Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Testing for Prediction of Material Performance in Structures and Components
By
RS Shane
RS Shane
1
Staff Scientist
?
National Materials Advisory Board, National Research Council National Academy of Sciences/National Academy of Engineering
?
Washington, D.C. 20418 symposium general chairman
Search for other works by this author on:
ISBN-10:
0-8031-0117-1
ISBN:
978-0-8031-0117-3
No. of Pages:
319
Publisher:
ASTM International
Publication date:
1972

The paper describes the development of nondestructive test methods capable of determining the extent of fatigue damage and providing a means of predicting the future safe life of aerospace materials and structures. The fatigue process of 1100-0 aluminum was studied by means of exoelectron emission and acoustic emission measurements. The exoelectron observations were made in both vacuum and air. The exoelectron emission measurement in vacuum was accomplished by counting the emission events for selected time intervals. The measurements in air were performed using a specially developed current-measuring system with a resolution of 10-15 A. The acoustic emission measurement in air was based on the number of acoustic events occurring in selected time intervals during fatigue. The exoelectron emission curves exhibited an early rapid rise and fall of emission intensity, and again a rapid rise near the end of the test. The initial emission decrease coincided with metallurgically observed changes of surface slipbands. There was also a trend indicative of a stress-independent relationship between the change of exoelectron emission current and the percentage of life after a selected number of fatigue cycles. Analysis of the acoustic emission data showed a marked increase in emission rate in less than 50 percent of the fatigue life of the material.

1.
Thompson
,
N.
,
Wadsworth
,
N. J.
, and
Louat
,
N.
,
Philosophical Magazine
 1478-6435, PHMAA, Vol.
1
,
1956
, p. 113.
2.
Kusenberger
,
F. N.
,
Barton
,
J. R.
, and
Donaldson
,
W. L.
, “
Nondestructive Evaluation of Metal Fatigue
,” AFOSR-64-0668,
1964
.
3.
Kusenberger
,
F. N.
,
Leonard
,
B. E.
,
Pasley
,
R. L.
,
Barton
,
J. R.
, and
Donaldson
,
W. L.
, “
Nondestructive Evaluation of Metal Fatigue
,” AFOSR-66-0648.
1966
.
4.
Gushcha
,
O. I.
, “
Investigation of the Process of Fatigue Destruction of Metals by the Method of Magnetic Hysteresis and Eddy Current Losses
,” FTD-MT-65-421,
1965
.
5.
Shlyapin
,
V. I.
,
Vasserman
,
N. N.
, and
Gladkovskii
,
V. A.
,
Industrial Laboratory
, INDLA, Vol.
33
,
1967
, p. 1336.
6.
Benson
,
R. W.
, et al
, “
Development of Nondestructive Methods for Determining Residual Stresses and Fatigue Damage in Metals
,” Final Report, Contract NAS8-20208,
Robert W. Benson and Associates, Inc
,
1968
.
7.
Chuang
,
K. C.
,
Materials Evaluation
 0025-5327, MAEVA Vol.
26
, No.
6
,
1968
, p. 116.
8.
Hanstock
,
R. F.
,
Proceedings of the Physical Society
, PPSOA, Vol.
59
,
1947
, p. 275.
9.
Hanstock
,
R. F.
,
Journal of the Institute of Metals
 0020-2975, JIMEA, Vol.
83
, 1954–55, p. 11.
10.
Gorshkov
,
G. A.
, and
Postnikov
,
V. S.
,
Russian Metallurgy (Metally)
, RMLVA No.
1
,
1965
, p. 67.
11.
Truell
,
R.
,
Chick
,
B.
,
Picker
,
A.
, and
Anderson
,
G.
, “
The Use of Ultrasonic Methods to Determine Fatigue Effects in Metals
,” WADC TR 59-389,
1959
.
12.
Truell
,
R.
,
Chick
,
B.
,
Anderson
,
G.
,
Elbaum
,
C.
, and
Findley
,
W.
, “
Ultrasonic Methods for the Study of Stress Cycling Effects in Metals
,” WADC TR 60-920,
1961
.
13.
Herlesu
,
T.
,
Bernath
,
A.
, and
Safta
,
V.
,
Revue Roumaine Des Sciences Technique, Series de Metallurgie
, RTMTA, Vol.
12
,
1967
, p. 269.
14.
Barrois
,
W. B.
, “
Manual on Fatigue of Structures—Fundamental and Physical Aspects
,” AGARD-MAN-8-70,
Advisor Group for Aerospace Research and Development, North Atlantic Treaty Organization
,
1970
.
15.
Grosskreutz
,
J. C.
, and
Bensen
,
D. K.
, “
The Emission of Exoelectrons From Aluminum During Fatigue
,” NASA CR-57918,
1963
.
16.
Hempel
,
M.
,
Kochendörfer
,
A.
, and
Tietze
,
A.
,
Archiv fuer das Eisenhüttenwesen
 0003-8962, AREIA, Vol.
35
,
1964
, p. 465.
17.
Krogstad
,
R. S.
, and
Moss
,
R. W.
in
Proceedings of the Symposium on Physics and Nondestructive Testing
,
Dayton, Ohio
, 28–30 Sept. 1965, p. 9.
18.
Bogachev
,
I. N.
,
Mints
,
R. I.
, and
Kortov
,
V. S.
,
Metal Science and Heat Treatment
, MHTRA, July/Aug. 1966, p. 591.
19.
Mints
,
R. I.
, and
Kortov
,
V. S.
,
Russian Metallurgy and Fuels
RMFUA No.
2
,
1967
, p. 90.
20.
Mints
,
R. I.
,
Kortov
,
V. S.
,
Aleksandrov
,
V. L.
, and
Kryuk
,
V. I.
,
Physics of Metals and Metallography
 0031-918X, PHMMA, Vol.
26
,
1968
, p. 681.
21.
Dunegan
,
H. L.
,
Harris
,
D. O.
, and
Tatro
,
C. A.
Engineering Fracture Mechanics
 0013-7944, EFMEA, Vol.
1
,
1968
, p. 105.
22.
Harris
,
D. O.
,
Dunegan
,
H. L.
, and
Tetelman
,
A. S.
in
Symposium of Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials
,
Miami Beach, Florida
, 15–18 Dec. 1969.
23.
Pimbley
,
W. T.
, and
Francis
,
E. E.
,
Journal of Applied Physics
 0021-8979, JAPIA, Vol.
32
,
1961
, p. 1729.
24.
Conrad
,
M. A.
, and
Levy
,
S.
,
Nature
 0028-0836, NATUA, Vol.
189
, p. 887.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal