Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Crack Arrest Methodology and Applications
By
GT Hahn
GT Hahn
1
Vanderbilt University
,
Nashville, Tenn. 37235
;
editor
.
Search for other works by this author on:
MF Kanninen
MF Kanninen
2
Battelle Memorial Institute, Columbus Laboratories
,
Columbus, Ohio
;
43201
;
editor
.
Search for other works by this author on:
ISBN-10:
0-8031-0317-4
ISBN:
978-0-8031-0317-7
No. of Pages:
453
Publisher:
ASTM International
Publication date:
1980

Fast crack propagation and arrest have been studied in steel specimens of the double cantilever beam type using three different geometries and either a fixed grip or compliant loading system. A finite-difference computer program was used to measure values of the dynamic stress-intensity factor KD. The relationship between values of KD and KS, the stress-intensity factor for a quasi-statically growing crack depended on the specimen geometry and loading system used.

Stable crack arrest was easier to obtain in the specimens loaded with fixed grips. This probably resulted from the rigidity of the loading system, which produced specimen oscillations after arrest of insufficient magnitude to reinitiate crack growth. An examination of the energy associated with a moving crack suggests that kinetic energy may be reabsorbed to aid further crack propagation but is not all reabsorbed at arrest. The remaining fraction causes oscillations of the cracked specimen halves which may reinitiate the crack, or be damped out as the stress intensity rings down to its static value. Examination of the data suggests that intermediate arrests, characterized by a minimum in the crack length velocity curve, were a common feature of all tests. The stress intensity for crack arrest appeared to depend on specimen geometry.

1.
Hoagland
,
R. G.
,
Rosenfield
,
A. R.
, and
Hahn
,
G. T.
,
Metallurgical Transactions
 0026-086X, Vol.
3
,
1972
, pp. 123-236.
2.
Kobayashi
,
A. S.
,
Emery
,
A. F.
, and
Mall
,
S.
,
Experimental Mechanics
, Vol.
16
, No.
9
,
1976
, pp. 321-328.
3.
Kalthoff
,
J. F.
,
Beinert
,
J.
, and
Winkler
,
S.
in
Fast Fracture and Crack Arrest
, ASTM STP 627,
American Society for Testing Materials
,
1977
, pp. 161-176.
4.
Hahn
,
G. T.
,
Gehlen
,
P. C.
,
Hoagland
,
R. G.
,
Kanninen
,
M. F.
,
Popelar
,
C.
, and
Rosenfield
,
A. R.
, “
Critical Experiments, Measurements and Analyses to Establish a Crack Arrest Methodology for Nuclear Pressure Vessel Steels
,”
Second Quarterly Progress Report, Task Agreement 62
, BMI-1934,
Battelle Columbus Laboratories
, Columbus, Ohio,
05
1975
.
5.
Crosley
,
P. B.
and
Ripling
,
E. J.
in
Fast Fracture and Crack Arrest
, ASTM STP 627,
American Society for Testing and Materials
,
1977
, pp. 203-227.
6.
Gates
,
R. S.
in
Proceedings
,
Symposium on Dynamic Fracture Toughness, The Welding Institute
,
Abingdon, Cambridge, England
,
1976
, p. 293.
7.
Kanninen
,
M. F.
,
International Journal of Fracture
, Vol.
9
, No.
1
,
1973
, pp. 83-92.
8.
Gates
,
R. S.
,
International Journal of Fracture
, Vol.
13
,
1977
, pp. 710-713.
9.
Gates
,
R. S.
in
Proceedings
.
Symposium on Numerical Methods in Fracture Mechanics, University College
,
Swansea, U.K.
, 9–13 Jan. 1978, pp. 834-836.
10.
Kanninen
,
M. F.
,
International Journal of Fracture
, Vol.
10
, No.
3
,
1974
, pp. 415-430.
11.
Shmuely
,
M.
and
Peretz
,
D.
,
International Journal of Solids and Structures
 0020-7683, Vol.
12
,
1976
, pp. 67-78.
12.
Freund
,
L. B.
,
Journal of the Mechanics and Physics of Solids
 0022-5096, Vol.
20
, No.
3
,
1972
, pp. 141-52.
13.
Kanninen
,
M. F.
,
Popelar
,
C.
, and
Gehlen
,
P. C.
in
Fast Fracture and Crack Arrest
, ASTM STP 627,
American Society for Testing and Materials
,
1977
, pp. 19-38.
14.
Hoagland
,
R. G.
,
Rosenfield
,
A. R.
,
Gehlen
,
P. C.
, and
Hahn
,
G. T.
in
Fast Fracture and Crack Arrest
, ASTM STP 627,
American Society for Testing and Materials
,
1977
, pp. 177-202.
15.
Hahn
,
G. T.
,
Gehlen
,
P. C.
,
Hoagland
,
R. G.
,
Kanninen
,
M. F.
,
Popelar
,
C.
,
Rosenfield
,
A. R.
, and
de Campos
,
V. S.
, “
Critical Experiments. Measurements and Analyses to Establish a Crack Arrest Methodology for Nuclear Pressure Vessel Steels
,”
First Annual Progress Report, Task 62
, BMI-1937,
Battelle Columbus Laboratories, Columbus Laboratories
, Columbus, Ohio,
08
1975
.
16.
Kobayashi
,
T.
and
Dally
,
J. W.
in
Fast Fracture and Crack Arrest
, ASTM STP 627,
American Society for Testing and Materials
,
1977
, pp. 257-273.
17.
Yoffe
,
E. H.
,
Philosophical Magazine
 1478-6435, Vol.
42
,
1961
, pp. 739-750.
18.
Baker
,
B. R.
,
Journal of Applied Mechanics
 0021-8936, Vol.
29
,
1962
, pp. 449-458.
19.
Lothe
,
J.
,
Journal of Applied Physics
 0021-8979, Vol.
33
,
1962
, pp. 2116-2125.
20.
Campbell
,
J. D.
and
Harding
,
J.
,
Response of Metals to High Velocity Deformation
,
Interscience Publishers
,
New York
,
1961
, p. 51.
21.
Döll
,
W.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
5
,
1973
, pp. 259-268.
22.
Döll
,
W.
,
International Journal of Fracture
, Vol.
12
,
1976
, pp. 595-605.
23.
Theocaris
,
P. S.
and
Katsamanis
,
F.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
10
,
1978
, pp. 197-210.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal