Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry
By
RB Adamson
RB Adamson
1
General Electric Company
,
Pleasanton, California
;
symposium chairman and co-editor
Search for other works by this author on:
LFP Van Swam
LFP Van Swam
2
Exxon Nuclear Company, Inc.
,
Richland, Washington
;
symposium editorial chairman and co-editor
Search for other works by this author on:
ISBN-10:
0-8031-0935-0
ISBN:
978-0-8031-0935-3
No. of Pages:
846
Publisher:
ASTM International
Publication date:
1987

The object of the present work is to study the load and strain cyclic behavior of Zircaloy-4 in the temperature range 573 to 873 K. Load cyclic tests are performed at 673 and 873 K for different values of R = σmin/σmax, keeping σmax and the load rate constant at each temperature. At 873 K the lifetime and the cyclic creep rate show a time-dependent behavior, with the mean strain being activated by the mean stress. For zero values of the mean stress (R = −1) no appreciable net strain accumulation occurs and failure by fatigue precedes failure by cyclic creep. At 673 K the mean strain is activated by the mean stress only in the range 1 > R > 0. In the 0 > R > −1 range the cyclic creep becomes faster on decreasing the mean stress up to some R value between −0.9 and −1. This effect is consistent with a dislocation model where the substructure formed in tension is unstable when the loading direction is reversed.

Strain-controlled cyclic tests with a total strain rate of 0.01 and a strain rate of 2 × 10−3s −1 are also carried out in the range 573 to 873 K. The peak tensile stress response during strain cycling shows a cyclic hardening behavior in the range 623 to 823 K. In the region 673 to 743 K this effect is more prominent and the hysteresis loops are nearly independent of temperature and strain rate. This phenomenon and the well-defined cell structure observed by transmission electron microscopy are attributed to strain aging. Below and above this temperature region (at 573 and 873 K) the total stress range remains approximately the same after a few cycles up to near fracture. The dislocation structures observed at both temperatures are consistent with the lack of cyclic hardening or softening.

1.
O'Donnell
,
W. J.
and
Langer
,
B. F.
,
Nuclear Science and Engineering
, Vol.
20
,
1964
, pp. 1-12.
2.
Hosbons
,
R. R.
in
Fatigue at Elevated Temperatures
, ASTM STP 520.
American Society for Testing and Materials
,
Philadelphia
,
1973
, pp. 482-490.
3.
Snowden
,
K. U.
and
Stathers
,
P. A.
,
Scripta Metallurgica
, Vol.
7
,
1973
, pp. 1097-1100.
4.
Petterson
,
K.
,
Journal of Nuclear Materials
, Vol.
56
,
1975
, pp. 91-102.
5.
Lee
,
D.
and
Hill
,
P. T.
,
Journal of Nuclear Materials
, Vol.
60
,
1976
, pp. 227-230.
6.
Snowden
,
K. U.
and
Stathers
,
P. A.
,
Journal of Nuclear Materials
, Vol.
67
,
1977
, pp. 215-228.
7.
Fidleris
,
V.
in
Applications-Related Phenomena for Zirconium and Its Alloys
, ASTM STP 458,
American Society for Testing and Materials
,
Philadelphia
,
1969
, pp. 1-17.
8.
Veevers
,
K.
,
Rotsey
,
W. B.
, and
Snowden
,
K. U.
in
Applications-Related Phenomena for Zirconium and Its Alloys
, ASTM STP 458,
American Society for Testing and Materials
,
Philadelphia
,
1969
, pp. 194-209.
9.
Kelly
,
P. M.
and
Smith
,
P. D.
,
Journal of Nuclear Materials
, Vol.
46
,
1973
, pp. 23-34.
10.
Thorpe
,
W. R.
and
Smith
,
I. O.
,
Journal of Nuclear Materials
, Vol.
80
,
1979
, pp. 35-42.
11.
Derep
,
J. L.
,
Ibrahim
,
S.
,
Rouby
,
R.
, and
Fantozzi
,
G.
,
Acta Metallurgica
, Vol.
28
,
1980
, pp. 607-619.
12.
De Money
,
F. W.
and
Lazan
,
B. J.
in
Proceedings
,
American Society for Testing and Materials
, Vol.
54
,
1954
, pp. 769-782.
13.
Tilly
,
G. P.
,
Proceedings of the Institution of Mechanical Engineers
,
London
, Vol.
180
,
1966
, pp. 403-413.
14.
Tilly
,
G. P.
,
Proceedings of the Institution of Mechanical Engineers
,
London
, Vol.
180
,
1966
, pp. 1045-1054.
15.
Oldroyd
,
P. W. J.
and
Radon
,
J. C.
,
Fatigue of Engineering Materials and Structures
, Vol.
1
,
1979
, pp. 297-306.
16.
Turner
,
A. P. L.
and
Martin
,
T. J.
,
Metallurgical Transactions A
, Vol.
11A
,
1980
, pp. 475-481.
17.
Boček
,
M.
,
Journal of Nuclear Materials
, Vol.
82
,
1979
, pp. 60-64.
18.
Boček
,
M.
and
Hoffmann
,
M.
,
Journal of Nuclear Materials
, Vol.
125
,
1984
, pp. 1-6.
19.
Laird
,
C.
,
Fatigue and Microstructure
,
ASM Materials Science Seminar, American Society for Metals
,
1978
, pp. 149-203.
20.
Handfield
,
L.
and
Dickson
,
J. I.
in
Proceedings
,
5th International Conference on Fracture
,
Pergamon Press
,
Oxford
,
1981
, pp. 1411-1418.
21.
Stevenson
,
R.
and
Breedis
,
J. F.
,
Acta Metallurgica
, Vol.
23
,
1975
, pp. 1419-1429.
22.
Keusseyan
,
R. L.
,
Hu
,
C. P.
, and
Li
,
C. Y.
,
Journal of Nuclear Materials
, Vol.
80
,
1979
, pp. 390-392.
23.
Hasegawa
,
T.
,
Yakou
,
T.
, and
Karashima
,
S.
,
Materials Science and Engineering
, Vol.
20
,
1975
, pp. 267-276.
24.
Hasegawa
,
T.
,
Yakou
,
T.
,
Akashi
,
H.
, and
Karashima
,
S.
,
Transactions of the Japanese Institute of Metals
, Vol.
19
,
1978
, pp. 129-137.
25.
Hancock
,
J. R.
and
Grosskreutz
,
J. C.
,
Acta Metallurgica
, Vol.
17
,
1969
, pp. 77-97.
26.
Rapperport
,
E. J.
and
Hartley
,
C. S.
,
Transactions of the Metallurgical Society
, AIME, Vol.
218
,
1960
, pp. 869-876.
27.
Bailey
,
J. E.
,
Journal of Nuclear Materials
, Vol.
7
,
1962
, pp. 300-310.
28.
Kuhlmann-Wilsdorf
,
D.
and
Laird
,
C.
,
Materials Science and Engineering
, Vol.
27
,
1977
, pp. 137-156.
29.
Carson
,
K. R.
and
Weertman
,
J.
,
Transactions of the Metallurgical Society
, AIME, Vol.
242
,
1968
, pp. 1413-1418.
30.
Baldwin
,
D. H.
and
Reed-Hill
,
R. E.
,
Transactions of the Metallurgical Society
, AIME, Vol.
242
,
1968
, pp. 661-669.
31.
Alvarez-Armas
,
I.
,
Armas
,
A. F.
, and
Boček
,
M.
, to be published.
32.
Abdel-Raouf
,
H.
,
Plumtree
,
A.
, and
Topper
,
T. H.
,
Metallurgical Transactions
, Vol.
5
,
1974
, pp. 267-277.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal