Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fracture Mechanics: Fifteenth Symposium
By
RJ Sanford
RJ Sanford
1Department of Mechanical Engineering,
University of Maryland
,
College Park, Maryland
;
symposium chairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-0208-9
ISBN:
978-0-8031-0208-8
No. of Pages:
771
Publisher:
ASTM International
Publication date:
1984

Attachment lugs are frequently used in aerospace applications to connect major structural components. It is important to assess the structural integrity of such lugs with cracks present. These assessments are necessary to prevent abrupt failure of the lugs before their intended service lives are reached. The estimation of the associated fatigue life of a lug, which consists of crack initiation and crack growth periods, demands stress and fracture analyses of the lug. In this paper, the results of two-dimensional stress and fracture analyses of tapered attachment lugs subjected to symmetric and off-axis loadings are presented. The effects of various parameters such as the outer-to-inner diameter ratio, crack length, and crack location on the tangential stress distribution, pin contact pressure distribution, stress concentration factor, fatigue critical location, and stress intensity factor are investigated. The finite element method utilizing a crack-tip singularity element is used in the analyses.

1.
Airplane Damage Tolerance Requirements
,” MIL-A-83444,
Air Force Aeronautical Systems Division
,
07
1974
.
2.
Larsson
,
S. E.
, “
The Development of a Calculation Method for the Fatigue Strength of Lugs and a Study of the Test Results for Lugs of Aluminum Alloys
,” in
Fatigue Design Procedures
,
ICAF Symposium
,
International Committee of Aeronautical Fatigue
,
Munich, Germany
,
1969
, pp. 309-339.
3.
Moon
,
J. E.
and
Edwards
,
P. R.
, “
Fatigue Behavior of Pin Loaded Lugs in BS 2L65 Aluminum Alloy
,” Reports and Memoranda No. 3834,
RAE Farnborough
, Hants,
11
1977
.
4.
Moon
,
J. E.
, “
Fatigue Behavior of BS 2L65 Aluminum Alloy Pin Loaded Lugs with Interference Fit Bushes
,” Reports and Memoranda No. 3835,
RAE Farnborough
, Hants,
11
1977
.
5.
Buch
,
A.
, “
Comparison of Fatigue Behavior of 2024-T3 and 7075-T6-Al-Alloy Lugs—Part I
,” TAE No. 365,
Technion Israel Institute of Technology
,
05
1979
.
6.
Schijve
,
J.
, “
Fatigue of Lugs
,” in
Contributions to the Theory of Aircraft Structures
,
Prof. A. Van der Neut Anniversary Volume
,
Nijgh-Wolters Noordhoff United Press
,
1972
, pp. 423-440.
7.
Larsson
,
N.
, “
Fatigue Testing of Transversely Loaded Aluminum Lugs
,” TN FFA HU-1673,
The Aeronautical Research Institute of Sweden
,
Stockholm, Sweden
,
10
1977
.
8.
Larsson
,
N.
, “
Fatigue Testing of Transversely Loaded Aluminum Lugs—Sequence II
,” TN FFA HU-1848,
The Aeronautical Research Institute of Sweden
,
Stockholm, Sweden
,
04
1978
.
9.
Larsson
,
N.
, “
Fatigue Testing of Slender Aluminum Lugs
,” TN FFA HU-1990,
The Aeronautical Research Institute of Sweden
,
Stockholm, Sweden
,
08
1978
.
10.
Liu
,
A. F.
and
Kan
,
H. P.
, “
Test and Analysis of Cracked Lugs
,” in
Fracture 1977
, Vol.
3
, ICF4,
Waterloo
,
Canada
, 19–24 June 1977, pp. 657-664.
11.
Kirkby
,
W. T.
and
Rooke
,
D. P.
, “
A Fracture Mechanics Study of Residual Strength of Pin-Loaded Specimens
,”
Fracture Mechanics in Engineering Practice
,
Applied Scientific Publ.
,
London
,
1977
, p. 339.
12.
Brussat
,
T. R.
, “
Stress Intensity Formulas for Structural Applications
,” LR 29412,
Lockheed-California Co.
,
Burbank, Calif.
,
04
1981
.
13.
Cartwright
,
D. J.
and
Rooke
,
D. P.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
6
,
1974
, pp. 563-571.
14.
Hsu
,
T. M.
,
Journal of Aircraft
 0021-8669, Vol.
18
, No.
9
,
09
1981
, pp. 755-760.
15.
Pian
,
T. H. H.
,
Mar
,
J. W.
,
Orringer
,
O.
, and
Stalk
,
G.
, “
Numerical Computation of Stress Intensity Factors for Aircraft Structural Details by the Finite Element Method
,” AFFDL-TR-76-12,
Air Force Flight Dynamics Laboratory, Wright Patterson AFB
,
Ohio
,
05
1976
.
16.
Zatz
,
I. J.
,
Eidinoff
,
H. L.
, and
Armen
,
H.
, “
An Application of the Energy Release Rate Concept to Crack Growth in Attachment Lugs
,” in
Proceedings
,
22nd AIAA/ASME/ASCE Structures, Structural Dynamics and Materials Conference
,
Atlanta, Ga.
,
04
1981
.
17.
James
,
L. A.
and
Anderson
,
W. E.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
1
,
1969
, pp. 565-568.
18.
Schijve
,
J.
and
Hoeymakers
,
A. H. W.
, “
Fatigue Crack Growth in Lugs and the Stress Intensity Factor
,” Report LR-273,
Delft University of Technology
, Delft, The Netherlands,
07
1978
.
19.
Wanhill
,
R. J. H.
, “
Calculation of Stress Intensity Factors for Corner Cracking in a Lug
,”
Fracture Mechanics Design Methodology
, AGARD CP221,
02
1978
, p. 8.
20.
Bueckner
,
H. F.
,
Zeitschrift für Angewandte Mathematik und Mechanik
, Vol.
51
,
1971
, pp. 97-109.
21.
Impellizzeri
,
L. F.
and
Rich
,
D. L.
in
Fatigue Crack Growth under Spectrum Loads
, ASTM STP 595,
American Society for Testing and Materials
,
1976
, pp. 320-336.
22.
Jones
,
R.
and
Callinan
,
R. J.
,
International Journal of Fracture
, Vol.
17
,
1981
, pp. R53-R55.
23.
Schijve
,
J.
,
Jacobs
,
F. A.
, and
Meulman
,
A. F.
, “
Flight Simulation Fatigue Tests on Lugs with Holes Expanded According to the Split-Sleeve Cold Working Method
,” NLR TR 78131 U,
National Aerospace Laboratory ULR
,
The Netherlands
,
09
1978
.
24.
Hsu
,
T. M.
and
Kathiresan
,
K.
, in
Fracture Mechanics: Fourteenth Symposium—Volume I: Theory and Analysis
, ASTM STP 791,
American Society for Testing and Materials
,
1983
, pp. I-172-I-193.
25.
Chu
,
C. S.
 et al
, “
Finite Element Computer Program to Analyze Cracked Orthotropic Sheets
,” NASA-CR-2698,
Washington, D.C.
,
07
1976
.
26.
Gross
,
B.
,
Srawley
,
J. W.
, and
Brown
,
W. F.
, “
Stress Intensity Factors for a Single-Edge-Notch Tension Specimen by Boundary Collocation of a Stress Function
,” NASA-TN-D-2395,
Washington, D.C.
,
08
1964
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal