Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Thermal Fatigue of Materials and Components
By
DA Spera
DA Spera
1
NASA Lewis Research Center
,
editor
Search for other works by this author on:
DF Mowbray
DF Mowbray
2
Mechanics of Materials Unit, Materials and Processes Laboratory, General Electric Company
,
Schenectady, N.Y.
;
symposium cochairman and also coeditor of this publication
.
Search for other works by this author on:
ISBN-10:
0-8031-0586-X
ISBN:
978-0-8031-0586-7
No. of Pages:
270
Publisher:
ASTM International
Publication date:
1976

Calculations of the stress-strain response of a common tapered disk thermal fatigue specimen are presented. The calculations were made by complete nonlinear finite element solution and by a simpler method employing the elastic strain-invariance principle. The results are used to show the effect of several common test variables on the resulting stress-strain response, to assess the effect of various material behavior and structural analysis assumptions on the stress-strain response, and to explore the application of several high-temperature fatigue damage prediction methods to transient thermal fatigue loading.

1.
Glenny
,
E.
, et al
, “
A Technique for Thermal Shock and Thermal Fatigue Testing Based on the Use of Fluidized Solids
,”
Journal of the Institute of Metals
 0020-2975,
1958
, Vol.
87
, pp. 294-302.
2.
Howes
,
M. A. H.
in
Fatigue at Elevated Temperatures
, ASTM STP 520,
American Society for Testing and Materials
,
1973
, pp. 242-254.
3.
Howe
,
P. W. H.
in
Thermal and High-Strain Fatigue
,
The Metals and Metallurgy Trust
,
1967
, pp. 122-141.
4.
Spera
,
D. A.
, “
The Calculation of Thermal Fatigue Life Based on Accumulated Creep Damage
,” NASA TMX-52558,
National Aeronautics and Space Administration
,
1969
.
5.
Mowbray
,
D. F.
and
Woodford
,
D. A.
, “
Observations and Interpretation of Crack Propagation Under Conditions of Transient Thermal Strain
,”
International Conference on Creep and Fatigue
,
Institute of Mechanical Engineers
,
1973
, pp. 179.1-179.11.
6.
Foster
,
A. D.
and
Sims
,
C. T.
,
Metal Progress
,
1969
, pp. 83-95.
7.
Mendelsohn
,
Plasticity: Theory and Application
,
MacMillan
,
New York
,
1968
.
8.
Hunsaker
,
B.
, et al
, “
A Comparison of the Capability of Four Hardening Rules to Predict a Material's Plastic Behavior
,” Report #75-51.
Texas Engineering Experiment Station
,
06
1975
.
9.
Penney
,
R. K.
and
Marriott
,
D. L.
,
Design for Creep
,
McGraw-Hill
,
London
,
1971
.
10.
Manson
,
S. S.
,
Thermal Stress and Low-Cycle Fatigue
,
McGraw-Hill
,
New York
,
1966
.
11.
Topper
,
T. H.
 et al
,
Journal of Materials
 0022-2453, Vol.
4
, No.
1
,
1969
, pp. 200-209.
12.
Hildebrand
,
F. B.
,
Advanced Calculus for Engineers
,
Prentice-Hall
,
Englewood Cliffs, N.J.
,
1949
.
13.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Hirschberg
,
M. H.
, “
Creep-Fatigue Analysis By Strain Range Partioning
,” NASA TMX-67838,
National Aeronautics and Space Administration
,
05
1971
.
14.
Coffin
,
L. F.
, Jr.
,
Journal of Materials
 0022-2453,
1971
, Vol.
6
, pp. 388-402.
15.
Halford
,
G. R.
,
Hirschberg
,
M. H.
, and
Manson
,
S. S.
in
Fatigue at Elevated Temperatures
, ASTM STP 520,
American Society for Testing and Materials
, pp. 658-669.
16.
Coffin
,
L. F.
, Jr.
,
Proceedings
,
Institute for Mechanical Engineers
,
1974
, Vol.
188
, pp. 109-127.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal