Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Skiing Trauma and Safety: Sixth International Symposium
By
CD Mote, Jr Jr
CD Mote, Jr Jr
1
University of California
?
Berkeley, CA 94720
;
editor
Search for other works by this author on:
RJ Johnson
RJ Johnson
2
University of Vermont
?
Burlington, VT 05405
;
editor
Search for other works by this author on:
ISBN-10:
0-8031-0936-9
ISBN:
978-0-8031-0936-0
No. of Pages:
355
Publisher:
ASTM International
Publication date:
1987

This paper describes the design and performance evaluation of a second generation integral binding/dynamometer. To reduce cross-sensitivity, the dynamometer consists of seven elastic elements that are designed to offer minimal mechanical coupling. Through judicious location of the elements and interconnection of strain gages fixed to the elements, the dynamometer signals indicate the generalized loading (that is, six load components) between the boot and ski. Dynamometer elements are contained within the housing of the binding. The housing is fixed to the ski using a technique that makes the dynamometer readings immune to ski flexure. Accuracy checks of the dynamometer under a variety of loadings have documented its ability to consistently resolve forces to within 10% and moments to within 5%.

The binding mechanism can be activated either manually or electrically. Electrical actuation is accomplished by means of a solenoid; manual operation is facilitated by locating manual controls to the front rather than the rear of the boot. To insure that the binding releases when the solenoid is energized, a special mechanism isolates the force, which the solenoid must overcome, from the variable contact forces developed between the boot and binding. By means of laboratory testing under loading typical of release conditions, the reliability of the mechanism to decouple the boot from the ski has been established.

1.
Lieu
,
D. K.
and
Mote
,
C. D.
, Jr.
, “
An Electronic Ski Binding Design with Biofeedback
,”
International Conference on Medical Devices and Sports Equipment
,
American Society of Mechanical Engineers
,
New York
,
1980
, pp. 9-14.
2.
Hull
,
M. L.
and
Allen
,
K.
, “
Design of an Actively Controlled Snow Ski Release Binding
,”
Journal of Biomechanical Engineering
, Vol.
103
, No.
3
,
1981
, pp. 138-145.
3.
Hull
,
M. L.
, “
A Survey of Actively Controlled Snow Ski Bindings
,”
Ski Trauma and Skiing Safety: Fifth International Symposium
, STP 860,
American Society for Testing and Materials
,
Philadelphia
,
1985
, pp. 238-257.
4.
MacGregor
,
D.
,
Hull
,
M. L.
, and
Dorius
,
L. K.
, “
A Microcomputed-Based Snow Ski Binding System: I. Design and Performance Evaluation
,”
Journal of Biomechanics
, Vol.
18
, No.
4
,
1985
, pp. 255-265.
5.
Hull
,
M. L.
and
Davis
,
R. R.
, “
Measurement of Foot-Pedal Loads During Bicycling: I. Instrumentation
,”
Journal of Biomechanics
, Vol.
14
, No.
12
,
1981
, pp. 443-457.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal