Skip Nav Destination
ASTM Selected Technical Papers
Fracture Mechanics: Fifteenth Symposium
By
RJ Sanford
RJ Sanford
1Department of Mechanical Engineering,
University of Maryland
, College Park, Maryland
; symposium chairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-0208-9
ISBN:
978-0-8031-0208-8
No. of Pages:
771
Publisher:
ASTM International
Publication date:
1984
eBook Chapter
Dynamic Crack Branching—A Photoelastic Evaluation
By
M Ramulu
,
M Ramulu
1
Research Assistant Professor, Professor, and Graduate Student
, respectively, Department of Mechanical Engineering, University of Washington
, Seattle, Wash. 98195
.
Search for other works by this author on:
AS Kobayashi
,
AS Kobayashi
1
Research Assistant Professor, Professor, and Graduate Student
, respectively, Department of Mechanical Engineering, University of Washington
, Seattle, Wash. 98195
.
Search for other works by this author on:
BS-J Kang
BS-J Kang
1
Research Assistant Professor, Professor, and Graduate Student
, respectively, Department of Mechanical Engineering, University of Washington
, Seattle, Wash. 98195
.
Search for other works by this author on:
Page Count:
19
-
Published:1984
Citation
Ramulu, M, Kobayashi, A, & Kang, B. "Dynamic Crack Branching—A Photoelastic Evaluation." Fracture Mechanics: Fifteenth Symposium. Ed. Sanford, R. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 : ASTM International, 1984.
Download citation file:
A necessary and sufficient condition for crack branching based on a crack branching stress intensity factor, KIb, accompanied by a minimum characteristic distance of rc is proposed. This crack branching criterion is evaluated by dynamic photoelastic experiments involving crack branching of six single-edged notch specimens and six wedge-loaded rectangular double cantilever beam specimens. Consistent crack branching at KIb = 2.04 MPa√m and rc = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by this crack branching criterion agreed well with those measured in the crack branching experiments.
References
1.
Yoffe
, E. H.
, Philosophical Magazines
, Vol. 42
, 1951
, pp. 739-750.2.
Achenbach
, J. D.
, “Elasto Dynamic Stress Intensity Factors for a Bifurcated Crack
,” in Prospects of Fracture Mechanics
, Sih
G. C.
et al, Eds., Noordhoff
, Leyden, The Netherlands
, 1974
, pp. 319-336.3.
Achenbach
, J. D.
, Journal of Elasticity
, Vol. 9
, No. 2
, 1979
, pp. 113-129.4.
Anthony
, S. R.
and Congleton
, J.
, Metal Science Journal
0026-0681, No. 2
, 1968
, pp. 158-160.5.
Congleton
, J.
, “Practical Application of Crack Branching Measurements
,” in Dynamic Crack Propagation
, Sih
G. C.
, Ed., Noordhoff
, Leyden, The Netherlands
, 1973
, pp. 427-438.6.
Irwin
, G. R.
in Fast Fracture and Crack Arrest
, ASTM STP 627, American Society for Testing and Materials
, 1977
, pp. 7-18.7.
Rossmanith
, H. P.
, “Crack Branching in Brittle Materials, Part I
,” Photomechanics Laboratory Report
, University of Maryland
, College Park, 1977–1980.8.
Kobayashi
, A. S.
, Wade
, B. G.
, Bradley
, W. B.
, and Chiu
, S. T.
, Engineering Fracture Mechanics
0013-7944, Vol. 6
, No. 1
, 1974
, pp. 81-92.9.
Irwin
, G. R.
, Dally
, J. W.
, Kobayashi
, T.
, Fourney
, W. L.
, Etheridge
, M. J.
, and Rossmanith
, H. P.
, Experimental Mechanics
, Vol. 19
, No. 4
, 1979
, pp. 121-128.10.
Kobayashi
, A. S.
and Ramulu
, M.
, Experimental Mechanics
, Vol. 21
, No. 1
, 1981
, pp. 41-48.11.
Craggs
, J. W.
, Journal of the Mechanics and Physics of Solids
0022-5096, Vol. 8
, 1960
, pp. 66-75.12.
Döll
, W.
, International Journal of Fracture
, Vol. 11
, 1975
, pp. 184-186.13.
Hahn
, G. T.
, Hoagland
, R. G.
, and Rosenfield
, A. R.
, “Crack Branching in A 533B Steel
,” in Fracture 1977
, Vol. 2
, University of Waterloo Press
, Ontario
, 1977
, pp. 1333-1338.14.
Kobayashi
, T.
and Dally
, J. W.
in Fast Fracture and Crack Arrest
, ASTM STP 627, American Society for Testing and Materials
, 1977
, pp. 257-273.15.
Kerkhoff
, F.
, Dynamic Crack Propagation
, Sih
G. C.
, Ed., Noordhoff
, Leyden, The Netherlands
, 1973
, pp. 3-35.16.
Schardin
, H.
, “Velocity Effects in Fracture
,” in Fracture
, Averbach
B. L.
et al, Eds., Wiley
, New York
, 1959
, pp. 297-330.17.
Acloque
, P.
, Silicate Industrials
, Vol. 28
, 1963
, p. 323.18.
Clark
, A. B. J.
and Irwin
, G. R.
, Experimental Mechanics
, Vol. 6
, 1966
, pp. 321-330.19.
Sih
, G. C.
, “Dynamic Crack Problems: Strain Energy Density Fracture Theory
,” Elastodynamic Crack Problems
, Vol. 4
, Sih
G. C.
, Ed., Noordhoff
, Leyden, The Netherlands
, 1977
, pp. 17-37.20.
Kitagawa
, H.
, Yuuki
, R.
, and Ohira
, T.
, Engineering Fracture Mechanics
0013-7944, Vol. 7
, 1975
, pp. 515-529.21.
Kalthoff
, J. F.
, “On the Propagation of Bifurcated Cracks
,” in Dynamic Crack Propagation
, Sih
G. C.
, Ed., Noordhoff
, Leyden, The Netherlands
, 1973
, pp. 449-458.22.
Christie
, D. G.
, Journal of the Society of Glass Technology
, Vol. 36
, 1952
, pp. 74-89.23.
Ramulu
, M.
and Kobayashi
, A. S.
, Experimental Mechanics
, Vol. 23
, No. 1
, 1983
, pp. 1-9.24.
Freund
, L. B.
, “Dynamic Crack Propagation
,” in Mechanics of Fracture
, Vol. 19
, Erdogan
F.
, Ed., ASME
, 1976
, pp. 105-134.25.
Streit
, R.
and Finnie
, I.
, Experimental Mechanics
, Vol. 20
, No. 1
, 1980
, pp. 17-23.26.
Bradley
, W. B.
, “A Photoelastic Investigation of Dynamic Brittle Fracture
,” Ph.D. dissertation, University of Washington
, Seattle, 1969
.27.
Nakasa
, K.
and Takei
, H.
, Engineering Fracture Mechanics
0013-7944, Vol. 11
, 1979
, pp. 739-751.28.
Lee
, M. H.
, “Dynamic Photoelastic Analysis of a Compression Double Cantilever Beam Specimen
,” M.Sc. Thesis, University of Washington
, Seattle, 1975
.29.
Dally
, J. W.
, Experimental Mechanics
, Vol. 19
, No. 10
, 1979
, pp. 349-367.30.
Romaniv
, O. N.
, Nikiforchin
, G. N.
, Student
, A. G.
, and Tsirul'nik
, A. T.
, Soviet Materials Science
, 07
1982
, pp. 30-40.
This content is only available via PDF.
You do not currently have access to this chapter.
Email alerts
Related Chapters
Ductile Crack Bifurcation and Arrest in Pressurized Pipe
Fracture Mechanics: Nineteenth Symposium
Dynamic Delamination Crack Propagation in a Graphite/Epoxy Laminate
Composite Materials: Fatigue and Fracture
Effect of Loading Rate on Dynamic Fracture of Reaction Bonded Silicon Nitride
Fracture Mechanics: Seventeenth Volume
Dynamic Growth of an Antiplane Shear Crack in a Rate-Sensitive Elastic-Plastic Material
Elastic-Plastic Fracture: Second Symposium, Volume I—Inelastic Crack Analysis
Related Articles
Dynamic Crack Propagation and Its Interaction With Micro-Cracks in an Impact Problem
J. Eng. Mater. Technol (January,2021)
Dynamic Versus Quasi-Static Analysis of Crack Propagation in Soft Materials
J. Appl. Mech (December,2022)