Abstract

Magnetoelectroelastic (MEE) materials and structures have been extensively applied in MEE devices such as sensors and transducers, microelectromechanical systems, and smart structures. In order to assess the strength and durability of such materials and structures, exhaustive theoretical and numerical investigations have been conducted over the past two decades. The main purpose of this paper is to present a state-of-the-art review and a critical discussion on the research in the field of the MEE fracture mechanics. Following an introduction, the basic theory of the fracture mechanics in linear magnetoelectroelasticity is explained with special emphasis on the constitutive equations related to different fracture modes, magnetoelectric (ME) crack-face boundary conditions, and fracture parameters for two-dimensional (2D) plane problems. Then, the state of the art of the research on the fracture mechanics of the MEE materials and structures is reviewed and summarized, including 2D antiplane and in-plane as well as three-dimensional (3D) analyses under both static and dynamic loadings. The magnetoelectric effects on the fracture parameters are revealed and discussed. Moreover, numerical investigations based on the finite element method (FEM), boundary element method (BEM), meshless methods, and other novel methods are also reviewed for 2D plane and 3D fracture problems. Finally, some conclusions are drawn with several prospects to open questions and demanding future research topics. In particular, experimental observations are urgently needed to verify the validity of the theoretical predictions of the various fracture criteria. Another great challenge is to tackle the nonlinear phenomena and domain switching in the fracture process zone.

References

1.
Fiebig
,
M.
,
2005
, “
Revival of the Magnetoelectric Effect
,”
J. Phys. D: Appl. Phys.
,
38
(
8
), pp.
R123
R152
.10.1088/0022-3727/38/8/R01
2.
Nan
,
C. W.
,
Bichurin
,
M. I.
,
Dong
,
S. X.
,
Viehland
,
D.
, and
Srinivasan
,
G.
,
2008
, “
Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions
,”
J. Appl. Phys.
,
103
(
3
), p.
031101
.10.1063/1.2836410
3.
Huang
,
J. H.
, and
Kuo
,
W. S.
,
1997
, “
The Analysis of Piezoelectric/Piezomagnetic Composite Materials Containing Ellipsoidal Inclusions
,”
J. Appl. Phys.
,
81
(
3
), pp.
1378
1386
.10.1063/1.363874
4.
Li
,
R.
, and
Kardomateas
,
G. A.
,
2007
, “
The Mixed Mode I and II Interface Crack in Piezoelectromagneto-Elastic Anisotropic Bimaterials
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
614
627
.10.1115/1.2424468
5.
Hu
,
K. Q.
, and
Li
,
G. Q.
,
2005
, “
Constant Moving Crack in a Magnetoelectroelastic Material Under Anti-Plane Shear Loading
,”
Int. J. Solids Struct.
,
42
(
9–10
), pp.
2823
2835
.10.1016/j.ijsolstr.2004.09.036
6.
Parton
,
V. Z.
,
1976
, “
Fracture Mechanics of Piezoelectric Materials
,”
Acta Astronaut.
,
3
(
9–10
), pp.
671
683
.10.1016/0094-5765(76)90105-3
7.
Gao
,
C. F.
,
Kessler
,
H.
, and
Balke
,
H.
,
2003
, “
Crack Problems in Magnetoelectroelastic Solids. Part II: General Solution of Collinear Cracks
,”
Int. J. Eng. Sci.
,
41
(
9
), pp.
983
994
.10.1016/S0020-7225(02)00324-5
8.
Pak
,
Y. E.
,
1990
, “
Crack Extension Force in a Piezoelectric Material
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
647
653
.10.1115/1.2897071
9.
Wang
,
B. L.
, and
Mai
,
Y. W.
,
2003
, “
Crack Tip Field in Piezoelectric/Piezomagnetic Media
,”
Eur. J. Mech. A - Solids
,
22
(
4
), pp.
591
602
.10.1016/S0997-7538(03)00062-7
10.
Hao
,
T. H.
, and
Shen
,
Z. Y.
,
1994
, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
,”
Eng. Fract. Mech.
,
47
(
6
), pp.
793
802
.10.1016/0013-7944(94)90059-0
11.
Zhong
,
X. C.
, and
Li
,
X. F.
,
2007
, “
Magnetoelectroelastic Analysis for an Opening Crack in a Piezoelectromagnetic Solid
,”
Eur. J. Mech. A - Solids
,
26
(
3
), pp.
405
417
.10.1016/j.euromechsol.2006.08.002
12.
Wang
,
B. L.
, and
Mai
,
Y. W.
,
2007
, “
Applicability of the Crack-Face Electromagnetic Boundary Conditions for Fracture of Magnetoelectroelastic Materials
,”
Int. J. Solids Struct.
,
44
(
2
), pp.
387
398
.10.1016/j.ijsolstr.2006.04.028
13.
Feng
,
W. J.
,
Su
,
R. K. L.
, and
Pan
,
E.
,
2007
, “
Fracture Analysis of a Penny-Shaped Magnetically Dielectric Crack in a Magnetoelectroelastic Material
,”
Int. J. Fract.
,
146
(
3
), pp.
125
138
.10.1007/s10704-007-9150-x
14.
Heyer
,
V.
,
Schneider
,
G. A.
,
Balke
,
H.
,
Drescher
,
J.
, and
Bahr
,
H.-A.
,
1998
, “
A Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelectric PZT-PIC 151 Ceramics
,”
Acta Mater.
,
46
(
18
), pp.
6615
6622
.10.1016/S1359-6454(98)00272-9
15.
Wang
,
T. H.
, and
Zhang
,
T. Y.
,
2001
, “
Electrical Fracture Toughness for Electrically Conductive Deep Notches Driven by Electric Fields in Depoled Lead Zirconate Ceramics
,”
Appl. Phys. Lett.
,
79
(
25
), pp.
4198
4200
.10.1063/1.1427437
16.
Ma
,
P.
,
Su
,
R. K. L.
, and
Feng
,
W. J.
,
2015
, “
Fracture Analysis of an Electrically Conductive Interface Crack With a Contact Zone in a Magnetoelectroelastic Bimaterial System
,”
Int. J. Solids Struct.
,
53
, pp.
48
57
.10.1016/j.ijsolstr.2014.10.024
17.
Zhang
,
T. Y.
,
Zhao
,
M. H.
, and
Gao
,
C. F.
,
2005
, “
The Strip Dielectric Breakdown Model
,”
Int. J. Fract.
,
132
(
4
), pp.
311
327
.10.1007/s10704-005-2054-8
18.
Gao
,
H.
,
Zhang
,
T. Y.
, and
Tong
,
P.
,
1997
, “
Local and Global Energy Release Rates for an Electrically Yielded Crack in a Piezoelectric Ceramic
,”
J. Mech. Phys. Solids
,
45
(
4
), pp.
491
510
.10.1016/S0022-5096(96)00108-1
19.
Zhao
,
M. H.
, and
Fan
,
C. Y.
,
2008
, “
Strip Electric-Magnetic Breakdown Model in a Magnetoelectroelastic Medium
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3441
3458
.10.1016/j.jmps.2008.09.004
20.
Fan
,
C. Y.
, and
Zhao
,
M. H.
,
2011
, “
Nonlinear Fracture of 2D Magnetoelectroelastic Media: Analytical and Numerical Solutions
,”
Int. J. Solids Struct.
,
48
(
16–17
), pp.
2383
2392
.10.1016/j.ijsolstr.2011.04.013
21.
Fang
,
D. N.
,
Zhang
,
Z. K.
,
Soh
,
A. K.
, and
Lee
,
K. L.
,
2004
, “
Fracture Criteria of Piezoelectric Ceramics With Defects
,”
Mater. Mech.
,
36
(
10
), pp.
917
928
.10.1016/j.mechmat.2003.08.011
22.
Fang
,
D.
, and
Liu
,
J.
,
2013
,
Fracture Mechanics of Piezoelectric and Ferroelectric Solids
,
Springer
,
Berlin, Germany
.
23.
Lei
,
J.
, and
Zhang
,
C.
,
2018
, “
A Simplified Evaluation of the Mechanical Energy Release Rate of Kinked Cracks in Piezoelectric Materials Using the Boundary Element Method
,”
Eng. Fract. Mech.
,
188
, pp.
36
57
.10.1016/j.engfracmech.2017.07.008
24.
Qin
,
Q.-H.
, and
Zhang
,
C.
,
2002
, “
Book Review on Fracture Mechanics of Piezoelectric Materials
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
B8
B9
.10.1115/1.1445324
25.
Park
,
S.
, and
Sun
,
C. T.
,
1995
, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
,
78
(
6
), pp.
1475
1480
.10.1111/j.1151-2916.1995.tb08840.x
26.
Sih
,
G. C.
,
Jones
,
R.
, and
Song
,
Z. F.
,
2003
, “
Piezomagnetic and Piezoelectric Poling Effects on Mode I and II Crack Initiation Behavior of Magnetoelectroelastic Materials
,”
Theor. Appl. Fract. Mech.
,
40
(
2
), pp.
161
186
.10.1016/S0167-8442(03)00044-2
27.
Li
,
X. F.
, and
Lee
,
K. Y.
,
2004
, “
Crack Growth in a Piezoelectric Material With a Griffith Crack Perpendicular to the Poling Axis
,”
Philos. Mag.
,
84
(
18
), pp.
1789
1820
.10.1080/14786430410001663222
28.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
(
4
), pp.
739
765
.10.1016/0022-5096(92)90002-J
29.
Dugdale
,
D. C.
,
1960
, “
Yielding of Steel Sheet Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
30.
Spyropoulos
,
C. P.
,
Sih
,
G. C.
, and
Song
,
Z. F.
,
2003
, “
Magnetoelectroelastic Composite With Poling Parallel to Plane of Line Crack Under Out-of-Plane Deformation
,”
Theor. Appl. Fract. Mech.
,
39
(
3
), pp.
281
289
.10.1016/S0167-8442(03)00021-1
31.
Zhu
,
B.
, and
Qin
,
T.
,
2007
, “
Application of Hypersingular Integral Equation Method to Three-Dimensional Crack in Electromagnetothermoelastic Multiphase Composites
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
5994
6012
.10.1016/j.ijsolstr.2007.02.007
32.
Lawn
,
B.
,
1993
,
Fracture of Brittle Solids
,
Cambridge University Press
,
Cambridge, UK
.
33.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
34.
Wang
,
B. L.
, and
Mai
,
Y. W.
,
2004
, “
Fracture of Piezoelectromagnetic Materials
,”
Mech. Res. Commun.
,
31
(
1
), pp.
65
73
.10.1016/j.mechrescom.2003.08.002
35.
Wang
,
B. L.
,
Han
,
J. C.
, and
Mai
,
Y. W.
,
2006
, “
Mode III Fracture of a Magnetoelectroelastic Layer: Exact Solution and Discussion of the Crack Face Electromagnetic Boundary Conditions
,”
Int. J. Fract.
,
139
(
1
), pp.
27
38
.10.1007/s10704-006-6632-1
36.
Hu
,
K. Q.
,
Li
,
G.-Q.
, and
Zhong
,
Z.
,
2006
, “
Fracture of a Rectangular Piezoelectromagnetic Body
,”
Mech. Res. Commun.
,
33
(
4
), pp.
482
492
.10.1016/j.mechrescom.2005.06.016
37.
Ma
,
L.
,
Li
,
J.
,
Abdelmoula
,
R.
, and
Wu
,
L. Z.
,
2007
, “
Mode III Crack Problem in a Functionally Graded Magneto-Electro-Elastic Strip
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5518
5537
.10.1016/j.ijsolstr.2007.01.012
38.
Gao
,
C. F.
,
Tong
,
P.
, and
Zhang
,
T. Y.
,
2004
, “
Fracture Mechanics for a Mode III Crack in a Magnetoelectroelastic Solid
,”
Int. J. Solids Struct.
,
41
(
24–25
), pp.
6613
6629
.10.1016/j.ijsolstr.2004.06.015
39.
Zhou
,
Z. G.
, and
Wang
,
B.
,
2004
, “
Two Parallel Symmetry Permeable Cracks in Functionally Graded Piezoelectric/Piezomagnetic Materials Under Anti-Plane Shear Loading
,”
Int. J. Solids Struct.
,
41
(
16–17
), pp.
4407
4422
.10.1016/j.ijsolstr.2004.03.004
40.
Singh
,
B. M.
,
Rokne
,
J.
, and
Dhaliwal
,
R. S.
,
2009
, “
Closed-Form Solutions for Two Anti-Plane Collinear Cracks in a Magnetoelectroelastic Layer
,”
Eur. J. Mech. A - Solids
,
28
(
3
), pp.
599
609
.10.1016/j.euromechsol.2008.10.004
41.
Mousavi
,
S. M.
, and
Paavola
,
J.
,
2013
, “
Analysis of Functionally Graded Magneto-Electro-Elastic Layer With Multiple Cracks
,”
Theor. Appl. Fract. Mech.
,
66
, pp.
1
8
.10.1016/j.tafmec.2013.11.007
42.
Singh
,
R.
, and
Das
,
S.
,
2023
, “
Analysis of Multiple Parallel Cracks in a Functionally Graded Magneto-Electro-Elastic Plane Using Boundary Collocation Method
,”
Arch. Appl. Mech.
,
93
(
12
), pp.
4497
4516
.10.1007/s00419-023-02506-0
43.
Guo
,
J. H.
, and
Lu
,
Z. X.
,
2010
, “
Anti-Plane Analysis of Multiple Cracks Originating From a Circular Hole in a Magnetoelectroelastic Solid
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1847
1856
.10.1016/j.ijsolstr.2010.03.022
44.
Rogowski
,
B.
,
2011
, “
The Mode III Cracks Emanating From an Elliptical Hole in the Piezo-Electro-Magneto-Elastic Materials
,”
Arch. Appl. Mech.
,
81
(
11
), pp.
1607
1620
.10.1007/s00419-010-0505-9
45.
Xiao
,
J. H.
,
Xu
,
Y. L.
, and
Zhang
,
F. C.
,
2019
, “
Fracture Analysis of Magnetoelectroelastic Solid Weakened by Periodic Cracks and Line Inclusions
,”
Eng. Fract. Mech.
,
205
, pp.
70
80
.10.1016/j.engfracmech.2018.11.019
46.
Lv
,
X.
, and
Liu
,
G. T.
,
2018
, “
Interaction Between Many Parallel Screw Dislocations and a Semi-Infinite Crack in a Magnetoelectroelastic Solid
,”
Chin. Phys. B
,
27
(
7
), p.
074601
.10.1088/1674-1056/27/7/074601
47.
Tupholme
,
G. E.
,
2008
, “
Shear Crack in a Transversely Isotropic Magnetoelectroelastic Half-Space
,”
Mech. Res. Commun.
,
35
(
7
), pp.
466
474
.10.1016/j.mechrescom.2008.01.001
48.
Zhou
,
Z. H.
,
Xu
,
X. S.
, and
Leung
,
A. Y. T.
,
2010
, “
Mode III Edge-Crack in Magneto-Electro-Elastic Media by Symplectic Expansion
,”
Eng. Fract. Mech.
,
77
(
16
), pp.
3157
3173
.10.1016/j.engfracmech.2010.07.016
49.
Liu
,
Y. Z.
,
Guo
,
J. H.
, and
Zhang
,
X. Y.
,
2019
, “
Surface Effect on a Nano-Elliptical Hole or Nano-Crack in Magnetoelectroelastic Materials Under Antiplane Shear
,”
ZAMM - Z. Angew. Math. Mech.
,
99
(
7
), p.
e201900043
.10.1002/zamm.201900043
50.
Tupholme
,
G. E.
,
2020
, “
Stack of Non-Uniformly Loaded Shear Cracks in Magnetoelectroelastic Materials
,”
Mech. Adv. Mater. Struct.
,
28
(
18
), pp.
1948
1956
.10.1080/15376494.2020.1716119
51.
Chue
,
C. H.
, and
Liu
,
T. J. C.
,
2005
, “
Magneto-Electro-Elastic Antiplane Analysis of a Bimaterial BaTio3-CoFe2O4 Composite Wedge With an Interface Crack
,”
Theor. Appl. Fract. Mech.
,
44
(
3
), pp.
275
296
.10.1016/j.tafmec.2005.09.004
52.
Li
,
R.
, and
Kardomateas
,
G. A.
,
2006
, “
The Mode III Interface Crack in Piezo-Electromagneto-Elastic Dissimilar Bimaterials
,”
ASME J. Appl. Mech.
,
73
(
2
), pp.
220
227
.10.1115/1.2073328
53.
Mai
,
Y. W.
, and
Wang
,
B. L.
,
2006
, “
Closed-Form Solution for an Antiplane Interface Crack Between Two Dissimilar Magnetoelectroelastic Layers
,”
ASME J. Appl. Mech.
,
73
(
2
), pp.
281
290
.10.1115/1.2083827
54.
Su
,
R. K. L.
, and
Feng
,
W. J.
,
2008
, “
Fracture Behavior of a Bonded Magneto-Electro-Elastic Rectangular Plate With an Interface Crack
,”
Arch. Appl. Mech.
,
78
(
5
), pp.
343
362
.10.1007/s00419-007-0165-6
55.
Li
,
Y. D.
, and
Lee
,
K. Y.
,
2008
, “
Fracture Analysis and Improved Design for a Symmetrically Bonded Smart Structure With Linearly Non-Homogeneous Magnetoelectroelastic Properties
,”
Eng. Fract. Mech.
,
75
(
10
), pp.
3161
3172
.10.1016/j.engfracmech.2007.12.005
56.
Li
,
Y. D.
, and
Lee
,
K. Y.
,
2010
, “
Anti-Plane Shear Fracture of the Interface in a Cylindrical Smart Structure With Functionally Graded Magnetoelectroelastic Properties
,”
Acta Mech.
,
212
(
1–2
), pp.
139
149
.10.1007/s00707-009-0251-7
57.
Bagheri
,
R.
, and
Mirzaei
,
A. M.
,
2019
, “
Fracture Analysis in an Imperfect FGM Orthotropic Strip Bonded Between Two Magneto-Electro-Elastic Layers
,”
IJST-Trans. Mech. Eng.
,
43
(
2
), pp.
253
271
.10.1007/s40997-017-0129-6
58.
Hu
,
K. Q.
,
Zhong
,
Z.
, and
Chen
,
Z. T.
,
2019
, “
Interface Crack Between Magnetoelectroelastic and Orthotropic Half-Spaces Under Anti-Plane Loading
,”
Theor. Appl. Fract. Mech.
,
99
, pp.
95
103
.10.1016/j.tafmec.2018.11.012
59.
Zhou
,
Z. G.
,
Wang
,
B.
, and
Sun
,
Y. G.
,
2004
, “
Two Collinear Interface Cracks in Magneto-Electro-Elastic Composites
,”
Int. J. Eng. Sci.
,
42
(
11–12
), pp.
1155
1167
.10.1016/j.ijengsci.2004.01.005
60.
Zhou
,
Z. G.
,
Chen
,
Y.
, and
Wang
,
B.
,
2007
, “
The Behavior of Two Parallel Interface Cracks in Magneto-Electro-Elastic Materials Under an Anti-Plane Shear Stress Loading
,”
Compos. Struct.
,
77
(
1
), pp.
97
103
.10.1016/j.compstruct.2005.11.056
61.
Wang
,
B. L.
, and
Han
,
J. C.
,
2010
, “
Effect of Finite Cracking on the Magneto-Electric Coupling Properties of Magneto-Electro-Elastic Composite Laminates
,”
J. Intell. Mater. Syst. Struct.
,
21
(
16
), pp.
1669
1679
.10.1177/1045389X10386128
62.
Zhang
,
J.
,
Jin
,
Y.
, and
Li
,
Y. D.
,
2018
, “
Concentrated Force-Induced Fracture of a Multiferroic Composite Cylinder
,”
Acta Mech.
,
229
(
3
), pp.
1215
1228
.10.1007/s00707-017-2011-4
63.
Feng
,
F. X.
,
Lee
,
K. Y.
, and
Li
,
Y. D.
,
2011
, “
Multiple Cracks on the Arc-Shaped Interface in a Semi-Cylindrical Magneto-Electro-Elastic Composite With an Orthotropic Substrate
,”
Eng. Fract. Mech.
,
78
(
9
), pp.
2029
2041
.10.1016/j.engfracmech.2011.03.016
64.
Shi
,
P. P.
,
Sun
,
S.
, and
Li
,
X.
,
2013
, “
The Cyclically Symmetric Cracks on the Arc-Shaped Interface Between a Functionally Graded Magneto-Electro-Elastic Layer and an Orthotropic Elastic Substrate Under Static Anti-Plane Shear Load
,”
Eng. Fract. Mech.
,
105
, pp.
238
249
.10.1016/j.engfracmech.2013.04.008
65.
Hao
,
R. J.
, and
Liu
,
J. X.
,
2006
, “
Interaction of a Screw Dislocation With a Semi-Infinite Interfacial Crack in a Magneto-Electro-Elastic Bi-Material
,”
Mech. Res. Commun.
,
33
(
3
), pp.
415
424
.10.1016/j.mechrescom.2005.02.020
66.
Zheng
,
J. L.
,
Fang
,
Q. H.
, and
Liu
,
Y. W.
,
2007
, “
A Generalized Screw Dislocation Interacting With Interfacial Cracks Along a Circular Inhomogeneity in Magnetoelectroelastic Solids
,”
Theor. Appl. Fract. Mech.
,
47
(
3
), pp.
205
218
.10.1016/j.tafmec.2007.01.005
67.
Zeng
,
X.
,
Li
,
J.
,
Liu
,
F.
, and
Wen
,
P. H.
,
2019
, “
Generalized Screw Dislocations Interacting With Interfacial Secondary Crack in Magneto-Electro-Elastic Solid
,”
ZAMM - Z. Angew. Math. Mech.
,
99
(
8
), p.
e201800245
.10.1002/zamm.201800245
68.
Li
,
X. F.
,
Liu
,
G. L.
, and
Lee
,
K. Y.
,
2009
, “
Magnetoelectroelastic Field Induced by a Crack Terminating at the Interface of a Bi-Magnetoelectric Material
,”
Philos. Mag.
,
89
(
5
), pp.
449
463
.10.1080/14786430802653428
69.
Wan
,
Y.
,
Yue
,
Y.
, and
Zhong
,
Z.
,
2012
, “
A Mode III Crack Crossing the Magnetoelectroelastic Bimaterial Interface Under Concentrated Magnetoelectro-Mechanical Loads
,”
Int. J. Solids Struct.
,
49
(
21
), pp.
3008
3021
.10.1016/j.ijsolstr.2012.06.001
70.
Hu
,
K. Q.
,
Kang
,
Y. L.
, and
Qin
,
Q. H.
,
2007
, “
A Moving Crack in a Rectangular Magnetoelectroelastic Body
,”
Eng. Fract. Mech.
,
74
(
5
), pp.
751
770
.10.1016/j.engfracmech.2006.06.016
71.
Tupholme
,
G. E.
,
2012
, “
Magnetoelectroelastic Media Containing a Row of Moving Shear Cracks
,”
Mech. Res. Commun.
,
45
, pp.
48
53
.10.1016/j.mechrescom.2012.07.002
72.
Tupholme
,
G. E.
,
2020
, “
Non-Uniformly Loaded Row of Moving Shear Cracks in Magnetoelectroelastic Media
,”
Math. Mech. Solids
,
25
(
2
), pp.
374
388
.10.1177/1081286519878233
73.
Ayatollahi
,
M.
,
Mahmoudi
,
M. M.
, and
Nourazar
,
M.
,
2017
, “
Analysis of Multiple Moving Mode-III Cracks in a Functionally Graded Magnetoelectroelastic Half-Plane
,”
J. Int. Mater. Syst. Struct.
,
28
(
19
), pp.
2823
2834
.10.1177/1045389X17698593
74.
Fu
,
J.
,
Hu
,
K.
,
Chen
,
Z.
,
Chen
,
L.
, and
Qian
,
L.
,
2013
, “
A Moving Crack Propagating in a Functionally Graded Magnetoelectroelastic Strip Under Different Crack Face Conditions
,”
Theor. Appl. Fract. Mech.
,
66
, pp.
16
25
.10.1016/j.tafmec.2014.01.007
75.
Wang
,
Y. Z.
, and
Kuna
,
M.
,
2015
, “
General Solutions of Mechanical-Electric-Magnetic Fields in Magneto-Electro-Elastic Solid Containing a Moving Anti-Plane Crack and a Screw Dislocation
,”
ZAMM - J. Appl. Math. Mech.
,
95
(
7
), pp.
703
713
.10.1002/zamm.201300279
76.
Hu
,
K.
, and
Chen
,
Z.
,
2014
, “
An Interface Crack Moving Between Magnetoelectroelastic and Functionally Graded Elastic Layers
,”
Appl. Math. Model.
,
38
(
3
), pp.
910
925
.10.1016/j.apm.2013.07.022
77.
Zhong
,
X. C.
, and
Li
,
X. F.
,
2006
, “
A Finite Length Crack Propagating Along the Interface of Two Dissimilar Magnetoelectroelastic Materials
,”
Int. J. Eng. Sci.
,
44
(
18–19
), pp.
1394
1407
.10.1016/j.ijengsci.2006.07.004
78.
Ayatollahi
,
M.
, and
Milan
,
A. G.
,
2022
, “
Dissimilar Nonhomogeneous Magnetoelectroelastic Layers With Moving Crack at the Interface
,”
J. Eng. Math.
,
133
(
1
), p.
8
.10.1007/s10665-022-10212-z
79.
Chen
,
H. S.
,
Wei
,
W. Y.
,
Liu
,
J. X.
, and
Fang
,
D. N.
,
2012
, “
Propagation of a Mode-III Interfacial Crack in a Piezoelectric-Piezomagnetic Bi-Material
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2547
2558
.10.1016/j.ijsolstr.2012.05.013
80.
Hu
,
K.
,
Chen
,
Z.
, and
Fu
,
J.
,
2015
, “
Moving Dugdale Crack Along the Interface of Two Dissimilar Magnetoelectroelastic Materials
,”
Acta Mech.
,
226
(
6
), pp.
2065
2076
.10.1007/s00707-015-1298-2
81.
Zhou
,
Z. G.
, and
Wang
,
B.
,
2006
, “
Dynamic Behavior of Two Parallel Symmetry Cracks in Magneto-Electro-Elastic Composites Under Harmonic Anti-Plane Waves
,”
Appl. Math. Mech.
,
27
(
5
), pp.
583
591
.10.1007/s10483-006-0503-y
82.
Liang
,
J.
,
2008
, “
The Dynamic Behavior of Two Parallel Symmetric Cracks in Functionally Graded Piezoelectric/Piezomagnetic Materials
,”
Arch. Appl. Mech.
,
78
(
6
), pp.
443
464
.10.1007/s00419-007-0173-6
83.
Li
,
Y. D.
, and
Lee
,
K. Y.
,
2009
, “
Dynamic Responses of a Crack in a Layered Graded Magnetoelectroelastic Sensor Subjected to Harmonic Waves
,”
Acta Mech.
,
204
(
3–4
), pp.
217
234
.10.1007/s00707-008-0082-y
84.
Zhou
,
Z. G.
,
Wu
,
L. Z.
, and
Wang
,
B.
,
2005
, “
The Dynamic Behavior of Two Collinear Interface Cracks in Magneto-Electro-Elastic Materials
,”
Eur. J. Mech. A - Solids
,
24
(
2
), pp.
253
262
.10.1016/j.euromechsol.2004.10.006
85.
Zhou
,
Z. G.
, and
Wang
,
B.
,
2008
, “
An Interface Crack Between Two Dissimilar Functionally Graded Piezoelectric/Piezomagnetic Material Half Infinite Planes Subjected to the Harmonic Anti-Plane Shear Stress Waves
,”
Int. J. Appl. Electromagn. Mech.
,
27
(
1–2
), pp.
117
132
.10.3233/JAE-2008-921
86.
Zhong
,
X. C.
, and
Li
,
X. F.
,
2010
, “
Diffraction of SH-Waves by an Interfacial Crack Between a Magnetoelectroelastic Solid and an Elastic Material
,”
Mech. Adv. Mater. Struct.
,
17
(
2
), pp.
134
144
.10.1080/15376490903243837
87.
An
,
N.
,
Zhang
,
J.
,
Chen
,
Y.
, and
Song
,
T. S.
,
2022
, “
Analysis of Mode III Interface Fracture for Hole-Initiated Cracks in Magnetic-Electro-Elastic Bimaterials
,”
Mech. Adv. Mater. Struct.
,
20
, pp.
1
11
.10.1080/15376494.2022.2150339
88.
An
,
N.
,
Song
,
T. S.
, and
Hou
,
G.
,
2023
, “
Dynamic Interaction Between Complex Defect and Crack in Functionally Graded Magnetic-Electro-Elastic Bi-Materials
,”
Mech. Adv. Mater. Struct.
,
30
(
13
), pp.
2748
2764
.10.1080/15376494.2022.2062631
89.
Li
,
X. F.
,
2005
, “
Dynamic Analysis of a Cracked Magnetoelectroelastic Medium Under Antiplane Mechanical and Inplane Electric and Magnetic Impacts
,”
Int. J. Solids Struct.
,
42
(
11–12
), pp.
3185
3205
.10.1016/j.ijsolstr.2004.10.020
90.
Feng
,
W. J.
, and
Su
,
R. K. L.
,
2006
, “
Dynamic Internal Crack Problem of a Functionally Graded Magneto-Electro-Elastic Strip
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5196
5216
.10.1016/j.ijsolstr.2005.07.050
91.
Feng
,
W. J.
, and
Su
,
R. K. L.
,
2007
, “
Dynamic Fracture Behaviors of Cracks in a Functionally Graded Magneto-Electro-Elastic Plate
,”
Eur. J. Mech. A - Solids
,
26
(
2
), pp.
363
379
.10.1016/j.euromechsol.2006.07.004
92.
Rogowski
,
B.
,
2015
, “
The Transient Analysis of a Conducting Crack in Magneto-Electro-Elastic Half-Space Under Anti-Plane Mechanical and In-Plane Electric and Magnetic Impacts
,”
Arch. Appl. Mech.
,
85
(
1
), pp.
29
50
.10.1007/s00419-014-0898-y
93.
Chen
,
X.
,
2009
, “
Dynamic Crack Propagation in a Magneto-Electro-Elastic Solid Subjected to Mixed Loads: Transient Mode-III Problem
,”
Int. J. Solids Struct.
,
46
(
22–23
), pp.
4025
4037
.10.1016/j.ijsolstr.2009.07.022
94.
Ayatollahi
,
M.
,
Abdel‐Wahab
,
M.
, and
Hashemi
,
S. M. M.
,
2024
, “
Transient Analysis of a Cracked Functionally Graded Magneto‐Electro‐Elastic Rectangular Finite Plane Under Anti‐Plane Mechanical and In‐Plane Electric and Magnetic Impacts
,”
Fatigue Fract. Eng. Mater. Struct.
,
47
(
1
), pp.
220
239
.10.1111/ffe.14174
95.
Arhani
,
A. A.
, and
Ayatollahi
,
M.
,
2022
, “
Dynamic Response of Cracked Non‐Homogeneous Magneto‐Electro‐Elastic Layer Sandwiched by Two Dissimilar Orthotropic Layers
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
5
), pp.
1448
1463
.10.1111/ffe.13673
96.
Bagheri
,
R.
, and
Monfared
,
M. M.
,
2018
, “
Magneto-Electro-Elastic Analysis of a Strip Containing Multiple Embedded and Edge Cracks Under Transient Loading
,”
Acta Mech.
,
229
(
12
), pp.
4895
4913
.10.1007/s00707-018-2289-x
97.
Feng
,
W. J.
,
Xue
,
Y.
, and
Zou
,
Z. Z.
,
2005
, “
Crack Growth of an Interface Crack Between Two Dissimilar Magneto-Electro-Elastic Materials Under Anti-Plane Mechanical and In-Plane Electric Magnetic Impact
,”
Theor. Appl. Fract. Mech.
,
43
(
3
), pp.
376
394
.10.1016/j.tafmec.2005.03.008
98.
Feng
,
W. J.
, and
Pan
,
E.
,
2008
, “
Dynamic Fracture Behavior of an Internal Interfacial Crack Between Two Dissimilar Magneto-Electro-Elastic Plates
,”
Eng. Fract. Mech.
,
75
(
6
), pp.
1468
1487
.10.1016/j.engfracmech.2007.07.001
99.
Wang
,
B. L.
,
Han
,
J. C.
, and
Du
,
S. Y.
,
2010
, “
Transient Fracture of a Layered Magnetoelectroelastic Medium
,”
Mech. Mater.
,
42
(
3
), pp.
354
364
.10.1016/j.mechmat.2009.12.002
100.
Peng
,
X. L.
, and
Li
,
X. F.
,
2009
, “
Transient Response of the Crack Tip Field in a Magnetoelectroelastic Half-Space With a Functionally Graded Coating Under Impacts
,”
Arch. Appl. Mech.
,
79
(
12
), pp.
1099
1113
.10.1007/s00419-008-0277-7
101.
Hu
,
K.
,
Chen
,
Z.
, and
Fu
,
J.
,
2014
, “
Dynamic Analysis of an Interface Crack Between Magnetoelectroelastic and Functionally Graded Elastic Layers Under Anti-Plane Mechanical and In-Plane Electro-Magnetic Loadings
,”
Compos. Struct.
,
107
, pp.
142
148
.10.1016/j.compstruct.2013.07.057
102.
Zhao
,
X.
,
Qian
,
Z.
,
Liu
,
J.
, and
Gao
,
C.
,
2020
, “
Effects of Electric/Magnetic Impact on the Transient Fracture of Interface Crack in Piezoelectric-Piezomagnetic Sandwich Structure: Anti-Plane Case
,”
Appl. Math. Mech.-Engl.
,
41
(
1
), pp.
139
156
.10.1007/s10483-020-2552-5
103.
Gao
,
C. F.
,
Kessler
,
H.
, and
Balke
,
H.
,
2003
, “
Crack Problems in Magnetoelectroelastic Solids. Part I: Exact Solution of a Crack
,”
Int. J. Eng. Sci.
,
41
(
9
), pp.
969
981
.10.1016/S0020-7225(02)00323-3
104.
Song
,
Z. F.
, and
Sih
,
G. C.
,
2003
, “
Crack Initiation Behavior in Magnetoelectroelastic Composite Under In-Plane Deformation
,”
Theor. Appl. Fract. Mech.
,
39
(
3
), pp.
189
207
.10.1016/S0167-8442(03)00002-8
105.
Sih
,
G. C.
, and
Chen
,
E. P.
,
2003
, “
Dilatational and Distortional Behavior of Cracks in Magnetoelectroelastic Materials
,”
Theor. Appl. Fract. Mech.
,
40
(
1
), pp.
1
21
.10.1016/S0167-8442(03)00031-4
106.
Sih
,
G. C.
, and
Yu
,
H. Y.
,
2005
, “
Volume Fraction Effect of Magnetoelectroelastic Composite on Enhancement and Impediment of Crack Growth
,”
Compos. Struct.
,
68
(
1
), pp.
1
11
.10.1016/j.compstruct.2004.02.015
107.
Tian
,
W.
, and
Rajapakse
,
R. K. N. D.
,
2005
, “
Fracture Analysis of Magnetoelectroelastic Solids by Using Path Independent Integrals
,”
Int. J. Fract.
,
131
(
4
), pp.
311
335
.10.1007/s10704-004-5103-9
108.
Hu
,
K. Q.
,
Chen
,
Z. T.
, and
Wang
,
X. D.
,
2018
, “
Boundary Effect on Crack Kinking in a Magnetoelectroelastic Strip With a Central Crack
,”
Eng. Fract. Mech.
,
201
, pp.
336
352
.10.1016/j.engfracmech.2018.07.025
109.
Tian
,
W. Y.
, and
Gabbert
,
U.
,
2004
, “
Multiple Crack Interaction Problem in Magnetoelectroelastic Solids
,”
Eur. J. Mech. A - Solids
,
23
(
4
), pp.
599
614
.10.1016/j.euromechsol.2004.02.002
110.
Tian
,
W. Y.
, and
Gabbert
,
U.
,
2005
, “
Macrocrack-Microcrack Interaction Problem in Magnetoelectroelastic Solids
,”
Mech. Mater.
,
37
(
5
), pp.
565
592
.10.1016/j.mechmat.2004.04.008
111.
Zhao
,
M. H.
,
Wang
,
H.
,
Yang
,
F.
, and
Liu
,
T.
,
2006
, “
A Magnetoelectroelastic Medium With an Elliptical Cavity Under Combined Mechanical-Electric-Magnetic Loading
,”
Theor. Appl. Fract. Mech.
,
45
(
3
), pp.
227
237
.10.1016/j.tafmec.2006.03.006
112.
Wang
,
B. L.
, and
Han
,
J. C.
,
2007
, “
Multiple Cracking of Magnetoelectroelastic Materials in Coupling Thermos-Electro-Magneto-Mechanical Loading Environments
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
291
304
.10.1016/j.commatsci.2006.06.008
113.
Zhang
,
A. B.
, and
Wang
,
B. L.
,
2014
, “
Theoretical Model of Crack Branching in Magnetoelectric Thermoelastic Materials
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1340
1349
.10.1016/j.ijsolstr.2013.12.025
114.
Wu
,
B.
,
Peng
,
D.
, and
Jones
,
R.
,
2024
, “
Analysis Method of Collinear Cracks Subjected to Thermo-Magneto-Electro-Elastic Loads
,”
Arch. Appl. Mech.
,
94
(
1
), pp.
99
117
.10.1007/s00419-023-02511-3
115.
Zhou
,
Z. G.
,
Zhang
,
P. W.
, and
Wu
,
L. Z.
,
2007
, “
Solutions to a Limited-Permeable Crack or Two Limited-Permeable Collinear Cracks in Piezoelectric/Piezomagnetic Materials
,”
Arch. Appl. Mech.
,
77
(
12
), pp.
861
882
.10.1007/s00419-007-0135-z
116.
Zhou
,
Z. G.
, and
Chen
,
Z. T.
,
2008
, “
Basic Solution of a Mode-I Limited-Permeable Crack in Functionally Graded Piezoelectric/Piezomagnetic Materials
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
2265
2296
.10.1016/j.ijsolstr.2007.11.016
117.
Zhong
,
X. C.
,
2011
, “
Closed-Form Solutions for Two Collinear Dielectric Cracks in a Magnetoelectroelastic Solid
,”
Appl. Math. Model.
,
35
(
6
), pp.
2930
2944
.10.1016/j.apm.2010.12.010
118.
Zhong
,
X. C.
, and
Li
,
X. F.
,
2008
, “
T-Stress Analysis for a Griffith Crack in a Magnetoelectroelastic Solid
,”
Arch. Appl. Mech.
,
78
(
2
), pp.
117
125
.10.1007/s00419-007-0143-z
119.
Li
,
Y. D.
, and
Lee
,
K. Y.
,
2010
, “
Collinear Unequal Crack Series in Magnetoelectroelastic Materials: Mode I Case Solved Via New Real Fundamental Solutions
,”
Eng. Fract. Mech.
,
77
(
14
), pp.
2772
2790
.10.1016/j.engfracmech.2010.05.002
120.
Rekik
,
M.
,
El-Borgi
,
S.
, and
Ounaies
,
Z.
,
2012
, “
An Embedded Mixed-Mode Crack in a Functionally Graded Magnetoelectroelastic Infinite Medium
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
835
845
.10.1016/j.ijsolstr.2011.12.002
121.
Zhong
,
X. C.
,
2009
, “
Analysis of a Dielectric Crack in a Magnetoelectroelastic Layer
,”
Int. J. Solids Struct.
,
46
(
24
), pp.
4221
4230
.10.1016/j.ijsolstr.2009.08.011
122.
Zhong
,
X. C.
, and
Lee
,
K.
,
2012
, “
Dielectric Crack Problem for a Magnetoelectroelastic Strip With Functionally Graded Properties
,”
Arch. Appl. Mech.
,
82
(
6
), pp.
791
807
.10.1007/s00419-011-0592-2
123.
Wang
,
B. L.
,
2012
, “
Fracture and Effective Properties of Finite Magnetoelectroelastic Media
,”
J. Intell. Mater. Syst. Struct.
,
23
(
15
), pp.
1699
1712
.10.1177/1045389X12451657
124.
Feng
,
W. J.
,
Su
,
R. K. L.
,
Liu
,
J. X.
, and
Li
,
Y. S.
,
2010
, “
Fracture Analysis of Bounded Magnetoelectroelastic Layers With Interfacial Cracks Under Magnetoelectro-Mechanical Loads: Plane Problem
,”
J. Intell. Mater. Syst. Struct.
,
21
(
6
), pp.
581
594
.10.1177/1045389X10361630
125.
Zhao
,
X.
,
Liu
,
J.
,
Qian
,
Z.
, and
Gao
,
C.
,
2022
, “
Fracture Behavior of an Interface Crack in a Magnetoelectric Sandwich Structure Under Electric Field: Effects of the Poling Directions
,”
J. Intell. Mater. Syst. Struct.
,
33
(
15
), pp.
1902
1915
.10.1177/1045389X211072255
126.
Ma
,
P.
,
Su
,
R. K. L.
, and
Feng
,
W. J.
,
2016
, “
Integral Identities Based on Symmetric and Skew-Symmetric Weight Functions for a Semi-Infinite Interfacial Crack in Anisotropic Magnetoelectroelastic Bimaterials
,”
Int. J. Solids Struct.
,
88–89
, pp.
178
191
.10.1016/j.ijsolstr.2016.03.008
127.
Cheng
,
C. Z.
,
Cheng
,
X.
,
Niu
,
Z. R.
, and
Recho
,
N.
,
2016
, “
Singularity Characteristic Analyses for Magneto-Electro-Elastic V-Notches
,”
Eur. J. Mech. A - Solids
,
57
, pp.
59
70
.10.1016/j.euromechsol.2015.12.005
128.
Yang
,
Y.
,
Cheng
,
C.
,
Yao
,
S.
,
Li
,
J.
, and
Niu
,
Z.
,
2022
, “
Singularity Analysis for the V-Notch in Functionally Graded Piezoelectric/Piezomagnetic Material
,”
J. Eng. Math.
,
132
(
1
), pp.
17
33
.10.1007/s10665-021-10198-0
129.
Wang
,
X.
,
Ang
,
W. T.
, and
Fan
,
H.
,
2018
, “
Effective Properties of Magnetoelectroelastic Interfaces Weakened by Micro-Cracks
,”
ZAMM - J. Appl. Math. Mech.
,
98
(
5
), pp.
727
748
.10.1002/zamm.201700219
130.
Hu
,
K. Q.
,
Chen
,
Z. T.
, and
Zhong
,
Z.
,
2018
, “
Interface Crack Between Magnetoelectroelastic and Orthotropic Half-Spaces Under In-Plane Loading
,”
Theor. Appl. Fract. Mech.
,
96
, pp.
285
295
.10.1016/j.tafmec.2018.05.002
131.
Gao
,
C. F.
, and
Noda
,
N.
,
2004
, “
Thermal-Induced Interfacial Cracking of Magnetoelectroelastic Materials
,”
Int. J. Eng. Sci.
,
42
(
13–14
), pp.
1347
1360
.10.1016/j.ijengsci.2004.03.005
132.
Feng
,
W. J.
,
Li
,
Y. S.
, and
Xu
,
Z. H.
,
2009
, “
Transient Response of an Interfacial Crack Between Dissimilar Magnetoelectroelastic Layers Under Magnetoelectromechanical Impact Loadings: Mode-I Problem
,”
Int. J. Solids Struct.
,
46
(
18–19
), pp.
3346
3356
.10.1016/j.ijsolstr.2009.05.003
133.
Hu
,
K.
, and
Chen
,
Z.
,
2013
, “
Pre-Kinking of a Moving Crack in a Magnetoelectroelastic Material Under In-Plane Loading
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2667
2677
.10.1016/j.ijsolstr.2013.04.016
134.
Hu
,
K.
,
Chen
,
Z.
, and
Zhong
,
Z.
,
2014
, “
Pre-Kinking Analysis of a Constant Moving Crack in a Magnetoelectroelastic Strip Under In-Plane Loading
,”
Eur. J. Mech. A - Solids
,
43
, pp.
25
43
.10.1016/j.euromechsol.2013.08.005
135.
Ma
,
P.
,
Su
,
K. L.
, and
Feng
,
W. J.
,
2017
, “
Moving Crack With a Contact Zone at Interface of Magnetoelectroelastic Bimaterial
,”
Eng. Fract. Mech.
,
181
, pp.
143
160
.10.1016/j.engfracmech.2017.07.012
136.
Ma
,
P.
,
Su
,
R. K. L.
, and
Feng
,
W.
,
2021
, “
Propagation of Conductive Crack Along Interface of Piezoelectric/Piezomagnetic Bimaterials
,”
Acta Mech.
,
232
(
7
), pp.
2781
2791
.10.1007/s00707-021-02988-5
137.
Ma
,
P.
,
Su
,
R. K. L.
, and
Feng
,
W. J.
,
2018
, “
Singularity of Subsonic and Transonic Crack Propagations Along Interfaces of Magnetoelectroelastic Bimaterials
,”
Int. J. Eng. Sci.
,
129
, pp.
21
33
.10.1016/j.ijengsci.2018.04.005
138.
Zhong
,
X. C.
,
Liu
,
F.
, and
Li
,
X. F.
,
2009
, “
Transient Response of a Magnetoelectro-Elastic Solid With Two Collinear Dielectric Cracks Under Impacts
,”
Int. J. Solids Struct.
,
46
(
14–15
), pp.
2950
2958
.10.1016/j.ijsolstr.2009.03.023
139.
Chen
,
Y.
, and
Lu
,
T. J.
,
2003
, “
Recent Developments and Applications of Invariant Integrals
,”
ASME Appl. Mech. Rev.
,
56
(
5
), pp.
515
552
.10.1115/1.1582199
140.
Chen
,
X.
,
2009
, “
Energy Release Rate and Path-Independent Integral in Dynamic Fracture of Magneto-Electro-Thermo-Elastic Solids
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2706
2711
.10.1016/j.ijsolstr.2009.03.001
141.
Hu
,
K.
, and
Chen
,
Z.
,
2012
, “
Pre-Curving Analysis of an Opening Crack in a Magnetoelectroelastic Strip Under In-Plane Impact Loadings
,”
J. Appl. Phys.
,
112
(
12
), p.
124911
.10.1063/1.4770395
142.
Milan
,
A. G.
, and
Ayatollahi
,
M.
,
2020
, “
Transient Analysis of Multiple Interface Cracks Between Two Dissimilar Functionally Graded Magneto-Electro-Elastic Layers
,”
Arch. Appl. Mech.
,
90
(
8
), pp.
1829
1844
.10.1007/s00419-020-01699-y
143.
Eringen
,
A. C.
,
1972
, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
,
10
(
1
), pp.
1
16
.10.1016/0020-7225(72)90070-5
144.
Zhang
,
P. W.
,
Zhou
,
Z. G.
, and
Wu
,
L. Z.
,
2010
, “
Non-Local Theory Solution of a Mode-I Crack in a Piezoelectric/Piezomagnetic Composite Material Plane
,”
Int. J. Fract.
,
164
(
2
), pp.
213
229
.10.1007/s10704-010-9477-6
145.
Zhou
,
Z. G.
,
Zhang
,
P. W.
, and
Wu
,
L. Z.
,
2011
, “
Non-Local Theory Solution of a Limited-Permeable Mode-I Crack in a Piezoelectric/Piezomagnetic Material Plane
,”
ZAMM - J. Appl. Math. Mech.
,
91
(
3
), pp.
192
213
.10.1002/zamm.201000071
146.
Jamia
,
N.
,
El-Borgi
,
S.
,
Rekik
,
M.
, and
Usman
,
S.
,
2014
, “
Investigation of the Behavior of a Mixed-Mode Crack in a Functionally Graded Magneto-Electro-Elastic Material by Use of the Non-Local Theory
,”
Theor. Appl. Fract. Mech.
,
74
, pp.
126
142
.10.1016/j.tafmec.2014.09.002
147.
Zhao
,
M. H.
,
Zhang
,
Q. Y.
,
Fan
,
C. Y.
, and
Jia
,
J. N.
,
2014
, “
Semi-Permeable Crack Analysis in a 2D Magnetoelectroelastic Medium Based on the EMPS Model
,”
Mech. Res. Commun.
,
55
, pp.
30
39
.10.1016/j.mechrescom.2013.10.012
148.
Herrmann
,
K.
,
Loboda
,
V.
, and
Khodanen
,
T.
,
2010
, “
An Interface Crack With Contact Zones in a Piezoelectric/Piezomagnetic Bimaterial
,”
Arch. Appl. Mech.
,
80
(
6
), pp.
651
670
.10.1007/s00419-009-0330-1
149.
Feng
,
W. J.
,
Ma
,
P.
,
Pan
,
E.
, and
Liu
,
J. X.
,
2011
, “
A Magnetically Impermeable and Electrically Permeable Interface Crack With a Contact Zone in a Magnetoelectroelastic Bimaterial Under Concentrated Magnetoelectromechanical Loads on the Crack Faces
,”
Sci. China: Phys., Mech. Astron.
,
54
(
9
), pp.
1666
1679
.10.1007/s11433-011-4403-0
150.
Feng
,
W. J.
,
Ma
,
P.
, and
Su
,
R. K. L.
,
2012
, “
An Electrically Impermeable and Magnetically Permeable Interface Crack With a Contact Zone in Magnetoelectroelastic Bimaterials Under a Thermal Flux and Magnetoelectromechanical Loads
,”
Int. J. Solids Struct.
,
49
(
23–24
), pp.
3472
3483
.10.1016/j.ijsolstr.2012.07.006
151.
Grynevych
,
A. A.
, and
Loboda
,
V. V.
,
2016
, “
An Electroded Electrically and Magnetically Charged Interface Crack in a Piezoelectric/Piezomagnetic Bimaterial
,”
Acta Mech.
,
227
(
10
), pp.
2861
2879
.10.1007/s00707-016-1654-x
152.
Ma
,
P.
,
Feng
,
W. J.
, and
Su
,
R. K. L.
,
2013
, “
Pre-Fracture Zone Model on Electrically Impermeable and Magnetically Permeable Interface Crack Between Two Dissimilar Magnetoelectroelastic Materials
,”
Eng. Fract. Mech.
,
102
, pp.
310
323
.10.1016/j.engfracmech.2013.03.004
153.
Viun
,
O.
,
Lapusta
,
Y.
, and
Loboda
,
V.
,
2015
, “
Pre-Fracture Zones Modelling for a Limited Permeable Crack in an Interlayer Between Magneto-Electro-Elastic Materials
,”
Appl. Math. Model.
,
39
(
21
), pp.
6669
6684
.10.1016/j.apm.2015.02.015
154.
Ma
,
P.
,
Su
,
R. K. L.
, and
Feng
,
W. J.
,
2015
, “
A New Extended Pre-Fracture Zone Model for a Limited Permeable Crack in an Interlayer Between Magnetoelectroelastic Materials
,”
Acta Mech.
,
226
(
4
), pp.
1045
1065
.10.1007/s00707-014-1235-9
155.
Comninou
,
M.
,
1977
, “
The Interface Crack
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
631
636
.10.1115/1.3424148
156.
Fulton
,
C. C.
, and
Gao
,
H.
,
1997
, “
Electrical Nonlinearity in Fracture of Piezoelectric Ceramics
,”
ASME Appl. Mech. Rev.
,
50
(
11S
), pp.
S56
S63
.10.1115/1.3101851
157.
Gao
,
C. F.
,
Noda
,
N.
, and
Zhang
,
T. Y.
,
2006
, “
Dielectric Breakdown Model for a Conductive Crack and Electrode in Piezoelectric Materials
,”
Int. J. Eng. Sci.
,
44
(
3–4
), pp.
256
272
.10.1016/j.ijengsci.2005.12.001
158.
Herrmann
,
K. P.
,
Loboda
,
V. V.
, and
Govorukha
,
V. B.
,
2001
, “
On Contact Zone Models for an Electrically Impermeable Interface Crack in a Piezoelectric Bimaterial
,”
Int. J. Fract.
,
111
(
3
), pp.
203
227
.10.1023/A:1012269616735
159.
Loboda
,
V.
,
Lapusta
,
Y.
, and
Sheveleva
,
A.
,
2007
, “
Electro-Mechanical Pre-Fracture Zones for an Electrically Permeable Interface Crack in a Piezoelectric Bimaterial
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5538
5553
.10.1016/j.ijsolstr.2007.01.013
160.
Loboda
,
V.
,
Lapusta
,
Y.
, and
Sheveleva
,
A.
,
2010
, “
Limited Permeable Crack in an Interlayer Between Piezoelectric Materials With Different Zones of Electrical Saturation and Mechanical Yielding
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1795
1806
.10.1016/j.ijsolstr.2010.03.015
161.
Zhao
,
M. H.
,
Yang
,
F.
, and
Liu
,
T.
,
2006
, “
Analysis of a Penny-Shaped Crack in a Magneto-Electro-Elastic Medium
,”
Philos. Mag.
,
86
(
28
), pp.
4397
4416
.10.1080/14786430600724439
162.
Wang
,
B. L.
,
Sun
,
Y. G.
, and
Zhang
,
H. Y.
,
2008
, “
Analysis of a Penny-Shaped Crack in Magnetoelectroelastic Materials
,”
J. Appl. Phys.
,
103
, p.
083530
.10.1063/1.2901180
163.
Zheng
,
R. F.
,
Wu
,
T. H.
,
Li
,
X. Y.
, and
Chen
,
W. Q.
,
2018
, “
Analytical and Numerical Analyses for a Penny-Shaped Crack Embedded in an Infinite Transversely Isotropic Multi-Ferroic Composite Medium: Semi-Permeable Electro-Magnetic Boundary Condition
,”
Smart Mater. Struct.
,
27
(
6
), p.
065020
.10.1088/1361-665X/aabc30
164.
Zhong
,
X. C.
,
2010
, “
Thickness Effects for a Penny-Shaped Dielectric Crack in a Magnetoelectroelastic Layer
,”
Philos. Mag.
,
90
(
10
), pp.
1327
1346
.10.1080/14786430903321404
165.
Liu
,
L. L.
, and
Feng
,
W. J.
,
2019
, “
Dugdale Plastic Zone Model of a Penny-Shaped Crack in a Magnetoelectroelastic Cylinder Under Magnetoelectroelastic Loads
,”
Arch. Appl. Mech.
,
89
(
2
), pp.
291
305
.10.1007/s00419-018-1467-6
166.
Chang
,
D. M.
,
Liu
,
X. F.
,
Wang
,
B. L.
,
Liu
,
L.
,
Wang
,
T. G.
,
Wang
,
Q.
, and
Han
,
J. X.
,
2020
, “
Exact Solutions to Magneto-Electro-Thermo-Elastic Fields for a Cracked Cylinder Composite During Thermal Shock
,”
Int. J. Mech. Mater. Des.
,
16
(
1
), pp.
3
18
.10.1007/s10999-019-09456-y
167.
Wu
,
T. H.
,
Li
,
X. Y.
, and
Tang
,
H. P.
,
2021
, “
Three-Dimensional Fields in an Infinite Transversely Isotropic Magneto-Electro-Elastic Space With Multiple Coplanar Penny-Shaped Cracks
,”
Int. J. Eng. Sci.
,
159
, p.
103434
.10.1016/j.ijengsci.2020.103434
168.
Wang
,
B. L.
, and
Han
,
J. C.
,
2006
, “
Discussion on Electromagnetic Crack Face Boundary Conditions for the Fracture Mechanics of Magneto-Electro-Elastic Materials
,”
Acta Mech. Sin.
,
22
(
3
), pp.
233
242
.10.1007/s10409-006-0102-x
169.
Rekik
,
M.
,
El-Borgi
,
S.
,
El-Borgi
,
Z.
, and
Ounaies
,
Z.
,
2012
, “
The Axisymmetric Problem of a Partially Insulated Mixed-Mode Crack Embedded in a Functionally Graded Pyro Magneto-Electro-Elastic Infinite Medium Subjected to Thermal Loading
,”
J. Therm. Stresses
,
35
(
11
), pp.
947
975
.10.1080/01495739.2012.720216
170.
Rekik
,
M.
,
El-Borgi
,
S.
, and
Ounaies
,
Z.
,
2014
, “
An Axisymmetric Problem of an Embedded Mixed-Mode Crack in a Functionally Graded Magnetoelectroelastic Infinite Medium
,”
Appl. Math. Model.
,
38
(
4
), pp.
1193
1210
.10.1016/j.apm.2013.08.006
171.
Zhao
,
M. H.
,
Guo
,
Z. H.
,
Fan
,
C. Y.
, and
Pan
,
E.
,
2013
, “
Electric and Magnetic Polarization Saturation and Breakdown Models for Penny Shaped Cracks in 3D Magnetoelectroelastic Media
,”
Int. J. Solids Struct.
,
50
(
10
), pp.
1747
1754
.10.1016/j.ijsolstr.2013.02.003
172.
Zhao
,
M. H.
,
Guo
,
Z. H.
, and
Fan
,
C. Y.
,
2013
, “
Numerical Method for Nonlinear Models of Penny-Shaped Cracks in Three-Dimensional Magnetoelectroelastic Media
,”
Int. J. Fract.
,
183
(
1
), pp.
49
61
.10.1007/s10704-013-9874-8
173.
Feng
,
W. J.
,
Pan
,
E.
, and
Wang
,
X.
,
2007
, “
Dynamic Fracture Analysis of a Penny-Shaped Crack in a Magnetoelectroelastic Layer
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7955
7974
.10.1016/j.ijsolstr.2007.05.020
174.
Zhong
,
X. C.
, and
Zhang
,
K. S.
,
2010
, “
Dynamic Analysis of a Penny-Shaped Dielectric Crack in a Magnetoelectroelastic Solid Under Impacts
,”
Eur. J. Mech. A - Solids
,
29
(
2
), pp.
242
252
.10.1016/j.euromechsol.2009.10.002
175.
Wang
,
B. L.
, and
Niraula
,
O. P.
,
2007
, “
Transient Thermal Fracture Analysis of Transversely Isotropic Magneto-Electro-Elastic Materials
,”
J. Therm. Stresses
,
30
(
3
), pp.
297
317
.10.1080/01495730601187935
176.
Li
,
Y. S.
,
Jiang
,
Y. Y.
,
Ren
,
J. H.
, and
Cai
,
Z. Y.
,
2011
, “
An Annular Interfacial Crack Between Dissimilar Magnetoelectroelastic Layers
,”
Smart Mater. Struct.
,
20
(
8
), p.
085011
.10.1088/0964-1726/20/8/085011
177.
Li
,
Y. S.
,
Ren
,
J. H.
,
Feng
,
W. J.
, and
Wang
,
W.
,
2013
, “
Dynamic Fracture Analysis of an Annular Interfacial Crack Between Dissimilar Magnetoelectroelastic Layers
,”
Arch. Appl. Mech.
,
83
(
1
), pp.
151
170
.10.1007/s00419-012-0643-3
178.
Zheng
,
R. F.
,
Wu
,
T. H.
, and
Li
,
X. Y.
,
2019
, “
Elliptic Crack in Transversely Isotropic Magneto-Electro-Elasticity Under Shear Loading
,”
Int. J. Eng. Sci.
,
134
, pp.
47
65
.10.1016/j.ijengsci.2018.10.006
179.
Zheng
,
R. F.
,
Wu
,
T. H.
,
Li
,
X. Y.
, and
Yuan
,
J. H.
,
2019
, “
Mode I Vertical Elliptic Crack Problem of Multiferroic Composites
,”
Int. J. Eng. Sci.
,
141
, pp.
95
111
.10.1016/j.ijengsci.2019.05.017
180.
Zheng
,
R. F.
,
Wu
,
T. H.
, and
Li
,
X. Y.
,
2019
, “
Three-Dimensional Coupling Field for an Electromagnetically Semi-Permeable Elliptical Crack in Multiferroic Composite Media
,”
Eng. Fract. Mech.
,
205
, pp.
418
438
.10.1016/j.engfracmech.2018.10.028
181.
Wu
,
T. H.
,
Li
,
X. Y.
, and
Chen
,
X. H.
,
2020
, “
Three-Dimensional Closed-Form Solution to Elliptical Crack Problem in Magneto-Electro-Elasticity: Electrically and Magnetically Induced Maxwell Stress Boundary Condition
,”
Int. J. Solids Struct.
,
202
, pp.
729
744
.10.1016/j.ijsolstr.2020.07.003
182.
Zhao
,
M. H.
,
Fan
,
C. Y.
,
Yang
,
F.
, and
Liu
,
T.
,
2007
, “
Analysis Method of Planar Cracks of Arbitrary Shape in the Isotropic Plane of a Three-Dimensional Transversely Isotropic Magnetoelectroelastic Medium
,”
Int. J. Solids Struct.
,
44
(
13
), pp.
4505
4523
.10.1016/j.ijsolstr.2006.11.039
183.
Zhao
,
M. H.
,
Guo
,
Z. H.
,
Fan
,
C. Y.
,
Zhang
,
R. L.
, and
Pan
,
E.
,
2013
, “
Three-Dimensional Vertical Cracks in Magnetoelectroelastic Media Via the Extended Displacement Discontinuity Boundary Integral Equation Method
,”
J. Intell. Mater. Syst. Struct.
,
24
(
16
), pp.
1969
1984
.10.1177/1045389X13488249
184.
Zhao
,
M. H.
,
Li
,
N.
,
Fan
,
C. Y.
, and
Xu
,
G. T.
,
2008
, “
Analysis Method of Planar Interface Cracks of Arbitrary Shape in Three-Dimensional Transversely Isotropic Magnetoelectroelastic Bimaterials
,”
Int. J. Solids Struct.
,
45
(
6
), pp.
1804
1824
.10.1016/j.ijsolstr.2007.10.024
185.
Zhang
,
P. W.
,
2011
, “
Dynamic Fracture of a Rectangular Limited-Permeable Crack in Magneto-Electro-Elastic Media Under a Time-Harmonic Elastic P-Wave
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
553
566
.10.1016/j.ijsolstr.2010.10.020
186.
Zhou
,
Z. G.
,
Zhang
,
P. W.
, and
Wu
,
L. Z.
,
2012
, “
Basic Solutions of a 3D Rectangular Limited-Permeable Crack or Two 3D Rectangular Limited-Permeable Cracks in the Piezoelectric/Piezomagnetic Composite Materials
,”
Appl. Math. Model.
,
36
(
6
), pp.
2404
2428
.10.1016/j.apm.2011.08.035
187.
Bogomol'nyi
,
V. M.
,
2007
, “
Electroelasticity Relations and Fracture Mechanics of Piezoelectric Structures
,”
ASME Appl. Mech. Rev.
,
60
(
1
), pp.
21
36
.10.1115/1.2375142
188.
Kaczyński
,
A.
, and
Kaczyński
,
B.
,
2018
, “
On 3D Problem of Vertically Uniform Heat Flow Disturbed by an Anticrack in a Transversely Isotropic Magnetoelectroelastic Space
,”
Eur. J. Mech. A - Solids
,
69
, pp.
192
200
.10.1016/j.euromechsol.2018.01.001
189.
Rangelov
,
T.
,
Stoynov
,
Y.
, and
Dineva
,
P.
,
2011
, “
Dynamic Fracture Behavior of Functionally Graded Magnetoelectroelastic Solids by BIEM
,”
Int. J. Solids Struct.
,
48
(
20
), pp.
2987
2999
.10.1016/j.ijsolstr.2011.06.016
190.
Fang
,
D. N.
,
Li
,
F. X.
, and
Liu
,
B.
,
2013
, “
Advances in Developing Electromechanically Coupled Computational Methods for Piezoelectrics/Ferroelectrics at Multiscale
,”
ASME Appl. Mech. Rev.
,
65
(
6
), p.
060802
.10.1115/1.4025633
191.
Wang
,
B. L.
, and
Mai
,
Y. W.
,
2007
, “
Self-Consistent Analysis of Coupled Magnetoelectroelastic Fracture-Theoretical Investigation and Finite Element Verification
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
13–16
), pp.
2044
2054
.10.1016/j.cma.2006.11.006
192.
Rao
,
B.
, and
Kuna
,
M.
,
2008
, “
Interaction Integrals for Fracture Analysis of Functionally Graded Magnetoelectroelastic Materials
,”
Int. J. Fract.
,
153
(
1
), pp.
15
37
.10.1007/s10704-008-9285-4
193.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
194.
Yazid
,
A.
, and
Abdelmadjid
,
H.
,
2008
, “
A Survey of the Extended Finite Element
,”
Comput. Struct.
,
86
(
11
), pp.
1141
1151
.10.1016/j.compstruc.2007.11.001
195.
Mohammadi
,
S.
,
2008
,
Extended Finite Element Method for Fracture Analysis of Structures
,
John Wiley & Sons, Hoboken, NJ.
196.
Zhuang
,
Z.
,
Liu
,
Z.
,
Cheng
,
B.
, and
Liao
,
J.
,
2014
,
Extended Finite Element Method
,
Elsevier/Tsinghua University Press
,
Beijing, China
.
197.
Rojas-Díaz
,
R.
,
Sukumar
,
N.
,
Sáez
,
A.
, and
García-Sánchez
,
F.
,
2011
, “
Fracture in Magnetoelectroelastic Materials Using the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
88
(
12
), pp.
1238
1259
.10.1002/nme.3219
198.
Bhargava
,
R. R.
, and
Sharma
,
K.
,
2012
, “
Application of X-FEM to Study Two-Unequal-Collinear Cracks in 2-D Finite Magnetoelectroelastic Specimen
,”
Comput. Mater. Sci.
,
60
, pp.
75
98
.10.1016/j.commatsci.2012.03.013
199.
Bui
,
T. Q.
, and
Zhang
,
C.
,
2013
, “
Analysis of Generalized Dynamic Intensity Factors of Cracked Magnetoelectroelastic Solids by X-FEM
,”
Finite Elem. Anal. Des.
,
69
, pp.
19
36
.10.1016/j.finel.2013.02.001
200.
Yu
,
H.
,
Wu
,
L.
, and
Li
,
H.
,
2014
, “
A Domain-Independent Interaction Integral for Magneto-Electro-Elastic Materials
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
336
351
.10.1016/j.ijsolstr.2013.10.005
201.
Zhu
,
S.
,
Yu
,
H.
,
Zhang
,
Y.
,
Yan
,
H.
,
Man
,
S.
, and
Guo
,
L.
,
2023
, “
Generalized Dynamic Domain-Independent Interaction Integral in the Transient Fracture Investigation of Magneto-Electro-Elastic Composites
,”
Eng. Fract. Mech.
,
292
, p.
109653
.10.1016/j.engfracmech.2023.109653
202.
Zhu
,
S.
,
Yu
,
H.
,
Hao
,
L.
,
Shen
,
Z.
,
Wang
,
J.
, and
Guo
,
L.
,
2023
, “
Interaction Integral Method for Thermal Fracture of Nonhomogeneous Magneto-Electro-Elastic Materials
,”
Eur. J. Mech. A - Solids
,
98
, p.
104871
.10.1016/j.euromechsol.2022.104871
203.
Jena
,
J.
,
Singh
,
S. K.
, and
Singh
,
I. V.
,
2024
, “
A Numerical Study of Semipermeable Crack in Magneto-Electro-Elastic Material With Maxwell Stress
,”
Eng. Fract. Mech.
,
299
, p.
109939
.10.1016/j.engfracmech.2024.109939
204.
Ma
,
P.
,
Su
,
R. K. L.
, and
Feng
,
W. J.
,
2016
, “
Crack Tip Enrichment Functions for Extended Finite Element Analysis of Two-Dimensional Interface Cracks in Anisotropic Magnetoelectroelastic Bimaterials
,”
Eng. Fract. Mech.
,
161
, pp.
21
39
.10.1016/j.engfracmech.2016.04.038
205.
Yan
,
Z.
,
Feng
,
W. J.
,
Zhang
,
C.
, and
Liu
,
J. X.
,
2019
, “
The Extended Finite Element Method With Novel Crack Tip Enrichment Functions for Dynamic Fracture Analysis of Interfacial Cracks in Piezoelectric–Piezomagnetic Bi-Layered Structures
,”
Comput. Mech.
,
64
(
5
), pp.
1303
1319
.10.1007/s00466-019-01709-z
206.
Yan
,
Z.
,
Feng
,
W. J.
, and
Zhang
,
C.
,
2021
, “
Interfacial Crack Growth in Piezoelectric-Piezomagnetic Bi-Layered Structures With a Modified Mechanical Energy Release Rate Criterion
,”
Compos. Struct.
,
262
, p.
113344
.10.1016/j.compstruct.2020.113344
207.
Liu
,
Y. J.
,
Mukherjee
,
S.
, and
Nishimura
,
N.
,
2012
, “
Recent Advances and Emerging Applications of the Boundary Element Method
,”
ASME Appl. Mech. Rev.
,
64
(
3
), p.
030802
.10.1115/1.4005491
208.
Aliabadi
,
M. H.
,
1997
, “
Boundary Element Formulations in Fracture Mechanics
,”
ASME Appl. Mech. Rev.
,
50
(
2
), pp.
83
96
.10.1115/1.3101690
209.
Wang
,
Y. B.
, and
Chau
,
K. T.
,
1997
, “
A New Boundary Element for Plane Elastic Problems Involving Cracks and Holes
,”
Int. J. Fract.
,
89
, pp.
1
20
.10.1023/A:1007469816603
210.
Snyder
,
M. D.
, and
Cruse
,
T. A.
,
1975
, “
Boundary Integral Equation Analysis of Cracked Anisotropic Plates
,”
Int. J. Fract.
,
11
(
2
), pp.
315
328
.10.1007/BF00038898
211.
Crouch
,
S. L.
,
1976
, “
Solution of Plane Elasticity Problems by the Displacement Discontinuity Method
,”
Int. J. Numer. Methods Eng.
,
10
(
2
), pp.
301
343
.10.1002/nme.1620100206
212.
Blandford
,
G. E.
,
Ingraffea
,
A. R.
, and
Liggett
,
J. A.
,
1981
, “
Two Dimensional Stress Intensity Factor Computations Using the Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
17
(
3
), pp.
387
404
.10.1002/nme.1620170308
213.
Hong
,
H.-K.
, and
Chen
,
J. T.
,
1988
, “
Derivations of Integral Equations of Elasticity
,”
J. Eng. Mech.
,
114
(
6
), pp.
1028
1044
.10.1061/(ASCE)0733-9399(1988)114:6(1028)
214.
Hong
,
H.-K.
, and
Chen
,
J. T.
,
1999
, “
Review of Dual Boundary Element Methods With Emphasis on Hypersingular Integrals and Divergent Series
,”
ASME Appl. Mech. Rev.
,
52
(
1
), pp.
17
33
.10.1115/1.3098922
215.
Portela
,
A.
,
Aliabadi
,
M. H.
, and
Rooke
,
D. P.
,
1992
, “
The Dual Boundary Element Method: Effective Implementation for Crack Problems
,”
Int. J. Numer. Methods Eng.
,
33
(
6
), pp.
1269
1287
.10.1002/nme.1620330611
216.
Weaver
,
J.
,
1977
, “
Three Dimensional Crack Analysis
,”
Int. J. Solids Struct.
,
13
, pp.
321
330
.10.1016/0020-7683(77)90016-6
217.
Wang
,
Y. B.
, and
Chen
,
W. J.
,
1993
, “
Interaction of Two Equal Coplanar Square Cracks in Three Dimensional Elasticity
,”
Int. J. Solids Struct.
,
30
(
23
), pp.
3315
3320
.10.1016/0020-7683(93)90116-O
218.
Ang
,
W. T.
, and
Park
,
Y. S.
,
1997
, “
Hypersinglar Integral Equations for Arbitrarily Located Planar Cracks in an Anisotropic Elastic Bimaterial
,”
Eng. Anal. Boundary Elem.
,
20
(
2
), pp.
135
143
.10.1016/S0955-7997(97)00057-X
219.
Zhang
,
C.
,
2002
, “
A 2-D Time-Domain BIEM for Dynamic Analysis of Cracked Orthotropic Solids
,”
Comput. Model. Eng. Sci.
,
3
, pp.
381
398
.10.3970/cmes.2002.003.381
220.
Zhang
,
C.
,
2002
, “
A 2-D Hypersingular Time-Domain Traction BEM for Transient Elastodynamic Crack Analysis
,”
Wave Motion
,
35
(
1
), pp.
17
40
.10.1016/S0165-2125(01)00081-6
221.
Zhang
,
C.
,
1991
, “
A Novel Derivation of Non-Hypersingular Time-Domain BIE Formulation for Transient Elastodynamic Crack Analysis
,”
Int. J. Solids Struct.
,
28
(
3
), pp.
267
281
.10.1016/0020-7683(91)90193-J
222.
Zhang
,
C.
, and
Gross
,
D.
,
1993
, “
A Non-Hypersingular Time-Domain BIEM for 3-D Transient Elastodynamic Crack Analysis
,”
Int. J. Numer. Methods Eng.
,
36
(
17
), pp.
2997
3017
.10.1002/nme.1620361709
223.
Dineva
,
P.
,
Rangelov
,
T.
, and
Gross
,
D.
,
2005
, “
BIEM for 2D Steady-State Problems in Cracked Anisotropic Materials
,”
Eng. Anal. Boundary Elem.
,
29
(
7
), pp.
689
698
.10.1016/j.enganabound.2005.02.006
224.
Zhao
,
M. H.
,
Zhang
,
Q. Y.
,
Li
,
X. F.
,
Guo
,
Y. G.
,
Fan
,
C. Y.
, and
Lu
,
C. S.
,
2019
, “
An Iterative Approach for Analysis of Cracks With Exact Boundary Conditions in Finite Magnetoelectroelastic Solids
,”
Smart Mater. Struct.
,
28
(
5
), p.
055025
.10.1088/1361-665X/ab0eb0
225.
García-Sánchez
,
F.
,
Rojas-Díaz
,
R.
,
Sáez
,
A.
, and
Zhang
,
C.
,
2007
, “
Fracture of Magnetoelectroelastic Composite Materials Using Boundary Element Method (BEM)
,”
Theor. Appl. Fract. Mech.
,
47
(
3
), pp.
192
204
.10.1016/j.tafmec.2007.01.008
226.
Dong
,
C. Y.
,
Lo
,
S. H.
, and
Antes
,
H.
,
2008
, “
Fracture Analysis in 2D Magneto-Electro-Elastic Media by the Boundary Element Method
,”
Comput. Mech.
,
41
(
2
), pp.
207
217
.10.1007/s00466-007-0179-5
227.
Pasternak
,
I.
,
2012
, “
Doubly Periodic Arrays of Cracks and Thin Inhomogeneities in an Infinite Magnetoelectroelastic Medium
,”
Eng. Anal. Boundary Elem.
,
36
(
5
), pp.
799
811
.10.1016/j.enganabound.2011.12.004
228.
Hattori
,
G.
, and
Sáez
,
A.
,
2013
, “
Crack Identification in Magnetoelectroelastic Materials Using Neural Networks, Self-Organizing Algorithms and Boundary Element Method
,”
Comput. Struct.
,
125
, pp.
187
199
.10.1016/j.compstruc.2013.05.005
229.
Rojas-Díaz
,
R.
,
Denda
,
M.
,
García-Sánchez
,
F.
, and
Sáez
,
A.
,
2012
, “
Dual BEM Analysis of Different Crack Face Boundary Conditions in 2D Magnetoelectroelastic Solids
,”
Eur. J. Mech. A - Solids
,
31
(
1
), pp.
152
162
.10.1016/j.euromechsol.2011.08.002
230.
Rojas-Díaz
,
R.
,
Sáez
,
F.
, and
García-Sánchez
,
A.
,
2010
, “
Analysis of Cracked Magnetoelectroelastic Composites Under Time-Harmonic Loading
,”
Int. J. Solids Struct.
,
47
(
1
), pp.
71
80
.10.1016/j.ijsolstr.2009.09.011
231.
Rojas-Díaz
,
R.
,
García-Sánchez
,
F.
,
Sáez
,
A.
,
Rodríguez-Mayorga
,
E.
, and
Zhang
,
C.
,
2011
, “
Fracture Analysis of Plane Piezoelectric/Piezomagnetic Multiphase Composites Under Transient Loading
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
45–46
), pp.
2931
2942
.10.1016/j.cma.2011.06.004
232.
Wünsche
,
M.
,
Sáez
,
A.
,
García-Sánchez
,
F.
, and
Zhang
,
C. Z.
,
2009
, “
Cracks in Magnetoelectroelastic Solids Under Impact Loading
,”
Key Eng. Mater.
,
417–418
, pp.
377
380
.10.4028/www.scientific.net/KEM.417-418.377
233.
Wünsche
,
M.
,
Sáez
,
A.
,
Zhang
,
C.
, and
García-Sánchez
,
F.
,
2011
, “
Semi-Permeable Cracks in Magnetoelectroelastic Solids Under Impact Loading
,”
Key Eng. Mater.
,
488–489
, pp.
751
754
.10.4028/www.scientific.net/KEM.488-489.751
234.
Wünsche
,
M.
,
Zhang
,
C.
,
Sladek
,
J.
,
Sladek
,
V.
,
Sáez
,
A.
, and
García-Sánchez
,
F.
,
2013
, “
The Influences of Non-Linear Electrical, Magnetic and Mechanical Boundary Conditions on the Dynamic Intensity Factors of Magnetoelectroelastic Solids
,”
Eng. Fract. Mech.
,
97
, pp.
297
313
.10.1016/j.engfracmech.2012.08.006
235.
Wünsche
,
M.
,
Sáez
,
A.
,
García-Sánchez
,
F.
,
Zhang
,
C. Z.
, and
Domínguez
,
J.
,
2014
, “
Transient Dynamic Analysis of Cracked Multifield Solids With Consideration of Crack-Face Contact and Semi-Permeable Electric/Magnetic Boundary Conditions
,”
Key Eng. Mater.
,
618
, pp.
123
150
.10.4028/www.scientific.net/KEM.618.123
236.
Wünsche
,
M.
,
Zhang
,
C.
,
Sáez
,
A.
, and
García-Sánchez
,
F.
,
2010
, “
Transient Dynamic Analysis of Cracked Magnetoelectroelastic Composites by a Hypersingular Time-Domain BEM
,”
Proc. Appl. Math. Mech. (PAMM)
,
10
(
1
), pp.
139
140
.10.1002/pamm.201010062
237.
Wünsche
,
M.
,
Sáez
,
A.
,
García-Sánchez
,
F.
, and
Zhang
,
C.
,
2012
, “
Transient Dynamic Crack Analysis in Linear Magnetoelectroelastic Solids by a Hypersingular Time-Domain BEM
,”
Eur. J. Mech. A - Solids
,
32
, pp.
118
130
.10.1016/j.euromechsol.2011.07.007
238.
Lei
,
J.
,
Zhang
,
C.
, and
Bui
,
T. Q.
,
2015
, “
Transient Dynamic Interface Crack Analysis in Magnetoelectroelastic Bi-Materials by a Time-Domain BEM
,”
Eur. J. Mech. A - Solids
,
49
, pp.
146
157
.10.1016/j.euromechsol.2014.07.010
239.
Liu
,
J. X.
,
Liu
,
X. L.
, and
Zhao
,
Y. B.
,
2001
, “
Green's Functions for Anisotropic Magnetoelectroelastic Solids With an Elliptical Cavity or a Crack
,”
Int. J. Eng. Sci.
,
39
(
12
), pp.
1405
1418
.10.1016/S0020-7225(01)00005-2
240.
Qin
,
Q. H.
,
2004
, “
Green's Functions of Magnetoelectroelastic Solids With a Half-Plane Boundary or Bimaterial Interface
,”
Philos. Mag. Lett.
,
84
(
12
), pp.
771
779
.10.1080/09500830500061508
241.
Rojas-Díaz
,
R.
,
Sáez
,
A.
,
García-Sánchez
,
F.
, and
Zhang
,
C.
,
2008
, “
Time-Harmonic Green's Functions for Anisotropic Magnetoelectroelasticity
,”
Int. J. Solids Struct.
,
45
(
1
), pp.
144
158
.10.1016/j.ijsolstr.2007.07.024
242.
Zhao
,
M. H.
,
Xu
,
G. T.
, and
Fan
,
C. Y.
,
2010
, “
Numerical Method of Crack Analysis in 2D Finite Magnetoelectroelastic Media
,”
Comput. Mech.
,
45
(
5
), pp.
401
413
.10.1007/s00466-009-0459-3
243.
Feng
,
W. J.
,
Li
,
Y. S.
,
Han
,
X.
, and
Xu
,
Z. H.
,
2011
, “
Application of the Extended Traction Boundary Element-Free Method to the Fracture of Two-Dimensional Infinite Magnetoelectroelastic Solid
,”
Sci. China: Phys., Mech. Astron.
,
54
(
6
), pp.
1141
1153
.10.1007/s11433-010-4243-3
244.
Li
,
C.
, and
Tong
,
L.
,
2015
, “
2D Fracture Analysis of Magnetoelectroelastic Composites by the SBFEM
,”
Compos. Struct.
,
132
, pp.
984
994
.10.1016/j.compstruct.2015.07.015
245.
Zhu
,
B. J.
, and
Qin
,
T. Y.
,
2007
, “
Hypersingular Integral Equation Method for a Three Dimensional Crack in Anisotropic Electro-Magneto-Elastic Bimaterials
,”
Theor. Appl. Fract. Mech.
,
47
(
3
), pp.
219
232
.10.1016/j.tafmec.2007.01.007
246.
Zhu
,
B. J.
,
Shi
,
Y. L.
,
Qin
,
T. Y.
,
Sukop
,
M.
,
Yu
,
S. H.
, and
Li
,
Y. B.
,
2009
, “
Mixed-Mode Stress Intensity Factors of 3D Interface Crack in Fully Coupled Electromagnetothermoelastic Multiphase Composites
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2669
2679
.10.1016/j.ijsolstr.2009.02.010
247.
Zhao
,
Y.
,
Zhao
,
M.
,
Pan
,
E.
, and
Fan
,
C.
,
2015
, “
Green's Functions and Extended Displacement Discontinuity Method for Interfacial Cracks in Three-Dimensional Transversely Isotropic Magneto-Electro-Elastic Bi-Materials
,”
Int. J. Solids Struct.
,
52
, pp.
56
71
.10.1016/j.ijsolstr.2014.09.018
248.
Zhao
,
Y.
,
Pan
,
E.
, and
Zhao
,
M.
,
2015
, “
Displacement Discontinuity Analysis of a Nonlinear Interfacial Crack in Three-Dimensional Transversely Isotropic Magneto-Electro-Elastic Bi-Materials
,”
Eng. Anal. Boundary Elem.
,
61
, pp.
254
264
.10.1016/j.enganabound.2015.08.001
249.
Lucy
,
B. L.
,
1977
, “
A Numerical Approach to Testing the Fission Hypothesis
,”
Astron. J.
,
82
(
12
), pp.
1013
1024
.10.1086/112164
250.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.10.1093/mnras/181.3.375
251.
Chen
,
Y.
,
Lee
,
J.
, and
Eskandarian
,
A.
,
2006
,
Meshless Methods in Solid Mechanics
,
Springer
,
New York
.
252.
Atluri
,
S. N.
, and
Zhu
,
T.
,
1998
, “
New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics
,”
Comput. Mech.
,
22
(
2
), pp.
117
127
.10.1007/s004660050346
253.
Sladek
,
J.
,
Sladek
,
V.
,
Solek
,
P.
, and
Pan
,
E.
,
2008
, “
Fracture Analysis of Cracks in Magneto-Electro-Elastic Solids by the MLPG
,”
Comput. Mech.
,
42
(
5
), pp.
697
714
.10.1007/s00466-008-0269-z
254.
Sladek
,
J.
,
Sladek
,
V.
,
Solek
,
P.
, and
Zhang
,
C.
,
2010
, “
Fracture Analysis in Continuously Nonhomogeneous Magneto-Electro-Elastic Solids Under a Thermal Load by the MLPG
,”
Int. J. Solids Struct.
,
47
(
10
), pp.
1381
1391
.10.1016/j.ijsolstr.2010.01.025
255.
Sladek
,
J.
,
Sladek
,
V.
,
Stanak
,
P.
,
Zhang
,
C.
, and
Wünsche
,
M.
,
2011
, “
An Interaction Integral Method for Computing Fracture Parameters in Functionally Graded Magnetoelectroelastic Composites
,”
Comput. Mater. Continua
,
23
(
1
), pp.
35
68
.10.3970/cmc.2011.023.035
256.
Sladek
,
J.
,
Sladek
,
V.
,
Zhang
,
C.
, and
Wünsche
,
M.
,
2012
, “
Semi-Permeable Crack Analysis in Magnetoelectroelastic Solids
,”
Smart Mater. Struct.
,
21
(
2
), p.
025003
.10.1088/0964-1726/21/2/025003
257.
Li
,
Y. S.
,
Feng
,
W. J.
, and
Xu
,
Z. H.
,
2009
, “
Fracture Analysis of Cracked 2D Planar and Axisymmetric Problems of Magneto-Electro-Elastic Materials by the MLPG Coupled With FEM
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
30–32
), pp.
2347
2359
.10.1016/j.cma.2009.02.021
258.
Bui
,
T. Q.
,
Hirose
,
S.
,
Zhang
,
C.
,
Rabczuk
,
T.
,
Wu
,
C. T.
,
Saitoh
,
T.
, and
Lei
,
J.
,
2016
, “
Extended Isogeometric Analysis for Dynamic Fracture in Multiphase Piezoelectric/Piezomagnetic Composites
,”
Mech. Mater.
,
97
, pp.
135
163
.10.1016/j.mechmat.2016.03.001
259.
Singh
,
S. K.
, and
Singh
,
I. V.
,
2021
, “
Extended Isogeometric Analysis for Fracture in Functionally Graded Magneto-Electro-Elastic Material
,”
Eng. Fract. Mech.
,
247
, p.
107640
.10.1016/j.engfracmech.2021.107640
260.
Zhou
,
Z. H.
,
Yu
,
X.
,
Yang
,
Z. T.
,
Xu
,
W.
,
Lim
,
C. W.
, and
Xu
,
X. S.
,
2019
, “
An Isogeometric-Symplectic Coupling Approach for Fracture Analysis of Magnetoelectroelastic Bimaterials With Crack Terminating at the Interface
,”
Eng. Fract. Mech.
,
216
, p.
106510
.10.1016/j.engfracmech.2019.106510
261.
Tan
,
Y.
,
Liu
,
C.
,
Zhao
,
J.
,
He
,
Y.
,
Li
,
P.
, and
Li
,
X.
,
2023
, “
Phase Field Model for Brittle Fracture in Multiferroic Materials
,”
Comput. Methods Appl. Mech. Eng.
,
414
, p.
116193
.10.1016/j.cma.2023.116193
262.
Wang
,
B.
,
Han
,
J. C.
, and
Du
,
S.
,
2008
,
Coupled Thermal-Electro-Magneto-Mechanical Cracking of Non-Homogeneous Media
,
Nova Science
,
New York
.
263.
Chen
,
X. H.
, and
Mai
,
Y. W.
,
2013
,
Fracture Mechanics of Electromagnetic Material: Nonlinear Field Theory and Applications
,
Imperial College Press
,
London, UK
.
264.
Ritchie
,
R. O.
,
1999
, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
,
100
(
1
), pp.
55
83
.10.1023/A:1018655917051
265.
Cao
,
H.
, and
Evans
,
A. G.
,
2010
, “
Electric-Field-Induced Fatigue Crack Growth in Piezoelectrics
,”
J. Am. Ceram. Soc.
,
77
(
7
), pp.
1783
1786
.10.1111/j.1151-2916.1994.tb07051.x
266.
Radulovic
,
R.
,
Bruhns
,
O. T.
, and
Mosler
,
J.
,
2011
, “
Effective 3D Failure Simulations by Combining the Advantages of Embedded Strong Discontinuity Approaches and Classical Interface Elements
,”
Eng. Fract. Mech.
,
78
(
12
), pp.
2470
2485
.10.1016/j.engfracmech.2011.06.007
267.
Armero
,
F.
, and
Linder
,
C.
,
2009
, “
Numerical Simulation of Dynamic Fracture Using Finite Elements With Embedded Discontinuities
,”
Int. J. Fract.
,
160
(
2
), pp.
119
141
.10.1007/s10704-009-9413-9
268.
Rabczuk
,
T.
, and
Belytschko
,
T.
,
2004
, “
Cracking Particles: A Simplified Meshfree Method for Arbitrary Evolving Cracks
,”
Int. J. Numer. Methods Eng.
,
61
(
13
), pp.
2316
2343
.10.1002/nme.1151
269.
Rabczuk
,
T.
,
Song
,
J. H.
, and
Belytschko
,
T.
,
2009
, “
Simulations of Instability in Dynamic Fracture by the Cracking Particles Method
,”
Eng. Fract. Mech.
,
76
(
6
), pp.
730
741
.10.1016/j.engfracmech.2008.06.002
270.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2765
2778
.10.1016/j.cma.2010.04.011
271.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations
,”
Int. J. Numer. Methods Eng.
,
83
, pp.
1273
1311
.10.1002/nme.2861
272.
Rice
,
J. R.
,
Beltz
,
G. E.
, and
Sun
,
Y.
,
1992
,
Periers Framework for Dislocation Nucleation From a Crack Tip
,
Springer-Verlag
,
Berlin, Germany
.
273.
Tan
,
H. L.
, and
Yang
,
W.
,
1994
, “
Atomatic/Continuum Simulation of Interfacial Fracture, Part I: Atomatic Simulation
,”
Acta Mech. Sin.
,
10
(
2
), pp.
151
162
.10.1007/BF02486585
274.
Yang
,
W.
,
1995
,
Macroscopic and Microscopic Fracture Mechanics
,
National Defence Industry Press
,
Beijing, China
(in Chinese).
You do not currently have access to this content.