Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Semiconductor Measurement Technology: Spreading Resistance Symposium
By
James R. Ehrstein
James R. Ehrstein
Editor
1Electronic Technology Division, Institute for Applied Technology,
National Bureau of Standards
,
Washington, D.C., 20234
Search for other works by this author on:
ISBN-10:
0-8031-6661-3
ISBN:
978-0-8031-6661-5
No. of Pages:
297
Publisher:
ASTM International
Publication date:
1974

The spreading resistance method is uniquely suitable for the determination of electrical resistivities in a number of situations. However the technique does not simply measure the resistivity beneath the contacts. Considering the two probe configuration, what is actually measured is the ratio ΔV/I. Here ΔV is the difference between the Fermi levels of the probes necessary to maintain the sampling current I. This difference in the Fermi levels of the probes depends on the zero bias resistance of the probe - semiconductor contacts, the effective resistivity of the layers in a multilayer structure, and the configuration of the structure. The zero bias resistance depends on temperature and details of the metal-semiconductor contact including surface history. Effective resistivities enter into the measurement - and not the actual resistivities - because of the fact that the use of pressure probes creates a stress field under the contacts. This field falls off with a characteristic length of the order of the contact radius. Thus piezoresistivity effects - well known for Si - can be operative under the contacts. As a consequence of these various effects the interpretation of what ΔV/I is actually measuring is not straightforward. Practical application of the spreading resistance technique necessitates making certain simplifying assumptions. In light of the various phenomena involved in a spreading resistance measurement it is imperative that the implications of these assumptions to the accuracy of the measurement be understood.

1.
Holm
,
R.
,
Electric Contacts Handbook
,
Springer
, Berlin (
1967
).
2.
Gardner
,
E.E.
,
Hallenback
,
J.F.
, and
Schumann
,
P.A.
,
Solid-St. Electron
 0038-1101,
6
, 311 (
1963
).
3.
Mazur
,
R.G.
and
Dickey
,
D.H.
,
J. Electrochem. Soc.
 0013-4651 
113
, 255 (
1966
).
4.
Gupta
,
D.C.
and
Chan
,
J.Y.
,
Rev. Sci. Instr.
 0034-6748 
41
, 176 (
1970
).
5.
Schumann
,
P.A.
,
Gorey
,
E.F.
, and
Schneider
,
C.P.
,
Solid St. Tech.
 0038-111X 
15
, 50 (
1972
).
6.
Kramer
,
P.
and
Van Ruyven
,
L.
,
Solid St. Electron
 0038-1101,
15
, 757 (
1972
).
7.
Foxhall
,
G.F.
and
Lewis
,
J.A.
,
Bell System Tech. Journal.
 0005-8580 
43
, 1609 (
1964
).
8.
Fonash
,
S.J.
,
Solid St. Electron
 0038-1101,
15
, 783 (
1972
).
9.
Schumann
,
P.A.
and
Gardner
,
E.E.
,
J. Electrochem. Soc: Solid St. Sci.
15
, 87 (
1969
).
10.
Brook
,
P.
and
Smith
,
J.G.
,
Electronics Lett.
 0013-5194,
9
, 253 (
1973
).
11.
Smith
,
C.S.
,
Phys. Rev.
 0031-899X 
94
, 42 (
1954
).
12.
Smith
,
C.S.
,
Solid St. Physics
(
Seitz
F.
and
Turnbull
D.
, Eds.)
6
, 175.
Academic Press, Inc.
N.Y. (
1958
).
13.
Severin
,
P.J.
,
Solid St. Electron.
 0038-1101 
14
, 247 (
1971
).
14.
Kramer
,
P.
and
Van Ruyven
,
L.J.
,
Solid St. Electron.
 0038-1101 
15
, 757 (
1972
).
15.
Kramer
,
P.
and
Van Ruyven
,
L.J.
,
Appl. Phys. Lett.
 0003-6951 
20
, 420 (
1972
)
16.
Fonash
,
S.J.
,
J. Appl. Phys.
 0021-8979,
45
, 496 (
1974
).
17.
Hu
,
S.M.
,
Solid-St. Electron.
 0038-1101 
15
, 809 (
1972
).
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal