Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fractography of Ceramic and Metal Failures
By
JJ Mecholsky, Jr Jr
JJ Mecholsky, Jr Jr
1
Sandia National Laboratories
,
Albuquerque, New Mexico
;
symposium chairman and editor
Search for other works by this author on:
SR Powell, Jr Jr
SR Powell, Jr Jr
2
Bell Helicopter Company
,
Ft. Worth, Texas
;
symposium chairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-0215-1
ISBN:
978-0-8031-0215-6
No. of Pages:
426
Publisher:
ASTM International
Publication date:
1984

The mist region near the fracture origin was studied in a series of soda-limesilica float glass specimens ranging in strength from about 30 to 90 MPa. Both the mirror/mist and the mist/hackle radii were measured to ascertain the dependence of the width of the mist region on the strength level. The mirror/mist constant was found to be 1.80 ± 0.15 MN/m3/2 and the mist/hackle constant to be 2.42 ± 0.16 MN/m3/2. Both analytically and experimentally, the width of the mist region was found to be inversely related to the square of the fracture stress; that is, (Wmist) is proportional to (1/σf2). This suggests a dependence of the mist region width on the elastic strain energy at fracture initiation.

The surface topography of the mist region was analyzed by a scanning electron microscopy computerized contour mapping technique to determine the surface roughness within the mist region. It was observed that the average root-mean-square roughness in the mist region was proportional to the fracture stress squared. This suggests that the fracture surface roughness of the mist region, or alternatively the true surface area of the mist region, is also determined by the stored elastic strain energy in the specimen before fracture.

It is concluded that the mist region width and the mist region roughness are both determined by a strain energy criterion. It is suggested that they may be related through a generalized mist region parameter.

1.
Govila
,
R. K.
,
Beardmore
,
P.
, and
Kinsman
,
K. R.
in
Fractography and Materials Science
, ASTM STP 733,
American Society for Testing and Materials
,
1981
, pp. 225-245.
2.
Mecholsky
,
J. J.
, Jr.
and
Freiman
,
S. W.
in
Fracture Mechanics Applied to Brittle Materials
, ASTM STP 678,
American Society for Testing and Materials
,
1979
, pp. 136-150.
3.
Kirchner
,
H. P.
and
Gruver
,
R. M.
in
Fracture Mechanics of Ceramics
, Vol.
3
,
Plenum Press
,
New York
,
1978
, pp. 365-378.
4.
Abdel-Latif
,
A. I. A.
,
Bradt
,
R. C.
, and
Tressler
,
R. E.
,
International Journal of Fracture
, Vol.
13
, No.
31
,
1977
, pp. 349-359.
5.
Terao
,
N.
,
Journal of the Physical Society of Japan
 0031-9015, Vol.
8
,
1953
, pp. 545-549.
6.
Levengood
,
W. C.
,
Journal of Applied Physics
 0021-8979, Vol.
29
, No.
5
,
1958
, pp. 820-826.
7.
Shand
,
E. B.
,
Journal of the American Ceramic Society
 0002-7820, Vol.
42
, No.
10
,
1959
, pp. 747-749.
8.
Kerper
,
M. J.
and
Scuderi
,
T. G.
,
Bulletin of the American Ceramic Society
 0002-7812, Vol.
43
, No.
9
,
1964
, pp. 622-625.
9.
Johnson
,
J. W.
and
Holloway
,
D. G.
,
Philosophical Magazine
 1478-6435, Vol.
14
, No.
130
,
1966
, pp. 731-743.
10.
Shinkai
,
N.
and
Hara
,
M.
,
Asahi Research Reports
, Vol.
19
, No.
2
,
1969
, pp. 73-84.
11.
Orr
,
L.
,
Materials Research and Standards
, Vol.
12
, No.
1
,
1972
, pp. 21-23, 47.
12.
Mecholsky
,
J. J.
, Jr.
,
Rice
,
R. W.
, and
Freiman
,
S. W.
,
Journal of the American Ceramic Society
 0002-7820, Vol.
57
, No.
10
,
1974
, pp. 440-443.
13.
Shinkai
,
N.
,
Japanese Journal of Applied Physics
, Vol.
14
, No.
1
,
1975
, pp. 147-148.
14.
Johnson
,
J. W.
and
Holloway
,
D. G.
,
Philosophical Magazine
 1478-6435, Series 8, Vol.
17
, No.
149
,
1968
, pp. 899-910.
15.
Congleton
,
J.
and
Petch
,
N. J.
,
Philosophical Magazine
 1478-6435, Vol.
16
, No.
142
,
1967
, pp. 749-760.
16.
Kobayashi
,
A. S.
,
Wade
,
B. G.
,
Bradley
,
W. B.
, and
Chiu
,
S. T.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
6
, No.
1
,
1974
, pp. 81-92.
17.
Aoki
,
S.
and
Sakata
,
M.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
13
, No.
3
,
1980
, pp. 491-499.
18.
Abdel-Latif
,
A. I. A.
,
Bradt
,
R. C.
, and
Tressler
,
R. E.
in
Fractography and Materials Science
, ASTM STP 733,
American Society for Testing and Materials
,
1981
, pp. 259-270.
19.
Lebiedzik
,
J.
and
White
,
E. W.
in
Scanning Electron Microscopy/1975 (Part 1)
,
Proceedings of 8th SEM Symposium
,
IITRI
,
Chicago
,
04
1975
, pp. 181-188.
20.
Lebiedzik
,
J.
,
Edwards
,
R.
, and
Phillips
,
B.
in
Scanning Electron Microscopy/1979 (Part II)
,
SEM Inc., AMF O'Hare
,
Ill.
, pp. 61-66.
21.
Lebiedzik
,
J.
,
Scanning
 0161-0457, Vol.
2
, No.
4
,
1979
, pp. 230-237.
22.
Mecholsky
,
J. J.
, Jr.
,
Freiman
,
S. W.
, and
Rice
,
R. W.
,
Journal of Materials Science
 0022-2461, Vol.
11
, No.
7
,
1976
, pp. 1310-1319.
23.
Mecholsky
,
J. J.
, Jr.
,
Freiman
,
S. W.
, and
Rice
,
R. W.
in
Fractography in Failure Analysis
, ASTM STP 645,
American Society for Testing and Materials
,
1978
, pp. 363-379.
24.
Freiman
,
S. W.
in
Glass: Science and Technology
, Vol.
5
,
Uhlmann
D. R.
and
Kreidl
N. J.
, Eds.,
Academic Press
,
New York
,
1980
, pp. 21-78.
25.
Wiederhorn
,
S. M.
,
Journal of the American Ceramic Society
 0002-7820, Vol.
52
, No.
2
,
1969
, pp. 99-105.
26.
Shinkai
,
N.
,
Bradt
,
R. C.
, and
Rindone
,
G. E.
,
Journal of the American Ceramic Society
 0002-7820, Vol.
64
, No.
7
,
1981
, pp. 426-430.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal