Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Progress in Flaw Growth and Fracture Toughness Testing
By
J. G. Kaufman
J. G. Kaufman
1
Aluminum Company of America
Search for other works by this author on:
J. L. Swedlow
J. L. Swedlow
Search for other works by this author on:
H. T. Corten
H. T. Corten
Search for other works by this author on:
J. E. Srawley
J. E. Srawley
Search for other works by this author on:
R. H. Heyer
R. H. Heyer
Search for other works by this author on:
E. T. Wessel
E. T. Wessel
Search for other works by this author on:
G. R. Irwin
G. R. Irwin
Search for other works by this author on:
ISBN:
978-0-8031-6660-8
No. of Pages:
504
Publisher:
ASTM International
Publication date:
1973

The effect of multiple overloads on subsequent fatigue crack propagation in 2024-T3 aluminum alloy specimens was studied, and 1, 2, 10, 100, 1000, and 5000 overload cycle tests were run. Typical tests consisted of running constant ΔK tests where ΔK=15ksiin.(16.5MN/m3/2) and λ=1.05(λ=Kmax/ΔK). The maximum overload level was 50 percent ΔK or Kmax=22.5ksiin.(24.7MN/m3/2). The usefulness of closure concepts in aiding the understanding of fatigue crack propagation due to overloads is considered. Evidence is given to demonstrate the general applicability of closure concepts for analysis of fatigue crack propagation results.

1.
Christensen
,
R. H.
and
Harmon
,
M. B.
in
Fatigue Crack Propagation, ASTM STP 415
,
American Society for Testing and Materials
,
1967
, p. 5.
2.
Paris
,
P. C.
and
Erdogan
,
F.
,
Journal of Basic Engineering
, ASME, Series D of the Transactions of the American Society of Mechanical Engineers,
1963
, p. 528.
3.
von Euw
,
E. F. J.
, “
Effect of Overload Cycle(s) on Subsequent Fatigue Crack Propagation in 2024-T3 Aluminum Alloy
,” Ph.D. thesis,
Lehigh University
, Bethlehem, Pa.
1971
.
4.
Schijve
,
J.
in
Fatigue Crack Propagation, ASTM STP 415
,
American Society for Testing and Materials
,
1967
, p. 415.
5.
Hardrath
,
H. F.
and
McEvily
,
A. T.
,
Proceedings, Crack Propagation Symposium
Vol.
1
,
10
1961
,
Cranfield, England
.
6.
Hudson
,
C. M.
and
Hardrath
,
H. F.
, “
Effects of Changing Stress Amplitude on the Rate of Fatigue Crack Propagation of Two Aluminum Alloys
,”
NASA Technical Note
 D-960,
National Aeronautics and Space Administration
.
7.
Hudson
,
C. M.
and
Raju
,
K. N.
, “
Investigation of Fatigue Crack Growth Under Simple Vairable Amplitude Loading
,”
NASA Technical Note
 D-5702,
National Aeronautics and Space Administration
,
03
1970
.
8.
Schijve
,
J.
and
Broek
,
D.
,
Aircraft Engineering
, Vol.
34
,
1962
, p. 314.
9.
Hudson
,
C. M.
and
Hardrath
,
H. F.
, “
Investigation of Variable Loadings of Fatigue Crack Propagation Patterns
,”
NASA Technical Note
 D-1803,
National Aeronautics and Space Administration
,
1963
.
10.
Christensen
,
R. H.
, “
Fatigue Cracking, Fatigue Damage and Their Detection
,”
Metal Fatigue
,
McGraw-Hill
,
N. Y.
,
1959
.
11.
Elber
,
W.
in
Damage Tolerance in Aircraft Structures, ASTM STP 486
,
American Society for Testing and Materials
,
1971
, p. 230.
12.
Brown
,
W. F.
, Jr.
and
Srawley
,
J. E.
in
Plane Strain Crack Toughness Testing of High-Strength Metallic Materials, ASTM STP 410
,
American Society for Testing and Materials
,
1966
.
13.
Hudson
,
C. M.
, “
Effect of Stress Ratio on Fatigue-Crack Growth in 7075-T6 and 2024-T3 Aluminum Alloy Specimens
,”
NASA Technical Note
 D-5390,
National Aeronautics and Space Administration
,
1969
.
14.
Donaldson
,
D. R.
and
Anderson
,
W. E.
,
Proceedings, Crack Propagation Symposium
, Vol.
1
,
10
1961
,
Cranfield, England
.
15.
Achter
,
M. R.
in
Fatigue Crack Propagation, ASTM STP 415
,
American Society for Testing and Materials
,
1967
, p. 181.
16.
Wei
,
R. P.
,
International Journal of Fracture Mechanics
, Vol.
1
, No.
4
1970
.
17.
Hartman
,
A.
,
International Journal of Fracture Mechanics
, Vol.
1
, No.
3
,
1965
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal