Torsional Simple Shear Device
,”
Journal, GE Division, Proceedings, ASCE
, Vol.
100
, No.
GT8
,
1974
, pp. 871-887.
51.
Ishihara
,
K.
and
Yasuda
,
S.
, “
Sand Liquefaction in Hollow Cylinder Torsion under Irregular Excitation
,”
Soils and Foundations
, Vol.
15
, No.
1
,
1975
, pp. 45-59.
52.
Lade
,
P. V.
, “
Torsion Shear Apparatus for Soil Testing
,” in
Laboratory Shear Strength of Soil
, ASTM STP 740,
American Society for Testing and Materials
,
Philadelphia
,
1980
, pp. 145-163.
53.
Saada
,
A. S.
, “
A Pneumatic Computer for Testing Cross Anisotropic Materials
,”
Materials Research and Standards
, Vol.
8
, No.
1
,
1968
, pp. 17-23.
54.
Saada
,
A. S.
and
Ou
,
C. D.
, “
Strain-Stress Relations and Failure of Anisotropic Clays
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
99
, No.
SM12
,
1973
, pp. 1091-1111.
55.
Saada
,
A. S.
and
Bianchini
,
G. F.
, “
Strength of One-dimensionally Consolidated Clays
,”
Journal, GE Division, Proceedings, ASCE
, Vol.
101
, No.
GT11
, pp. 1151-1164.
56.
Saada
,
A. S.
and
Zamani
,
K. K.
, “
The Mechanical Behaviour of Cross Anisotropic Clays
,”
Proceedings
,
Seventh International Conference on Soil Mechanics and Foundation Engineering
,
Mexico City
, Vol.
1
,
1969
, pp. 351-359.
57.
Symes
,
M. J. P. R.
,
Hight
,
D. W.
, and
Gens
,
A.
, “
Investigating Anisotropy and the Effects of Principal Stress Rotation and of Intermediate Principal Stress Using a Hollow Cylinder Apparatus
,”
Proceedings
,
International Union of Theoretical and Applied Mechanics Symposium on Deformation and Failure of Granular Materials
,
Delft
,
1982
, pp. 441-449.
58.
Tatsuoka
,
F.
,
Muramatsu
,
M.
, and
Sasaki
,
T.
, “
Cyclic Undrained Stress-Strain Behavior of Dense Sands by Torsional Simple Shear Test
,”
Soils and Foundations
, Vol.
22
, No.
2
, June, 1982, pp. 55-70.
59.
Tatsuoka
,
F.
,
Sonoda
,
S.
,
Hara
,
K.
,
Fukushima
,
S.
, and
Pradhan Tej
,
B. S.
, “
Failure and Deformation of Sand in Torsional Shear
,”
Soils and Foundations
, Vol.
26
, No.
4
,
1986
, pp. 79-97.
60.
Ishihara
,
K.
and
Towhata
,
I.
, “
Sand Response to Cyclic Rotation of Principal Stress Directions as Induced by Wave Loads
,”
Soils and Foundations
, Vol.
23
, No.
4
,
1983
, pp. 11-26.
61.
Miura
,
K.
,
Miura
,
S.
, and
Toki
,
S.
, “
Deformation Behavior of Anisotropic Dense Sand Under Principal Stress Axes Rotation
,”
Soils and Foundations
, Vol.
26
, No.
1
,
1986
, pp. 36-52.
62.
Wong
,
R. S. K.
and
Arthur
,
J. R. F.
, “
Induced and Inherent Anisotropy in Sand
,”
Geotechnique
 0016-8505, Vol.
35
, No.
4
,
1985
, pp. 471-481.
63.
Arthur
,
J. R. F.
and
Dunstan
,
T.
, “
Discussion
,”
Soils and Foundations
, Vol.
18
, No.
4
,
1978
, pp. 105-106.
64.
Sture
,
S.
,
Ko.
,
H.-Y.
,
Budiman
,
J. S.
, and
Ontuna
,
A. K.
, “
Development and Application of a Directional Shear Cell
,”
Proceedings
,
Eleventh International Conference on Soil Mechanics and Foundation Engineering
,
San Francisco
, Vol.
2
,
1985
, pp. 1061-1064.
65.
Mahmood
,
A.
and
Mitchell
,
J. K.
, “
Fabric-Property Relationships in Fine Granular Materials
,”
Clays and Clay Minerals
 0009-8604, Vol.
22
,
1974
, pp. 397-408.
66.
Dunstan
,
T.
, “
The Influence of Grading on the Anisotropic Strength of Sand, Technical Note
,”
Geotechnique
 0016-8505, Vol.
22
, No.
3
,
1972
, pp. 529-532.
67.
Yoshimi
,
Y.
and
Oh-Oka.
, “
A Ring Torsion Apparatus for Simple Shear Tests
,”
Proceedings
,
Eighth International Conference on Soil Mechanics and Foundation Engineering
,
Moscow
, Vol.
1.2
,
1973
, pp. 501-506.
68.
Tatsuoka
,
F.
and
Ishihara
,
K.
, “
Drained Deformation of Sand Under Cyclic Stresses Reversing Direction
,”
Soils and Foundations
, Vol.
14
, No.
3
,
1974
, pp. 51-65.
69.
Wood
,
D. M.
and
Budhu
,
M.
, “
The Behaviour of Leighton Buzzard Sand in Cyclic Simple Shear Test
,”
Proceedings
,
International Symposium on Soils under Cyclic and Transient Loading
,
Swansea
, Vol.
1
,
1980
, pp. 7-11.
70.
Oda
,
M.
and
Konishi
,
J.
, “
Rotation of Principal Stresses in Granular Material in Simple Shear
,”
Soils and Foundations
, Vol.
14
, No.
4
,
1974
, pp. 39-53.
71.
Finn
,
W. D. L.
and
Vaid
,
Y. P.
, “
Liquefaction Potential from Drained Constant Volume Cyclic Simple Shear Tests
,”
Proceedings
,
Sixth World Conference on Earthquake Engineering
,
New Delhi
,
1977
.
72.
Finn
,
W. D. L.
,
Bhatia
,
S. K.
, and
Pickering
,
D. I.
, “
The Cyclic Simple Shear Test
,” in
Soil Mechanics—Transient and Cyclic Loads
,
Pande
and
Zienkiewicz
, Eds.,
Wiley
,
New York
,
1982
, pp. 583-607.
73.
Tatsuoka
,
F.
,
Hara
,
K.
, and
Pradhan
,
T. B. S.
, “
Stress-Strain Relation of Saturated Sand Subjected to Cyclic Undrained Simple Shear
,” Seisan-Kenkyu,
Journal of Institute of Industrial Science
, University of Tokyo, Vol.
38
, No.
9
, pp. 28-31 (in Japanese).
74.
Okochi
,
Y.
and
Tatsuoka
,
F.
, “
Some Factors Affecting K0-Values of Sand Measured in Triaxial Cell
,”
Soils and Foundations
, Vol.
24
, No.
3
,
1984
, pp. 52-68.
75.
Tatsuoka
,
F.
,
Maeda
,
S.
,
Ochi
,
K.
, and
Fujii
,
S.
, “
Prediction of Cyclic Undrained Strength of Sand Subjected to Irregular Loadings
,”
Soils and Foundations
, Vol.
26
, No.
2
,
1986
, pp. 73-90.
76.
Tatsuoka
,
F.
,
Ochi
,
K.
,
Fujii
,
S.
, and
Okamoto
,
M.
, “
Cyclic Undrained Triaxial and Torsional Shear Strength of Sands for Different Sample Preparation Methods
,”
Soils and Foundations
, Vol.
26
, No.
3
,
1986
, pp. 23-41.
77.
Atkinson
,
J. H.
and
Evans
,
J. S.
, “
Discussion
,”
Geotechnique
 0016-8505, Vol.
35
, No.
3
,
1985
, pp. 378-382.
78.
Alva-Hurtado
,
J. E.
,
McMahon
,
D. R.
, and
Stewart
,
H. E.
, “
Apparatus and Techniques for Static Triaxial Testing of Ballast
,” in
Laboratory Shear Strength of Soil
, ASTM STP 740,
American Society for Testing and Materials
,
Philadelphia
,
1980
, pp. 94-113.
79.
Tatsuoka
,
F.
,
Toki
,
S.
,
Miura
,
S.
,
Kato
,
H.
,
Okamoto
,
M.
, et al
, “
Some Factors Affecting Cyclic Undrained Triaxial Strength of Sand
,”
Soils and Foundations
, Vol.
26
, No.
3
,
1986
, pp. 99-116.
80.
Chan
,
C. K.
, “
An Electropneumatic Cyclic Loading System
,”
Geotechnical Testing Journal
 0149-6115, Vol.
4
, No.
4
,
1982
, pp. 183-187.
81.
Tatsuoka
,
F.
,
Goto
,
S.
, and
Sakamoto
,
M.
, “
Effects of Some Factors on Strength and Deformation Characteristics of Sand at Low Pressures
,”
Soils and Foundations
, Vol.
26
, No.
1
,
1986
, pp. 105-114.
82.
Castro
,
G.
, “
Liquefaction of Sands
,”
Harvard Soil Mechanics Series
, No.
81
,
Harvard University
,
Cambridge, MA
,
1969
.
83.
Fukushima
,
S.
and
Tatsuoka
,
F.
,
Strength and Deformation Characteristics of Saturated Sand at Extremely Low Pressures
,”
Soils and Foundations
, Vol.
24
, No.
4
,
1984
, pp. 30-48.
84.
Tani
,
Y.
,
Hatanaka
,
Y.
, and
Nagao
,
T.
, “
Development of Small Three Component Dynamometer for Cutting Force Measurement
,”
Bulletin of Japanese Society of Mechanical Engineers
, Vol.
26
, No.
214
, April, 1983, pp. 650-658.
85.
Hjortnaes-Pedersen
,
A. G. I.
and
Molenkamp
,
F.
, “
Accuracy and Reproducibility of Triaxial Tests
,”
Proceedings
,
International Union of Theoretical and Applied Mechanics Conference on Deformation and Failure of Granular Materials
,
Delft
,
1982
, pp. 391-401.
86.
Hjortnaes-Pedersen
,
A. G. I.
and
Molenkamp
,
F.
, “
Computer Program for Analysis for Triaxial and True Triaxial Tests
,”
Report of Delft Soil Mechanics Laboratory
,
1983
.
87.
van Deventer
,
J. M. M.
and
Molenkamp
,
F.
, “
Prediction of the Stiffness of Shallow Foundations by Means of Plate Loading Tests and Triaxial Tests
,”
Report of Delft Soil Mechanics Laboratory
, CO-234508/3,
1984
.
88.
Henkel
,
D. J.
and
Gilbert
,
G. C.
, “
The Effect of Rubber on the Mechanical Triaxial Compression Strength of Clay Samples
,”
Geotechnique
 0016-8505, Vol.
3
,
1952
, pp. 20-29.
89.
Duncan
,
J. M.
and
Seed
,
H. Bolton
, “
Corrections for Strength Test Data
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
93
, No.
SM5
,
1967
, pp. 121-137.
90.
Ponce
,
V. M.
and
Bell
,
J. M.
, “
Shear Strength of Sand at Extremely Low Pressures
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
97
, No.
SM4
,
1971
, pp. 625-638.
91.
Molenkamp
,
F.
and
Luger
,
H. J.
, “
Modelling and Minimization of Membrane Penetration Effects in Tests on Granular Soils
,”
Geotechnique
 0016-8505, Vol.
31
, No.
4
,
1981
, pp. 471-486.
92.
Berre
,
T.
, “
Triaxial Testing at the Norwegian Geotechnical Institute
,”
Geotechnical Testing Journal
 0149-6115, Vol.
5
, No.
12
,
1982
, pp. 3-17.
93.
Rowe
,
P. W.
and
Barden
,
L.
, “
Importance of Free Ends in Triaxial Testing
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
90
, No.
SM1
,
01
1964
, pp. 1-27.
94.
Lee
,
K. L.
, “
End Restraint Effects on Undrained Static Triaxial Strength of Sand
,”
Journal, GE Division, Proceedings, ASCE
, Vol.
104
, No.
GT6
, June, 1978, pp. 687-704.
95.
Arthur
,
J. R. F.
and
Dalili
,
A.
, “
On the Lubrication of Rubber Surfaces, Technical Note
,”
Geotechnique
 0016-8505, Vol.
29
, No.
1
,
1979
, pp. 96-98.
96.
Tatsuoka
,
F.
,
Molenkamp
,
F.
,
Torii
,
T.
, and
Hino
,
T.
, “
Behavior of Lubrication Layers of Platens in Element Tests
,”
Soils and Foundations
, Vol.
24
, No.
1
,
1984
, pp. 113-128.
97.
Tatsuoka
,
F.
and
Haibara
,
O.
, “
Shear Resistance Between Sand and Smooth or Lubricated Surfaces
,”
Soils and Foundations
, Vol.
25
, No.
1
,
1985
, pp. 89-98.
98.
Kokusho
,
T.
, “
Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range
,”
Soils and Foundations
, Vol.
20
, No.
2
,
1980
, pp. 45-60.
99.
Tatsuoka
,
F.
,
Yamada
,
S.
, and
Sato
,
T.
, “
Design and Manufacturing of Shear Testing Apparatuses for Soils No. 6—Methods of Controlling and Measuring Stress and Loads No. 3, Chishitsu-to-chosa, Journal of Japanese Association of Geotechnical Consultants, No. 1984-1
,”
1984
, pp. 56-62 (in Japanese).
100.
Hara
,
A.
and
Kiyota
,
Y.
, “
Study on Dynamic Properties of Soils for Response Analysis of Grounds—Frequency-dependency of Shear Moduli and Damping Coefficients
,”
Proceedings
,
Fourteenth Annual Japanese Domestic Symposium on Soil Mechanics and Foundation Engineering
,
1979
(in Japanese).
101.
Hardin
,
B. O.
and
Drnevich
,
V. P.
, “
Shear Modulus and Damping in Soils; Measurement and Parameter Effects
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
98
, No.
SM6
,
1972
, pp. 603-624.
102.
Hardin
,
B. O.
and
Drnevich
,
V. P.
, “
Shear Modulus and Damping in Soils; Design Equations and Curves
,”
Journal, SMF Division, Proceedings, ASCE
, Vol.
98
, No.
SM7
, July, 1972, pp. 667-692.
103.
Kong
,
X. J.
,
Tatsuoka
,
F.
, and
Pradhan
,
Tej B. S.
, “
Dynamic Deformation Properties of Sand at Extremely Low Pressures
,”
Proceedings
,
Seventh Japan Earthquake Engineering Symposium
,
1986
, pp. 631-636.
104.
Jardine
,
R. J.
,
Symes
,
N. J.
, and
Burland
,
J. B.
, “
The Measurement of Soil Stiffness in the Triaxial Apparatus
,”
Geotechnique
 0016-8505, Vol.
34
, No.
3
,
1984
, pp. 323-340.
105.
Burland
,
J. B.
and
Symes
,
M.
, “
A Simple Axial Displacement Gauge for Use in the Triaxial Apparatus, Technical Note
,”
Geotechnique
 0016-8505, Vol.
32
, No.
1
,
1982
, pp. 62-65.
106.
Goto
,
S.
and
Tatsuoka
,
F.
, “
Influence of the Testing Condition on Strength and Deformation Characteristics of Granular Material
,”
Proceedings
,
Twenty-first Annual Japanese Symposium on Soil Mechanics and Foundation Engineering
, Vol.
1
,
1986
, pp. 237-240 (in Japanese).
107.
Boyce
,
J. R.
and
Brown
,
S. F.
, “
Measurement of Elastic Strain in Granular Material, Technical Note
,”
Geotechnique
 0016-8505, Vol.
26
, No.
4
,
1976
, pp. 637-640.
108.
Alva-Hurtado
,
J. E.
and
Selig
,
E. T.
, “
Survey of Laboratory Devices for Measuring Soil Volume Change
,”
Geotechnical Testing Journal
 0149-6115, Vol.
4
, No.
1
,
1981
, pp. 11-18.
109.
Tatsuoka
,
F.
, “
A Simple Method for Automated Measurement of Volume Change in Laboratory Tests, Technical Note
,”
Soils and Foundations
, Vol.
21
, No.
3
,
1981
, pp. 104-105.
110.
Pradhan
,
Tej B. S.
,
Tatsuoka
,
F.
, and
Molenkamp
,
F.
, “
Accuracy of Automated Volume Change Measurement by Means of a Differential Pressure Transducer, Technical Note
,”
Soils and Foundations
, Vol.
26
, No.
4
,
1986
, pp. 150-158.
111.
Kiekbusch
,
M.
and
Schuppener
,
B.
, “
Membrane Penetration and Its Effect on Pore Pressures
,”
Journal, GE Division, Proceedings, ASCE
, Vol.
103
, No.
GT11
,
1977
, pp. 1267-1279.
112.
Han
,
G.-C.
,
Sato
,
T.
,
Tatsuoka
,
F.
, and
Tamura
,
C.
, “
Study on Strength and Deformation of Unsaturated Sand Under Low Lateral Pressure
,” Seisan-Kenkyu,
Journal
, Institute of Industrial Science, University of Tokyo, Vol.
34
, No.
9
,
1982
, pp. 35-38 (in Japanese).
113.
Silver
,
M. L.
, “
Automated Data Acquisition, Transducers, and Dynamic Recording for the Geotechnical Testing Laboratory
,”
Geotechnical Testing Journal
 0149-6115, Vol.
2
, No.
4
,
12
1979
, pp. 185-189.
114.
Bishop
,
A. W.
and
Wesley
,
L. D.
, “
A Hydraulic Triaxial Apparatus for Controlled Stress Path Testing
,”
Geotechnique
 0016-8505, Vol.
25
, No.
4
,
1975
, pp. 657-670.
115.
Atkinson
,
J. H.
, “
Simple and Inexpensive Pressure Control Equipment for Conventional and Stress Path Triaxial Testing of Soils, Technical Note
,”
Geotechnique
 0016-8505, Vol.
35
, No.
1
,
1985
, pp. 61-63.
116.
Campanella
,
R. G.
and
Vaid
,
Y. P.
, “
A Simple K0 Triaxial Cell
,”
Canadian Geotechnical Journal
 0008-3674, Vol.
9
,
1972
, pp. 249-260.
117.
Abe
,
H.
and
Tatsuoka
,
F.
, “
Behavior of Partly Saturated Soil at Wetting in K0-Triaxial Test
,”
Proceedings
,
Fortieth Annual Symposium of Japanese Society of Civil Engineers
,
09
1985
, pp. 547-548 (in Japanese).
118.
Law
,
K. T.
, “
A Servo System for Controlled Stress Path Tests
,” in
Laboratory Shear Strength of Soil
, ASTM STP 740,
American Society for Testing and Materials
,
Philadelphia
,
1980
, pp. 164-179.
119.
Mohri
,
Y.
,
Pradhan
,
Tej B. S.
, and
Tatsuoka
,
F.
, “
Automated Control of Stress Path in Triaxial Tests
,”
Proceedings
,
Twenty-first Annual Japanese Symposium on Soil Mechanics and Foundation Engineering
, Vol.
1
,
1986
, pp. 303-306 (in Japanese).
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal