Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Composite Materials: Testing and Design (Eighth Conference)
By
JD Whitcomb
JD Whitcomb
1
NASA Langley Research Center
,
Hampton, VA 23665-5225
;
symposium chairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-0980-6
ISBN:
978-0-8031-0980-3
No. of Pages:
476
Publisher:
ASTM International
Publication date:
1988

Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination (ITWD) is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The beam-theory model incorporated the effects of elastic restraint at the ends of the delaminated subregion. The elastic restraint model (ERM), combined with existing finite-element modeling of the crack-tip region yields expressions for the Mode I and Mode II components of the strain energy release rate GI and GII to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of GI/GII ratios at the onset of crack growth. A linear mixed-mode crack growth criterion (GI/GIc + GII/GIIc = 1) in conjunction with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

1.
Carlile
,
D. R.
and
Leach
,
D. C.
, “
Damage and Notch Sensitivity of Graphite/PEEK Composite
,”
Proceedings
,
Society for the Advancement of Material and Process Engineering Symposium
,
1983
, p. 82.
2.
Gillespie
,
J. W.
, Jr.
and
Pipes
,
R. B.
, “
Compressive of Composite Laminates with Interlaminar Defects
,”
Composite Structures
, Vol.
2
,
1984
, p. 49.
3.
Webster
,
J. D.
, “
Flaw Criticality of Circular Disbond Defects in Composite Laminates
,” CCM-81-03,
Center for Composite Materials, University of Delaware
,
Newark, DE
,
1981
.
4.
Ashizawa
,
M.
, “
Fast Interlaminar Fracture of a Compressively Loaded Composite Containing A Defect
,”
Douglas Paper
 6994,
Long Beach, CA
,
01
1981
.
5.
Ashizawa
,
M.
, “
Improving Damage Tolerance of Laminated Composites Through the Use of New Tough Resins
,”
Douglas Paper
 7250,
Long Beach, CA
,
01
1983
.
6.
Ramkumar
,
R. L.
, “
Performance of a Quantitative Study of Instability Related Delamination Growth
,” NASA Contractor Report 166046,
National Aeronautics and Space Administration
, Washington, DC, March, 1983.
7.
Ramkumar
,
R. L.
,
Kulkarni
,
S. V.
, and
Pipes
,
R. B.
, “
Definition and Modeling of Critical Flaws in Graphite Fiber Reinforced Epoxy Resin Matrix Composite Materials
,” Report No. NADC-76228-30,
Naval Air Development Center
,
01
1978
.
8.
Chatterjee
,
S. N.
,
Hashin
,
Z.
, and
Pipes
,
R. B.
, “
Definition and Modeling of Critical Flaws in Graphite Fiber Reinforced Resin Matrix Composite Materials
,” Report No. NADC 77278-30,
Naval Air Development Center
,
08
1979
.
9.
Chatterjee
,
S. N.
and
Pipes
,
R. B.
, “
Composite Defect Significance
,”
Proceedings
,
Mechanics of Composites Review Meeting
,
Dayton, OH
,
10
1982
.
10.
Yin
,
W. L.
,
Sallam
,
S. N.
, and
Simitses
,
G. J.
, “
Ultimate Axial Load Capacity of a Delaminated Beam-Plate
,”
AIAA Journal
 0001-1452, American Institute of Astronautics and Aeronautics, Vol.
24
, No.
1
,
1986
.
11.
Whitcomb
,
J. D.
, “
Finite Element Analysis of Instability Related Delamination Growth
,”
Journal of Composite Materials
 0021-9983, Vol.
15
,
1981
, p. 403.
12.
Whitcomb
,
J. D.
, “
Approximate Analysis of Postbuckled Through-Width Delaminations
,”
NASA Technical Memorandum
 83167,
National Aeronautics and Space Administration
,
Washington, DC
,
06
1981
.
13.
Whitcomb
,
J. D.
, “
Strain Energy Release Rate Analysis of Cyclic Delamination Growth in Compresively Loaded Laminates
,”
Effects of Defects in Composite Materials
, ASTM STP 836.
American Society for Testing and Materials
,
Philadelphia
,
1984
, p. 175.
14.
Whitcomb
,
J. D.
, “
Analysis of Instability-Related Growth of a Through-Width Delamination
,”
NASA TM 86301
,
National Aeronautics and Space Administration
,
Washington, DC
,
09
1984
.
15.
Chai
,
H.
, “
The Growth of Impact Damage in Compressively Loaded Laminates
,” Ph.D. dissertion,
California Institute of Technology
, Pasadena, CA,
03
1982
.
16.
Sallam
,
S.
and
Simitses
,
G. J.
, “
Delamination Buckling and Growth of Flat Cross-Ply Laminates
,”
Composite Structures
, Vol.
4
,
1985
, p. 361.
17.
El-Denussi
,
A. K.
and
Webber
,
J. P.H.
, “
Blister Delamination Analysis in Fiber Reinforced Plastics Using Beam-Column Theory with an Energy Release Rate Criterion
,”
Composite Structures
, Vol.
5
,
1986
, p. 125.
18.
Rothschilds
,
R. J.
, “
Characterization of Delamination in Thermoset and Thermoplastic Laminated Composites
,” Master's thesis,
University of Delaware
, Newark, DE,
08
1986
.
19.
Williams
,
J. F.
,
Stouffer
,
D. C.
,
Illic
,
S.
, and
Jones
,
R.
, “
An Analysis of Delamination Behaviour
,”
Composite Structures
, Vol.
5
,
1986
, p. 203.
20.
Wang
,
S. S.
,
Zahlan
,
N. M.
, and
Suemasu
,
J.
, “
Compressive Stability of Delaminated Random Short-Fiber Composites, Part II—Modeling and Methods of Analysis
,”
Journal of Composite Materials
 0021-9983, Vol.
19
,
1985
, p. 296.
21.
Wang
,
S. S.
,
Zahlan
,
N. M.
, and
Suemasu
,
J.
, “
Compressive Stability of Delaminated Random Short-Fiber Composites, Part II—Experimental and Analytical Results
,”
Journal of Composite Materials
 0021-9983, Vol.
19
,
1985
, p. 317.
22.
Johnson
,
W. S.
and
Mangalgiri
,
P. D.
, “
Influence of the Resin on Interlaminar Mixed-Mode Fracture
,”
NASA Technical Memorandum
 87571,
National Aeronautics and Space Administration
,
Washington, DC
,
07
1985
.
23.
Ashton
,
J. E.
and
Whitney
,
J. M.
, “
Theory of Laminated Plates
,”
Technomic
,
1970
, p. 29.
24.
Brush
,
D. O.
and
Almroth
,
B. L.
,
Buckling of Bars, Plates, and Shells
,
McGraw-Hill
,
New York
,
1975
, p. 13.
25.
Gillespie
,
J. W.
, Jr.
,
Carlsson
,
L. A.
,
Pipes
,
R. B.
,
Rothschilds
,
R. J.
,
Trethewey
,
B. R.
, and
Smiley
,
A. J.
, “
Delamination Growth in Composite Materials
,” NASA Contractor Report NAG-1-475,
National Aeronautics and Space Administration
, Washington, DC,
1985
.
26.
Russell
,
A. J.
and
Street
,
K. N.
, “
Factors Affecting the Interlaminar Fracture Energy of Graphite/Epoxy Laminates
,”
Progress in Science and Engineering of Composites
,
Hayashi
T.
,
Kawata
K.
, and
Umekawa
S.
, Eds.,
ICCM-IV
,
Tokyo
,
10
1982
, p. 279.
27.
Carlsson
,
L. A.
,
Gillespie
,
J. W.
, Jr.
, and
Trethewey
,
B. R.
, “
Mode II Interlaminar Fracture of Graphite/Epoxy and Graphite/PEEK
,”
Journal of Reinforced Plastics and Composites
 0731-6844, Vol.
5
,
1986
, p. 170.
28.
Gillespie
,
J. W.
, Jr.
,
Carlsson
,
L. A.
, and
Smiley
,
A. J.
, “
Rate Dependent Mode I Interlaminar Crack Growth Mechanisms in Graphite/Epoxy and Graphite/PEEK
,”
Composites Science and Technology
 0266-3538, Vol.
28
,
1987
, p. 1.
29.
Liebowitz
,
H.
and
Eftis
,
J.
, “
On Nonlinear Effect in Fracture Mechanics
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
3
,
1971
, p. 267.
30.
Eftis
,
J.
,
Jones
,
D. L.
, and
Liebowitz
,
J.
, “
On Fracture Toughness in the Nonlinear Range
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
7
,
1975
, p. 991.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal