Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Low Cycle Fatigue
By
HD Solomon
HD Solomon
1
General Electric Corporate Research and Development Center
,
Schenectady, New York
;
symposium chairman and co-editor
Search for other works by this author on:
GR Halford
GR Halford
2
NASA-Lewis Research Center
,
Cleveland, Ohio
;
co-editor
Search for other works by this author on:
LR Kaisand
LR Kaisand
3
General Electric Corporate Research and Development Center
,
Schenectady, New York
;
symposium chairman and co-editor
Search for other works by this author on:
BN Leis
BN Leis
4
Battelle Columbus Laboratories
,
Columbus, Ohio
;
co-editor
Search for other works by this author on:
ISBN-10:
0-8031-0944-X
ISBN:
978-0-8031-0944-5
No. of Pages:
1307
Publisher:
ASTM International
Publication date:
1988

The fatigue lives of 1070 steel (Class U wheel steel) under (1) isothermal loading, (2) thermo-mechanical constant amplitude loading, and (3) thermo-mechanical block loading have been examined. Fatigue lives for these three cases were compared based on the same mechanical strain range and maximum temperature level, with similar strain rates. Predictions of thermo-mechanical block loading cases were nonconservative based on isothermal data, while the predictions improved to within a factor of 1.5 of experimental lives when thermo-mechanical constant amplitude data were utilized.

Oxide scales readily formed at high temperatures (>500°C) and resulted in increased damage due to a localized high strain state and an inherent lack of ductility. Oxides of different composition and morphology form depending on the temperature and type of loading. Stratified and non-stratified oxide layers (predominantly Fe3O4) were identified in the experiments.

1.
Kuwabara
,
W.
and
Nitta
,
A.
, “
Effect of Strain Hold-Time of High Temperature on Thermal Fatigue Behavior of Type 304 Stainless Steel
,” in
Proceedings
,
1976 ASME — MPC Symposium on Creep-Fatigue Interaction
,
Curran
R. M.
, Ed.,
12
1976
, pp. 161-177.
2.
Kawamoto
,
M.
,
Tanaka
,
T.
, and
Nakajima
,
H.
, “
Effect of Several Factors on Thermal Fatigue
,”
Journal of Materials
, Vol.
1
, No.
4
,
1966
, pp. 719-758.
3.
Lundberg
,
L.
and
Sandstrom
,
R.
, “
Application of Low Cycle Fatigue Data to Thermal Fatigue Cracking
,”
Scandinavian Journal of Metallurgy
, Vol.
11
, No.
2
,
1982
.
4.
Jaske
,
C.
, “
Thermal-Mechanical, Low-Cycle Fatigue of AISI 1010 Steel
,” in
Thermal Fatigue of Materials and Components
, ASTM STP 612,
Spera
D.
and
Mowbray
D.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1976
, pp. 170-198.
5.
Udoguchi
,
T.
and
Wada
,
T.
, “
Thermal Effect on Low-Cycle Fatigue Strength of Steels
,”
Thermal Stresses and Thermal Fatigue
,
Littler
D. J.
, Ed.,
Butterworths
,
London
,
1971
, pp. 109-123.
6.
Kuwabara
,
K.
and
Nitta
,
A.
, “
Thermal-Mechanical Low-Cycle Fatigue under Creep-Fatigue Interactions on Type 304 Stainless Steels
,”
Fatigue of Engineering Materials and Structures
, Vol.
2
,
1979
, pp. 293-304.
7.
Leis
,
B.
,
Hopper
,
A.
,
Ghadiali
,
N.
,
Jaske
,
C.
, and
Hulbert
,
G.
, “
An Approach to Life Prediction of Domestic Gas Furnace Clam Shell Type Heat Exchangers
,”
Thermal Stresses in Severe Environments
,
Hasselman
and
Heller
, Eds.,
Plenum Press
,
New York
,
1980
, pp. 207-228.
8.
Taira
,
S.
,
Fujino
,
M.
, and
Ohtani
,
R.
, “
Collaborative Study on Thermal Fatigue Properties of High Temperature Alloys in Japan
,”
Fatigue of Engineering Materials and Structure
, Vol.
1
,
1979
, pp. 495-508.
9.
Baron
,
H. G.
, “
Thermal Shock and Thermal Fatigue
,”
Thermal Stress
,
Benham
and
Hoyle
, Eds.,
Pitman
,
New York
,
1964
, pp. 182-206.
10.
Halford
,
G. R.
and
Manson
,
S. S.
, “
Life Predictions of Thermal-Mechanical Fatigue Using Strain Range Partitioning
,” in
Thermal Fatigue of Materials and Components
, ASTM STP 612,
Spera
D.
and
Mowbray
D.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1976
, pp. 239-254.
11.
Sehitoglu
,
H.
and
Karasek
,
M.
, “
Observations of Material Behavior under Isothermal and Thermo-Mechanical Loading
,”
Journal of Engineering Materials and Technology, Transactions of ASME
, Vol.
108
,
1986
, pp. 192-198.
12.
Caplan
,
D.
and
Cohen
,
M.
, “
Effect of Cold Work on the Oxidation of Iron from 400–650°C
,”
Corrosion Science
, Vol.
6
,
1966
, p. 321.
13.
Mackenzie
,
J.
and
Birchenall
,
C.
, “
Plastic Flow of Iron Oxides and the Oxidation of Iron
,”
Corrosion
, Vol.
13
, No.
12
,
1957
, p. 783.
14.
Price
,
W. R.
, “
On the Effect of Cold Work on the Oxidation of Iron from 400° to 650°C
,”
Corrosion Science
, Vol.
7
,
1967
, p. 473.
15.
Manning
,
M. E.
, “
Geometrical Effects on Oxide Scale Integrity
,”
Corrosion Science
, Vol.
21
, No.
4
,
1981
, p. 301.
16.
Bruce
,
D.
and
Hancock
,
P.
, “
Influence of Specimen Geometry on the Growth and Mechanical Stability of Surface Oxides Formed on Iron and Steel in the Temperature Range 570°–800°C
,”
Journal of the Iron and Steel Institute
,
11
1970
, p. 1021.
17.
Bruce
,
D.
and
Hancock
,
P.
, “
Mechanical Properties and Adhesion of Surface Oxide Films on Iron and Nickel Measured During Growth
,”
Journal of the Institute of Metals
, Vol.
94
,
1969
, p. 148.
18.
Caplan
,
D.
,
Sproule
,
G.
,
Hussey
,
R.
, and
Graham
,
M.
, “
Oxidation of Fe-C Alloys at 500°C
,”
Oxidation of Metals
, Vol.
12
, No.
1
,
1978
, p. 67.
19.
Caplan
,
D.
,
Sproule
,
G.
,
Hussey
,
R.
, and
Graham
,
M.
, “
Oxidation of Fe-C Alloys at 700°C
,”
Oxidation of Metals
, Vol.
13
, No.
3
,
1979
, p. 255.
20.
Malik
,
A.
and
Whittle
,
D.
, “
Oxidation of Fe-C Alloys in the Temperature Range 600–850°C
,”
Oxidation of Metals
, Vol.
16
, Nos.
5/6
,
1981
, p. 339.
21.
Skelton
,
R.
, “
Environmental Crack Growth in 0.5Cr-Mo-V Steel During Isothermal High Strain Fatigue and Temperature Cycling
,”
Materials Science and Engineering
, Vol.
35
, No.
2
,
1978
, pp. 287-298.
22.
Skelton
,
R.
and
Bucklow
,
J.
, “
Cyclic Oxidation and Crack Growth During High Strain Fatigue of Low Alloy Steel
,”
Metal Science
,
02
1978
, p. 64.
23.
Sehitoglu
,
H.
, “
Constraint Effect in Thermo-Mechanical Fatigue
,”
Journal of Engineering Materials and Technology, Transactions of ASME
, Vol.
107
,
1985
, pp. 221-226.
24.
Morrow
,
JoDean
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,” in
Internal Friction, Damping, and Cyclic Plasticity
, ASTM STP 378,
American Society for Testing and Materials
,
Philadelphia
,
1965
, pp. 45-87.
25.
Berling
,
J. T.
and
Conway
,
J. B.
, “
Effect of Hold Time on the Low-Cycle Fatigue Resistance of 304 Stainless Steel at 1200°F
,” in
Proceedings
,
First International Conference on Pressure Vessel Technology
,
ASME
, Vol.
2
,
1969
.
26.
Rezai-Aria
,
F.
,
Rémy
,
L.
,
Herman
,
C.
, and
Dambrine
,
B.
in
Proceedings
,
Mechanical Behaviour of Materials-IV
,
Carlsson
J.
and
Ohlson
N. G.
, Eds.,
Pergamon Press
,
Oxford
,
1984
, Vol.
I
, pp. 247-253.
27.
Rémy
,
L.
,
Rezai-Aria
,
F.
,
Danzer
,
R.
, and
Hoffelner
,
W.
, “
Evaluation of Life Prediction Methods in High Temperature Fatigue
,” this publication, pp. 1115-1132.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal