Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Elastic-Plastic Fracture: Second Symposium, Volume I—Inelastic Crack Analysis
By
CF Shih
CF Shih
1
Division of Engineering, Brown University
,
Providence, R.I. 02912
;
symposium chairman and editor
.
Search for other works by this author on:
JP Gudas
JP Gudas
2
David Taylor Naval Ship Research and Development Center
,
Annapolis, Md. 21401
;
symposium chairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-0727-7
ISBN:
978-0-8031-0727-4
No. of Pages:
770
Publisher:
ASTM International
Publication date:
1983

It is thought that creep recovery may be one of the main causes of acceleration of crack growth rates under variable loads. To explore this possibility, the effects of creep recovery and hardening on the near-tip fields are examined in this paper. Robinson's constitutive relation, which is based on the Bailey-Orowan model, is used to take these effects into account. In this model, the strain rate is proportional to the nth power of an effective stress, which is the difference between applied stress and internal stress. The rate of the internal stress is given by the difference between a hardening term and a recovery term, which are proportional to the strain rate divided by the βth power of the internal stress and the (nβ)th power of the internal stress, respectively.

It is found that the Hutchinson-Rice-Rosengren-type singular fields prevail near a creep crack tip irrespective of the combination of the material parameters n and β. When β < n − 1, the “steady-state creep conditions” prevail near the crack tip; when β > n − 1, the “initial-state creep conditions” prevail, under which the internal stress is small compared with the applied stress.

The intensities of the singular stress and strain-rate fields are obtained rigorously for the case of β = n − 1. For the case of β < n − 1 and β > n − 1, the intensities are estimated by using a hypothesized path independence of the J-integral or the C*-integral. For any combination of n and β, the intensity of strain rate is very high immediately after load increase. Then the strain rate decreases and approaches its steady-state value. On the other hand, for load decrease the strain rate is low immediately after load decrease, and increases until it attains the steady-state value.

From a survey of the values of n and β, the case of β < n − 1 seems to be prevailing for metallic creep. In this case C* can be a characterizing parameter of the near-tip fields. The observed acceleration and deceleration of crack growth rates under variable loads are found to be explained by the present analysis.

1.
Ohji
,
K.
,
Theoretical and Applied Mechanics, Proceedings
,
27th Japan National Congress for Applied Mechanics
,
1977
, Vol.
27
, 1979, pp. 3-20.
2.
Van Leeuwen
,
H. P.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
9
, No.
4
,
1977
, pp. 951-974.
3.
Siverns
,
M. J.
and
Price
,
A. T.
,
International Journal of Fracture
, Vol.
9
, No.
2
,
1973
, pp. 199-207.
4.
Nikbin
,
K. M.
,
Webster
,
G. A.
, and
Turner
,
C. E.
in
Cracks and Fracture
, ASTM STP 601,
American Society for Testing and Materials
,
1976
, pp. 47-62.
5.
Landes
,
J. D.
and
Begley
,
J. A.
in
Mechanics of Crack Growth
, ASTM STP 590,
American Society for Testing and Materials
,
1976
, pp. 128-148.
6.
Ohji
,
K.
,
Ogura
,
K.
, and
Kubo
,
S.
, Japan Society of Mechanical Engineers Preprint No. 740-11,
1974
, pp. 207-210.
7.
Ohji
,
K.
,
Ogura
,
K.
, and
Kubo
,
S.
,
Transactions
,
Japan Society of Mechanical Engineers
, Vol.
42
,
1976
, pp. 350-358.
8.
Koterazawa
,
R.
and
Mori
,
T.
,
Journal of Engineering Materials and Technology, Transactions
, American Society of Mechanical Engineers, Vol.
99
, No.
4
,
1977
, pp. 298-305.
9.
Ohji
,
K.
,
Ogura
,
K.
,
Kubo
,
S.
, and
Katada
,
Y.
,
Engineering Aspects of Creep
, Vol.
2
,
Institution of Mechanical Engineers
,
1980
, pp. 9-16.
10.
Taira
,
S.
,
Ohtani
,
R.
, and
Kitamura
,
T.
,
Journal of Engineering Materials and Technology, Transactions
, American Society of Mechanical Engineers, Vol.
101
, No.
2
,
1979
, pp. 154-161.
11.
Taira
,
S.
,
Ohtani
,
R.
, and
Komatsu
,
T.
,
Journal of Engineering Materials and Technology, Transactions
, American Society of Mechanical Engineers, Vol.
101
, No.
2
,
1979
, pp. 162-167.
12.
Saito
,
H.
,
Ohji
,
K.
,
Ogura
,
K.
,
Kubo
,
S.
, and
Fukumoto
,
M.
, Japan Society of Mechanical Engineers Preprint No. 804-2,
1980
, pp. 64-67.
13.
Koterazawa
,
R.
and
Mori
,
T.
,
Engineering Aspects of Creep
, Vol.
1
,
Institution of Mechanical Engineers
,
1980
, pp. 219-224.
14.
Hutchinson
,
J. W.
,
Journal of the Mechanics and Physics of Solids
 0022-5096, Vol.
16
, No.
1
,
1968
, pp. 13-31.
15.
Hutchinson
,
J. W.
,
Journal of the Mechanics of Physics of Solids
 0022-5096, Vol.
16
, No.
5
,
1968
, pp. 337-347.
16.
Rice
,
J. R.
and
Rosengren
,
G. F.
,
Journal of the Mechanics and Physics of Solids
 0022-5096, Vol.
16
, No.
1
,
1968
, pp. 1-12.
17.
Rice
,
J. R.
,
Journal of Applied Mechanics, Transactions
, American Society of Mechanical Engineers, Vol.
34
, No.
2
,
1967
, pp. 287-298.
18.
Ohji
,
K.
,
Ogura
,
K.
, and
Kubo
,
S.
,
Transactions
, Japan Society of Mechanical Engineers, Vol.
44
, No.
382
,
1978
, pp. 1831-1838.
19.
Goldman
,
N. L.
and
Hutchinson
,
J. W.
,
International Journal of Solids and Structures
 0020-7683, Vol.
11
, No.
5
,
1975
, pp. 575-591.
20.
Shih
,
C. F.
and
Hutchinson
,
J. W.
,
Journal of Engineering Materials and Technology, Transactions
, American Society of Mechanical Engineers, Vol.
98
, No.
4
,
1976
, pp. 289-295.
21.
Hutchinson
,
J. W.
,
Needleman
,
A.
, and
Shih
,
C. F.
,
Fracture Mechanics
,
Perrone
N.
,
Liebowitz
H.
,
Mulville
D.
, and
Pilkey
W.
, Eds.,
University Press of Virginia
,
Charlottesville, Va.
,
1978
, pp. 515-528.
22.
Ohji
,
K.
,
Ogura
,
K.
, and
Kubo
,
S.
,
Transactions
,
Japan Society of Mechanical Engineers
, Series A, Vol.
47
, No. 416,
1981
, pp. 400-406.
23.
Ohji
,
K.
,
Ogura
,
K.
,
Kubo
,
S.
, and
Katada
,
Y.
, Japan Society of Mechanical Engineers Preprint No. 780-9,
1978
, pp. 123-128.
24.
Bailey
,
R. W.
,
Journal of the Institute of Metals
 0020-2975, Vol.
35
,
1926
, pp. 27-40.
25.
Orowan
,
E.
,
Journal of the West of Scotland Iron and Steel Institute
, Vol.
54
,
1946
, pp. 45-53.
26.
Pugh
,
C. E.
and
Robinson
,
D. N.
,
Nuclear Engineering and Design
 0029-5493, Vol.
48
, No.
1
,
1978
, pp. 269-276.
27.
Robinson
,
D. N.
,
Oak Ridge National Laboratory Report
No. TM-5969, Oak Ridge, Tenn.,
1978
.
28.
Mitra
,
S. K.
and
McLean
,
D.
in
Proceedings
,
Royal Society of London
, Vol.
295A
,
1966
, pp. 288-299.
29.
Kubo
,
S.
,
Brown University Report
No. MRL E-133, Providence, R.I.,
1981
.
30.
Lagneborg
,
R.
,
Metal Science Journal
 0026-0681, Vol.
6
,
1972
, pp. 127-133.
31.
Rice
,
J. R.
,
Journal of Applied Mechanics, Transactions
, American Society of Mechanical Engineers, Vol.
35
, No.
2
,
1968
, pp. 379-386.
32.
Riedel
,
H.
and
Rice
,
J. R.
in
Fracture Mechanics
, ASTM STP 700,
American Society for Testing and Materials
,
1980
, pp. 112-130.
33.
Ohji
,
K.
,
Ogura
,
K.
, and
Kubo
,
S.
,
Journal of the Society of Materials Science Japan
, Vol.
29
, No.
320
,
1980
, pp. 465-471.
34.
Bassani
,
J. L.
and
McClintock
,
F. A.
, MIT Report,
Massachusetts Institute of Technology
, Cambridge, Mass.,
1980
.
35.
McLean
,
D.
,
Reports on Progress in Physics
, Vol.
29
, Part 1,
1966
, pp. 1-33.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal