Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Toughened Composites
By
NJ Johnston
NJ Johnston
1
NASA-Langley Research Center
,
Hampton, VA; symposium chairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-0934-2
ISBN:
978-0-8031-0934-6
No. of Pages:
495
Publisher:
ASTM International
Publication date:
1987

Both literature review data and new data on toughness behavior of seven matrix and adhesive systems in four types of tests were studied to assess the influence of the resin on interlaminar fracture. Mixed-mode (that is, various combinations of opening Mode I [GI] and shearing Mode II [GII]) fracture toughness data showed that the mixed-mode relationship for failure appears to be linear in terms of GI and GII. The study further indicates that fracture of brittle resins is controlled by the GI component, and that fracture of many tough resins is controlled by total strain energy release rate GT. Regarding the relation of polymer structure and the mixed-mode fracture: high Mode I toughness requires resin dilatation; dilatation is low in unmodified epoxies at room temperature/dry conditions; dilatation is higher in plasticized epoxies, heated epoxies, and in modified epoxies; modification improves Mode II toughness only slightly compared with Mode I improvements. Analytical aspects of the cracked lap shear test specimen were explored. Geometric nonlinearity must be addressed in calculating the GI/GII ratio. The ratio varies with matrix modulus, which in turn varies with moisture and temperature.

1.
Irwin
,
G. R.
, “
Fracture Mechanics
,” in
Structural Mechanics
,
Goodier
and
Hoff
, Eds.,
Pergamon Press
,
New York
,
1960
, p. 557.
2.
Ripling
,
E. J.
,
Mostovoy
,
S.
, and
Patrick
,
R. L.
, “
Application of Fracture Mechanics to Adhesive Joints
,” in
Adhesion
, ASTM STP 360,
American Society for Testing and Materials
,
1964
.
3.
Mostovoy
,
S.
and
Ripling
,
E. J.
, “
Fracture Toughness of an Epoxy System
,”
Journal of Applied Polymer Science
, Vol.
10
,
1966
, pp. 1351-1371.
4.
Bascom
,
W. D.
,
Cottington
,
R. L.
, and
Timmons
,
C. O.
, “
Fracture Reliability of Structural Adhesives
,”
Journal of Applied Polymer Science: Applied Polymer Symposium
32
,
1977
, pp. 165-188.
5.
Wilkins
,
D. J.
, “
A Comparison of the Delamination and Environmental Resistance of a Graphite-Epoxy and a Graphite-Bismaleimide
,” NAV-GD-0037,
Naval Air Systems Command
,
09
1981
(DTIC ADA-112474).
6.
Ashizawa
,
M.
, “
Improving Damage Tolerance of Laminated Composites Through the Use of New Tough Resins
,” in
Proceedings of the 6th Conference on Fibrous Composites in Structural Design
, AMMRC MS 83-2,
Army Materials and Mechanics Research Center
,
Watertown, MA
,
11
1983
, pp. IV-21.
7.
Mall
,
S.
and
Johnson
,
W. S.
, “
Characterization of Mode I and Mixed-Mode Failure of Adhesive Bonds Between Composite Adherends
,” NASA TM 86355,
Washington, DC
,
02
1985
(also in
Composite Materials: Testing and Design (Seventh Conference)
, ASTM STP 893,
Whitney
J. M.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1986
, pp. 322-336.
8.
O'Brien
,
T. K.
, “
Characterization of Delamination Onset and Growth in a Composite Laminate
,” in
Damage in Composite Materials
, ASTM STP 775,
Reifsnider
K. L.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1982
, pp. 140-167.
9.
Brussat
,
T. R.
,
Chiu
,
S. T.
, and
Mostovoy
,
S.
, “
Fracture Mechanics for Structural Adhesive Bonds
,” AFML-TR-77-163,
Air Force Materials Laboratory
,
OH
,
1977
.
10.
Mall
,
S.
,
Johnson
,
W. S.
, and
Everett
,
R. A.
, Jr.
, “
Cyclic Debonding of Adhesively Bonded Composites
,” in
Adhesive Joints
,
Mittle
K. L.
, Ed.,
Plenum Press
,
New York
,
1984
, pp. 639-658.
11.
Dattaguru
,
B.
,
Everett
,
R. A.
, Jr.
,
Whitcomb
,
J. D.
, and
Johnson
,
W. S.
, “
Geometrically Non-Linear Analysis of Adhesively Bonded Joints
,”
Journal of Engineering Materials and Technology
, Vol.
106
,
01
1984
, pp. 59-65.
12.
Russell
,
A. J.
, “
On the Measurement of Mode II Interlaminar Fracture Energies
,”
DREP Materials Report
82-0,
Defense Research Establishment Pacific
, Victoria, BC,
1982
.
13.
Rybicki
,
E. F.
and
Kanninen
,
M. F.
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
9
, No.
4
,
1977
, pp. 931-939.
14.
Jordan
,
W. M.
and
Bradley
,
W. L.
, “
Micromechanisms of Fracture in Toughened Graphite-Epoxy Laminates
,” in this volume, pp. 95-114.
15.
O'Brien
,
T. K.
, “
Mixed Mode Strain-Energy-Release Rate Effects on Edge Delamination of Composites
,” in
Effects of Defects in Composite Materials
, ASTM STP 836,
American Society for Testing and Materials
,
Philadelphia
,
1984
, pp. 125-142.
16.
Murri
,
G. B.
and
O'Brien
,
T. K.
, “
Interlaminar GIIc Evaluation of Toughened-Resin Matrix Composites using the End-Notched Flexure Test
,”
Proceedings of 26th AIAA/ASME/ASCE/AHS Structural Dynamics and Materials Conference
, Part I, pp. 197-202.
17.
Russell
,
A. J.
and
Street
,
K. N.
, “
Moisture and Temperature Effects on the Mixed-Mode Delamination Fracture of Unidirectional Graphite/Epoxy
,” in
Delamination and Debonding of Materials
, ASTM STP 876,
Johnson
W. S.
, Ed.,
American Society of Testing and Materials
,
Philadelphia
,
1985
, pp. 349-370.
18.
Law
,
G. E.
and
Wilkins
,
D. J.
, “
Delamination Failure Criteria for Composite Structures
,” NAV-GD-0053,
Naval Air Systems Command
,
Washington, DC
,
15
05
1984
.
19.
Jurf
,
R. A.
and
Pipes
,
R. B.
, “
Interlaminar Fracture of Composite Materials
,”
Journal of Composite Materials
, Vol.
16
, No.
5
,
09
1982
, pp. 386-394.
20.
Hunston
,
D. L.
and
Bascom
,
W. D.
, “
Effects of Lay-Up, Temperature, and Loading Rate in Double Cantilever Beam Tests of Interlaminar Crack Growth
,”
Composites Technology Review
, Vol.
5
, No.
4
, Winter
1983
, pp. 118-119.
21.
Hunston
,
D. L.
, “
Composite Interlaminar Fracture: Effect of Matrix Fracture Energy
,”
Composites Technology Review
, Vol.
6
, No.
4
, Winter
1984
, pp. 176-180.
22.
O'Brien
,
T. K.
,
Johnston
,
N. J.
,
Morris
,
D. H.
, and
Simonds
,
R. A.
, “
Determination of Interlaminar Fracture Toughness and Fracture Mode Dependence of Composites using the Edge Delamination Test
,” in
Proceedings of the International Conference on Testing, Evaluation, and Quality Control of Composites
,
Feest
T.
, Ed.,
Butterworths
,
London
,
1983
, pp. 223-232.
23.
Russell
,
A. J.
and
Street
,
K. N.
, “
The Effect of Matrix Toughness on Delamination: Static and Fatigue Fracture Under Mode II Shear Loading of Graphite Fiber Composites
,” in this volume, pp. 275-294.
24.
Ramkumar
,
R. L.
and
Whitcomb
,
J. D.
, “
Characterization of Mode I and Mixed-Mode Delamination Growth in T300/5208 Graphite/Epoxy
,” in
Delamination and Debonding of Materials
, ASTM STP 876,
Johnson
W. S.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1985
, pp. 315-335.
25.
Augl
,
J. M.
, “
Moisture Effects on the Mechanical Properties of Hercules 3501-6 Epoxy Resin
,” NSWC TR 79-41,
Naval Surface Weapons Center
,
Silver Springs, MD
,
30
03
1979
.
26.
Chai
,
H.
, “
Bond Thickness Effect in Adhesive Joints and Its Significance for Mode I Interlaminar Fracture of Composites
” in
Composite Materials: Testing and Design (Seventh Conference)
, ASTM STP 893,
Whitney
J. M.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1986
, pp. 209-231.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal