Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Impact Testing of Metals
By
DE Driscoll
DE Driscoll
1
Chief
, Quality Assurance Division,
Army Materials and Mechanics Research Center
,
Watertown, Mass. 02172
;
symposium chairman
.
Search for other works by this author on:
ISBN-10:
0-8031-0739-0
ISBN:
978-0-8031-0739-7
No. of Pages:
321
Publisher:
ASTM International
Publication date:
1970

Previous studies of the Charpy impact test using instrumented pendulum or anvil with V-noteh steel specimens are reviewed. It is concluded that such results add little to the usefulness of the test since even cleavage fractures are normally well beyond yield. No fracture toughness index emerges other than the simple measure of energy from the pendulum. In a second generation of work, fatigue cracked and side grooved (fcsg) specimens promoted below yield fractures up to about the 50 percent fracture appearance transition temperature (fatt). These results have been analysed by linear fracture mechanics to give the dynamic fracture toughness KID. In this interpretation understanding of the oscillations in load records due to specimen vibration is important. Results are discussed in the light of recent studies including an analog model with which near quantitative agreement is found. An improved simple correction factor for inertia loading effects is presented. It is concluded from both this work and supporting measurements of KID by other techniques that dynamic fracture toughness KID can be measured for low-strength steels using the instrumented fcsg impact test subject to the precautions and corrections discussed. Typical values of KID for mild steel are 60 ksi √in. at 0 C falling to 30 ksi √in. at -60 C. The significance of these low values in relation to the much higher static toughness is discussed briefly.

1.
Körber
,
F.
and
Storp
,
A. A.
, “
Ueber den Einsluss der Probenbreite und der Temperature auf den Kraftterlauf Beim Kerbschlagversach
,”
Mittelugen aus dem Kaiser Wilhelm Institut fuer Eisenforschung
, Vol.
8
,
1926
, p. 8.
2.
Yamada
,
R.
, “
On the Relation Between Stress and Strain in the Impact Test
,”
Japan Society of Mechanical Engineers
, Vol.
31
,
1928
, p. 420.
3.
Watanabe
,
S.
, “
Study on Impact Test by Means of Piezo-Electricity and Cathode-Ray Oscillograph
,”
Scientific Papers of the Institute of Physical and Chemical Research
, Tokyo, Vol.
12
, No.
213
,
1929
, p. 99.
4.
Tanaka
,
M.
and
Umekawa
,
S.
, “
On the Breaking Behaviour in Charpy Impact Bending Tests
,”
Proceedings
, 1st Japan Congress for Testing Materials,
1958
, p. 95.
5.
Ono
,
S.
, “
Micro-Time Structure of Impact Fracture Concerning Charpy Test
,”
Proceeding
, 1st Japan Congress for Testing Materials
1958
, p. 98.
6.
Voloshenko-Klimovitskii
,
Y. Y.
, “
O Vozmozhnoski Razdel'nol Otsenki prochnosti I plastichnosti metallov pxi is pytranii na uda rnuya vyazhost
,”
Izvestiya Akadademiya Nauk, SSSR
, Vol.
32
,
1958
, p. 42.
7.
Sakui
,
S.
,
Nakamura
,
T.
, and
Ohmori
,
M.
, “
Factors Affecting Transition Temperature of Mild Steel; Load-Time Relationship of Notch Bar Impact Bending Test
,”
Tetsu-to-Hagane
, Vol.
1
, No.
1
,
1961
, p. 38.
8.
Augland
,
B.
, “
Fracture Toughness and the Charpy V-Notch Test
,”
British Welding Journal
 0524-6806, Vol.
9
,
1962
, p. 434.
9.
Tardif
,
H. P.
and
Marquis
,
H.
, “
Force-Measurements in the Charpy Impact Test
,”
Canadian Metals Quarterly
Vol.
2
,
1963
, p. 373
(see also
Tardif
,
H. P.
and
Marquis
,
H.
,
Metal Progress
, Vol.
85
, No.
2
,
1964
, pp. 79, 132).
10.
Cotterell
,
B.
, “
Fracture Toughness and the Charpy V-Notch Impact Test
,”
British Welding Journal
 0524-6806, Vol.
9
,
1962
, p. 83.
11.
Winne
,
D. H.
and
Wundt
,
B. M.
, “
Application of the Griffith-Irwin Theory of Crack Propogation to the Bursting Behaviour of Disks, Including Analytical and Experimental Studies
,”
Transactions, American Society of Mechanical Engineers
 0097-6822, Vol.
80
,
1958
, p. 1643.
12.
Fearnehough
,
G. D.
and
Hoy
,
C. J.
, “
Mechanism of Deformation and Fracture in Charpy Test as Revealed by Dynamic Recording of Impact Loads
,”
Journal, Iron and Steel Institute
, Vol.
202
,
1964
, p. 912.
13.
Tanaka
,
M.
and
Nunomura
,
S.
, “
The Relationship Between the Transition Temperature and the Load in the Charpy Impact Test and the Tensile Properties of Steel
,”
Bulletin, Tokyo Institute of Technology
, No.
60
,
1964
, p. 13.
14.
Hendrickson
,
J. A.
,
Wood
,
D. S.
, and
Clark
,
D. S.
, “
Prediction of Transition Temperature in a Notched Bar Impact Test
,”
Transactions, American Society for Metals
, Vol.
51
,
1959
, p. 629.
15.
Nielson
,
A.
, “
Brief Report on Impact Diagram Testing
,”
Dansk Teknisk Tidsskrift
, No.
9
,
1965
.
16.
Stone
,
D. E. W.
and
Turner
,
C. E.
Brittle Behaviour in Laboratory-scale Mechanical Testing
Proceedings, Royal Society A
, Vol.
285
,
1965
, p. 83.
17.
Buys
,
E. C. J.
, “
Instrumentation of the Charpy V-Notch Impact Test
,” Report M67-IR(23)-50705,
Metaalinstitunt TNO
, Delft,
1967
.
18.
Grumbach
,
M.
, “
L'essai Charpy avec Enregistrement
,”
Soudage et Techniques Connexes
, Nov.–Dec. 1967, p. 493.
19.
Van der Toorn
,
L. J.
 et al
, “
Improved Evaluation of Charpy Impact Data
,”
Journal, Iron and Steel Institute
, Vol.
206
,
1968
, p. 50.
20.
Interpretation of the Instrumented Impact Test
,” Document X-458-68,
International Institute of Welding
.
21.
Fearnehough
,
G. D.
and
Nichols
,
R. W.
, “
Fracture Mechanics Considerations in the Charpy Impact Test
,” Document X-410-67E,
International Institute of Welding
.
22.
Kobayaski
,
T.
,
Takai
,
K.
, and
Maniwa
,
H.
, “
Transition Behaviour and Evaluation of Fracture Toughness
,”
Transactions, Iron and Steel Institute of Japan
, Vol.
7
,
1967
, p. 115.
23.
Almond
,
E. A.
and
Embury
,
J. D.
, “
Instrumented Impact Testing of Low-Carbon Steels
,”
Metal Science Journal
 0026-0681, Vol.
2
,
1968
, p. 194.
24.
Kanazawa
,
T.
,
Machida
,
S.
, and
Niimura
,
Y.
, “
Fracture Mechanics Analysis on Instrumented Charpy Test
,” Document X-403-67,
International Institute of Welding
.
25.
Radon
,
J. C.
and
Turner
,
C. E.
, “
Note on the Relevance of Linear Fracture Mechanics to Mild Steel
,”
Journal, Iron and Steel Institute
, Vol.
204
,
1966
, p. 842.
26.
Radon
,
J. C.
and
Turner
,
C. E.
, “
Fracture Toughness Measurements by Instrumented Impact Test
,”
Journal of Engineering Fracture Mechanics
, Vol.
1
, No.
3
,
1969
, p. 165.
27.
Terry
,
P.
, “
The Fracture Toughness of 0.36% Carbon Steel as Revealed by the Instrumented Charpy Impact Test
,” TRG Rep 1776(C),
United Kingdom Atomic Energy Authority, Her Majesty's Stationary Office
,
1969
.
28.
Jones
,
G. T.
and
Turner
,
C. E.
, “
A Fracture Mechanics Interpretation of Low Stress Fractures in Pre-Compressed Mild Steel
,”
Journal, Iron and Steel Institute
, Vol.
205
,
1967
, p. 959.
29.
Eftis
,
J.
and
Krafft
,
J. M.
, “
A Comparison of the Initiation with the Rapid Propagation of Cracks in a Mild Steel
,”
Transactions, American Society of Mechanical Engineers, (B)
, Vol.
187
,
1965
, p. 257.
30.
Ford
,
G.
,
Radon
,
J. C.
, and
Turner
,
C. E.
, “
Fracture Toughness of a Medium-strength Steel
,”
Journal, Iron and Steel Institute
, Vol.
205
,
1967
, p. 854.
31.
Radon
,
J. C.
and
Stock
,
T. A. C.
, “
Fracture Toughness Measurements on Mild Steel
,”
Semi-International Symposium
,
Tokyo
,
1967
,
Japanese Society of Mechanical Engineers
.
32.
Krafft
,
J. M.
, “
Correlation of Plane Strain Crack Toughness with Strain Hardening Characteristics of a Low, Medium and a High Strength Steel
,”
Applied Materials Research
 0570-4847,
04
1964
, p. 88.
33.
Turner
,
C. E.
and
Radon
,
J. C.
, “
Fracture Toughness Measurements on Low-Strength Structural Steels
,”
Fracture 1969 (Proceeding of the 2nd International Conference on Fracture)
.
Chapman and Hall
,
London
.
Turner
,
C. E.
and
Radon
,
J. C.
, “
Fracture Toughness Measurements on Low-Strength Structural Steels
,” Committee Document A77,
Navy Department Advisory Committee on Structural Steel
.
34.
Brown
,
W. F.
, Jr.
, and
Srawley
,
J. E.
,
Plane Strain Crack Toughness Testing of High Strength Metallic Materials
ASTM STP 410,
American Society for Testing and Materials
,
1966
.
35.
Venzi
,
S.
, “
Interpretazione di Alcuni Fenomeni Secondari Connessi con la Prova di Resilienza Strumentata
,”
Istituto di Ricerche Breda
,
Milano
,
1967
.
36.
Venzi
,
S.
,
Priest
,
A. H.
, and
May
,
M. J.
Influence of Inertial Load in Instrumented Impact Tests
,” Report MG/C/85/68,
The Inter-Group Laboratories of the British Steel Corporation
.
37.
Priest
,
A. H.
and
May
,
M. J.
, “
Fracture Toughness Testing in Impact
,” Report MG/C/46/69,
The Inter-Group Laboratories of the British Steel Corporation
.
38.
Kennish
,
P.
, “
An Analogue Computer Model of the Charpy Impact Test
,” Committee Document A/79,
10
1968
,
Navy Department Advisory Committee on Structural Steel
.
39.
Orner
,
G. M.
and
Hartbower
,
C. E.
Precracked Charpy Fracture Toughness Correlations
,” presented at the
ASTM Symposium on Fracture Testing and Applications
,
Chicago
,
06
1964
.
40.
Wells
,
A. A.
, “
Fracture Control of Thick Steels for Pressure Vessels
,”
British Welding Journal
 0524-6806, Vol.
15
,
1968
, p. 221.
41.
Wells
,
A. A.
, “
The Specification of Permissible Defect Sizes in Welded Metal Structures
,”
Fracture 1969 (Proceedings of the 2nd International Congress on Fracture
,
Chapman and Hall
,
London
.
42.
Crosley
,
P. B.
and
Ripling
,
E. J.
Dynamic Fracture Toughness of A533 steel
,” AWS-ASME Metals Engineering Conference,
Chicago
,
04
1968
, to be published in
Journal of Basic Engineering
 0021-9223.
43.
Wessel
,
E. T.
, “
Application of lefm to Steel Pressure Vessels
,”
Symposium on Fracture Toughness Concepts for Weldable Structural Steel
,
United Kingdom Atomic Energy Authority
,
Culcheth
,
04
1969
.
44.
Loss
,
F.
and
Pellini
,
W. S.
, “
Coupling of Fracture Mechanics and Transition Temperature Approaches to Fracture Safe Design
,”
Symposium on Fracture Toughness Concepts for Weldable Structural Steel
,
United Kingdom Atomic Energy Authority
,
Culcheth
,
04
1969
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal