Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Irradiation Effects on The Microstructure and Properties of Metals
By
FR Shober
FR Shober
1
Hanford Engineering Development Laboratory, Westinghouse Hanford Company
,
Richland, Wash.
;
symposium chairman
.
Search for other works by this author on:
ISBN-10:
0-8031-0388-3
ISBN:
978-0-8031-0388-7
No. of Pages:
494
Publisher:
ASTM International
Publication date:
1976

The microstructure of cold-worked, high-purity nickel has been investigated following ion-simulated irradiation-induced creep with 22-MeV deuterons and 70-MeV α-particles. The irradiations were conducted at 224°C (435°F), at stresses between 170 and 345 MPa, and at displacement rates between 13 and 30 × 10-8 displacements per atom per second (dpa/s). Transmission electron microscopy (TEM) procedures were used to prepare, observe, and photograph the microstructure of the ion-irradiated uniaxial creep specimens and companion unirradiated specimens. Examination of the ion-irradiated microstructure revealed no substantial differences between the deuteron and α-particle irradiated specimens. In all cases, a heterogeneous distribution of defect clusters or small dislocation loops and network dislocations, or both, were observed. A significant reduction in dislocation density from the unirradiated values was seen for the irradiated specimens. It was found that the small loops and defect clusters provided effective obstacles to dislocation motion as evidenced by the bowing of dislocations between adjacent defects.

The microstructural results were evaluated in terms of the theoretical mechanisms proposed for irradiation-induced creep and the previously reported creep simulation results for nickel by Hendrick et al. A model based on the climb-controlled glide of dislocations over dispersed obstacles was found to be consistent with the microstructural results and the experimental creep data.

1.
Brailsford
,
A. D.
and
Bullough
,
R.
,
Philosophical Magazine
 1478-6435, Vol.
27
,
1973
, p. 49.
2.
Bullough
,
R.
and
Hayns
,
M. E.
,
Journal of Nuclear Materials
 0022-3115, Vol.
57
,
1975
, p. 348.
3.
Heald
,
P. T.
and
Speight
,
M. V.
,
Philosophical Magazine
 1478-6435, Vol.
29
,
1974
, p. 1075.
4.
Wolfer
,
W. G.
and
Ashkin
,
M.
,
Journal of Applied Physics
 0021-8979, to be published.
5.
Wolfer
,
W. G.
and
Ashkin
,
M.
,
Journal of Applied Physics
 0021-8979, Vol.
46
,
1975
, p. 547.
6.
Dollins
,
C. C.
and
Tucker
,
R. P.
,
Journal of Nuclear Materials
 0022-3115, Vol.
52
,
1974
, p. 277.
7.
Brager
,
H. R.
,
Gilbert
,
E. R.
, and
Straalsund
,
J. L.
,
Radiation Effects
 0033-7579, Vol.
21
,
1974
, p. 37.
8.
Buckley
,
S. N.
, “
Irradiation Growth and Irradiation Creep in fcc and bcc Metals
,” AERE-R-5944,
Atomic Energy Research Establishment
, Vol.
2
,
1968
, p. 547.
9.
Bodde
,
D. L.
, “
Irradiation-Induced Stress Relaxation and Creep in Reactor Materials
,” S.M. thesis,
Massachusetts Institute of Technology
, Cambridge, Mass.,
02
1972
.
10.
Harkness
,
S. D.
,
Yaggee
,
F. L.
, and
Nolfi
,
F. V.
, in
Irradiation Embrittlement and Creep in Fuel Cladding and Core Components
,
British Nuclear Energy Society
,
London
,
1972
, p. 259.
11.
Hendrick
,
P. L.
,
Bement
,
A. L.
, Jr.
, and
Harling
,
O. K.
,
Nuclear Instruments and Methods
 0029-554X, Vol.
124
,
1975
, p. 389.
12.
Hendrick
,
P. L.
,
Michel
,
D. J.
,
Pieper
,
A. G.
,
Surratt
,
R. E.
, and
Bement
,
A. L.
, Jr.
in
Proceedings
of International Conference on Radiation Effects and Tritium Technology for Fusion Reactors,
Gatlinburg, Tennessee
,
1975
, to be published.
13.
Hendrick
,
P. L.
, “
Ion Simulated Irradiation-Induced Creep
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, Mass.,
09
1975
.
14.
Hendrick
,
P. L.
,
Michel
,
D. J.
,
Pieper
,
A. G.
,
Surratt
,
R. E.
, and
Bement
,
A. L.
, Jr.
,
Nuclear Instruments and Methods
 0029-554X, Vol.
133
,
1976
, to be published.
15.
Schoone
,
R. D.
and
Fischione
,
E. E.
,
Review of Scientific Instruments
 0034-6748, Vol.
37
,
1966
, p. 1351.
16.
Michel
,
D. J.
,
Moteff
,
J.
, and
Lovell
,
A. J.
,
Acta Metallurgica
 0001-6160, Vol.
21
,
1973
, p. 1269.
17.
Mitchell
,
J. B.
and
Bell
,
W. L.
in
Proceedings
, Thirty-Third Annual Meeting,
Electron Microscopy Society of America, Claitor's Publishing Division
,
Baton Rouge, La.
,
1975
, p. 160.
18.
Edmunson
,
B. E.
and
Williamson
,
G. F.
,
Philosophical Magazine
 1478-6435, Vol.
9
,
1964
, p. 277.
19.
Hendrick
,
P. L.
, “
Proton Simulated Irradiation-Induced Creep
,” S.M. thesis,
Massachusetts Institute of Technology
, Cambridge, Mass.,
02
1974
.
20.
Harkness
,
S. D.
,
Tesk
,
J. A.
, and
Li
,
Che-Yu
,
Nuclear Applications and Technology
, Vol.
9
,
1970
, p. 24.
21.
Harkness
,
S. D.
,
Grappel
,
R.
, and
McDonald
,
S. G.
,
Nuclear Technology
 0029-5450, Vol.
16
,
1972
, p. 25.
22.
Wolfer
,
W. G.
,
Foster
,
J. P.
, and
Garner
,
F. A.
,
Nuclear Technology
 0029-5450, Vol.
16
,
1972
, p. 55.
23.
Wolfer
,
W. G.
and
Boltax
,
A.
in
Irradiation Embrittlement and Creep in Fuel Cladding and Core Components
,
British Nuclear Energy Society
,
London
,
1972
, p. 283.
24.
Brailsford
,
A. D.
and
Bullough
,
R.
,
Journal of Nuclear Materials
 0022-3115, Vol.
54
,
1974
, p. 286.
25.
Sprague
,
J. A.
,
Westmoreland
,
J. E.
,
Smidt
,
F. A.
, Jr.
, and
Malmberg
,
P. R.
,
Journal of Nuclear Materials
 0022-3115, Vol.
54
,
1974
, p. 286.
26.
Wolfer
,
W. G.
,
Scripta Metallurgica
, Vol.
9
,
1975
, p. 801.
27.
Mosedale
,
D.
,
Lewthwaite
,
G. W.
, and
Ramsey
,
I.
in
Irradiation Embrittlement and Creep in Fuel Cladding and Core Components
,
British Nuclear Energy Society
,
London
,
1972
, p. 233.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal