Abstract

In the framework of solid mechanics, the task of deriving material parameters from experimental data has recently reemerged with the progress in full-field measurement capabilities and the renewed advances of machine learning. In this context, new methods such as the virtual fields method and physics-informed neural networks have been developed as alternatives to the already established least-squares and finite element-based approaches. Moreover, model discovery problems are emerging and can be addressed in a parameter estimation framework. These developments call for a new unified perspective, which is able to cover both traditional parameter estimation methods and novel approaches in which the state variables or the model structure itself are inferred as well. Adopting concepts discussed in the inverse problems community, we distinguish between all-at-once and reduced approaches. With this general framework, we are able to structure a large portion of the literature on parameter estimation in computational mechanics—and we can identify combinations that have not yet been addressed, two of which are proposed in this paper. We also discuss statistical approaches to quantify the uncertainty related to the estimated parameters, and we propose a novel two-step procedure for identification of complex material models based on both frequentist and Bayesian principles. Finally, we illustrate and compare several of the aforementioned methods with mechanical benchmarks based on synthetic and experimental data.

References

1.
Avril
,
S.
,
Bonnet
,
M.
,
Bretelle
,
A.-S.
,
Grédiac
,
M.
,
Hild
,
F.
,
Ienny
,
P.
,
Latourte
,
F.
,
Lemosse
,
D.
,
Pagano
,
S.
,
Pagnacco
,
E.
, and
Pierron
,
F.
,
2008
, “
Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements
,”
Exp. Mech.
,
48
(
4
), pp.
381
402
.10.1007/s11340-008-9148-y
2.
Roux
,
S.
, and
Hild
,
F.
,
2020
, “
Optimal Procedure for the Identification of Constitutive Parameters From Experimentally Measured Displacement Fields
,”
Int. J. Solids Struct.
,
184
, pp.
14
23
.10.1016/j.ijsolstr.2018.11.008
3.
Kaltenbacher
,
B.
,
2016
, “
Regularization Based on All-At-Once Formulations for Inverse Problems
,”
SIAM J. Numer. Anal.
,
54
(
4
), pp.
2594
2618
.10.1137/16M1060984
4.
McLaughlin
,
J. R.
, and
Yoon
,
J.-R.
,
2004
, “
Unique Identifiability of Elastic Parameters From Time-Dependent Interior Displacement Measurement
,”
Inverse Probl.
,
20
(
1
), pp.
25
45
.10.1088/0266-5611/20/1/002
5.
Bertram
,
A.
,
2022
,
Compendium on Gradient Materials
,
Springer Cham
,
Switzerland
.
6.
Truesdell
,
C.
, and
Noll
,
W.
,
1965
,
The Non-Linear Field Theories of Mechanics
(Encyclopedia of Physics), Vol. III/3,
Springer Verlag
,
Berlin, Germany
.
7.
Haupt
,
P.
,
2002
,
Continuum Mechanics and Theory of Materials
, 2nd ed.,
Springer
,
Berlin, Germany
.
8.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis Horwood
,
Chichester, UK
.
9.
Haupt
,
P.
, and
Sedlan
,
K.
,
2001
, “
Viscoplasticity of Elastomeric Materials. Experimental Facts and Constitutive Modelling
,”
Archive Appl. Mech.
,
71
(
2–3
), pp.
89
109
.10.1007/s004190000102
10.
Hartmann
,
S.
,
2006
, “
A Thermomechanically Consistent Constitutive Model for Polyoxymethylene: Experiments, Material Modeling and Computation
,”
Archive Appl. Mech.
,
76
(
5–6
), pp.
349
366
.10.1007/s00419-006-0034-8
11.
Ellsiepen
,
P.
, and
Hartmann
,
S.
,
2001
, “
Remarks on the Interpretation of Current Non-Linear Finite-Element-Analyses as Differential-Algebraic Equations
,”
Int. J. Numer. Methods Eng.
,
51
(
6
), pp.
679
707
.10.1002/nme.179
12.
Shi
,
P.
, and
Babuska
,
I.
,
1997
, “
Analysis and Computation of a Cyclic Plasticity Model by Aid of Ddassl
,”
Comput. Mech.
,
19
(
5
), pp.
380
385
.10.1007/s004660050186
13.
Hartmann
,
S.
,
2002
, “
Computation in Finite Strain Viscoelasticity: Finite Elements Based on the Interpretation as Differential-Algebraic Equations
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
13–14
), pp.
1439
1470
.10.1016/S0045-7825(01)00332-2
14.
Hartmann
,
S.
,
Quint
,
K. J.
, and
Arnold
,
M.
,
2008
, “
On Plastic Incompressibility Within Time-Adaptive Finite Elements Combined With Projection Techniques
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
2
), pp.
178
193
.10.1016/j.cma.2008.06.011
15.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.10.1063/1.1722351
16.
Ziegler
,
H.
,
1957
, “
Thermodynamik Und Rheologische Probleme
,”
Ingenieur-Archiv
,
25
(
1
), pp.
58
70
.10.1007/BF00536645
17.
Rice
,
J.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
(
6
), pp.
433
455
.10.1016/0022-5096(71)90010-X
18.
Halphen
,
B.
, and
Nguyen
,
Q. S.
,
1975
, “
Sur Les Matériaux Standard Généralisés
,” J. Mecanique, 14(1), p.
26
.
19.
Lion
,
A.
,
1997
, “
A Physically Based Method to Represent the Thermomechanical Behaviour of Elastomers
,”
Acta Mech.
,
123
(
1–4
), pp.
1
25
.10.1007/BF01178397
20.
Schmidt
,
A.
, and
Gaul
,
L.
,
2002
, “
Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
37
55
.10.1023/A:1016552503411
21.
Valanis
,
K. C.
,
1971
, “
A Theory of Viscoplasticity Without a Yield Surface, Part I General theory
,”
Arch. Mech.
,
23
, pp.
517
533
.
22.
Hauswaldt
,
S.
,
2020
, “
Kontinuumsmechanische Werkstoffmodelle Zur Numerischen Simulation Von Stahlbauteilen im Brandfall
,” Ph.D. thesis,
BAM, Bundesanstalt für Materialprüfung
,
Berlin, Germany
.
23.
Ortiz
,
M.
, and
Stainier
,
L.
,
1999
, “
The Variational Formulation of Viscoplastic Constitutive Updates
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
3–4
), pp.
419
444
.10.1016/S0045-7825(98)00219-9
24.
Ehlers
,
S.
, and
Kujala
,
P.
,
2014
, “
Optimization-Based Material Parameter Identification for the Numerical Simulation of Sea Ice in Four-Point Bending
,”
J. Eng. Maritime Environ.
,
228
(
1
), pp.
70
80
.10.1177/1475090213486892
25.
Swain
,
D.
,
Thomas
,
B. P.
,
Karthigai Selvan
,
S. K.
, and
Philip
,
J.
,
2021
, “
Measurement of Elastic Properties of Materials Employing 3-D DIC in a Cornu's Experiment
,”
Mater. Res. Exp.
,
8
(
12
), p.
125201
.10.1088/2053-1591/ac452d
26.
Sguazzo
,
C.
, and
Hartmann
,
S.
,
2018
, “
Tensile and Shear Experiments Using Polypropylene/Polyethylene Foils at Different Temperatures
,”
Tech. Mech.
,
38
, pp.
166
190
.10.24352/UB.OVGU-2018-027
27.
Qing
,
Y.
,
Zillmann
,
B.
,
Suttner
,
S.
,
Gerstein
,
G.
,
Biasutti
,
M.
,
Tekkaya
,
A. M.
,
Wagner
,
M. F.-X.
,
Merklein
,
M.
,
Schaper
,
M.
,
Halle
,
T.
, and
Brosius
,
A.
,
2014
, “
An Experimental and Numerical Investigation of Different Shear Test Configurations for Sheet Metal Characterization
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1066
1074
.10.1016/j.ijsolstr.2013.12.006
28.
Mansouri
,
M. R.
,
Darijani
,
H.
, and
Baghani
,
M.
,
2017
, “
On the Correlation of FEM and Experiments for Hyperelastic Elastomer
,”
Exp. Mech.
,
57
(
2
), pp.
195
206
.10.1007/s11340-016-0236-0
29.
Hartmann
,
S.
,
Gilbert
,
R. R.
, and
Sguazzo
,
C.
,
2018
, “
Basic Studies in Biaxial Tensile Tests
,”
GAMM-Mitteilungen
,
41
(
1
), p.
e201800004
.10.1002/gamm.201800004
30.
Sutton
,
M. A.
,
Orteu
,
J.-J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements
,
Springer
,
New York
.
31.
Pierron
,
F.
, and
Grédiac
,
M.
,
2020
, “
Towards Material Testing 2.0. A Review of Test Design for Identification of Constitutive Parameters From Full–Field Measurements
,”
Strain
,
57
(
1
), p. e12370.10.1111/str.12370
32.
Mashayekhi
,
F.
,
Bardon
,
J.
,
Berthé
,
V.
,
Perrin
,
H.
,
Westermann
,
S.
, and
Addiego
,
F.
,
2021
, “
Fused Filament Fabrication of Polymers and Continuous Fiber-Reinforced Polymer Composites: Advances in Structure Optimization and Health Monitoring
,”
Polym.
,
13
(
5
), p.
789
.10.3390/polym13050789
33.
Pereira
,
G.
,
Frias
,
C.
,
Faria
,
H.
,
Frazão
,
O.
, and
Marques
,
A. T.
,
2013
, “
On the Improvement of Strain Measurements With FBG Sensors Embedded in Unidirectional Composites
,”
Polym. Test.
,
32
(
1
), pp.
99
105
.10.1016/j.polymertesting.2012.09.010
34.
Pereira
,
G.
,
McGugan
,
M.
, and
Mikkelsen
,
L. P.
,
2016
, “
Method for Independent Strain and Temperature Measurement in Polymeric Tensile Test Specimen Using Embedded FBG Sensors
,”
Polym. Test.
,
50
, pp.
125
134
.10.1016/j.polymertesting.2016.01.005
35.
Bay
,
B. K.
,
2008
, “
Methods and Applications of Digital Volume Correlation
,”
J. Strain Anal. Eng.
,
43
(
8
), pp.
745
760
.10.1243/03093247JSA436
36.
Gillard
,
F.
,
Boardman
,
R.
,
Mavrogordato
,
M.
,
Hollis
,
D.
,
Sinclair
,
I.
,
Pierron
,
F.
, and
Browne
,
M.
,
2014
, “
The Application of Digital Volume Correlation (DVC) to Study the Microstructural Behaviour of Trabecular Bone During Compression
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
480
499
.10.1016/j.jmbbm.2013.09.014
37.
Calloch
,
S.
, and
Marquis
,
D.
,
1999
, “
Triaxial Tension-Compression Tests for Multiaxial Cyclic Plasticity
,”
Int. J. Plast.
,
15
(
5
), pp.
521
549
.10.1016/S0749-6419(99)00005-4
38.
Huber
,
N.
, and
Tsakmakis
,
C.
,
1999
, “
Determination of Constitutive Properties From Spherical Indentation Data Using Neural Networks, Part I: The Case of Pure Kinematic Hardening in Plasticity Laws
,”
J. Mech. Phys. Solids
,
47
(
7
), pp.
1569
1588
.10.1016/S0022-5096(98)00109-4
39.
Huber
,
N.
, and
Tsakmakis
,
C.
,
1999
, “
Determination of Constitutive Properties From Spherical Indentation Data Using Neural Networks, Part II: Plasticity With Nonlinear Isotropic and Kinematic Hardening
,”
J. Mech. Phys. Solids
,
47
(
7
), pp.
1589
1607
.10.1016/S0022-5096(98)00110-0
40.
Nakamura
,
T.
,
Wang
,
T.
, and
Sampath
,
S.
,
2000
, “
Determination of Properties of Graded Materials by Inverse Analysis and Intrumented Indentation
,”
Acta Mater.
,
48
(
17
), pp.
4293
4306
.10.1016/S1359-6454(00)00217-2
41.
Polanco-Loria
,
M.
,
Daiyan
,
H.
, and
Grytten
,
F.
,
2012
, “
Material Parameters Identification: An Inverse Modeling Methodology Applicable For Thermoplastic Materials
,”
Polym. Eng. Sci.
,
52
(
2
), pp.
438
448
.10.1002/pen.22102
42.
Krämer
,
S.
,
Rothe
,
S.
, and
Hartmann
,
S.
,
2015
, “
Homogeneous Stress-Strain States Computed by 3D-Stress Algorithms of FE-Codes: Application to Material Parameter Identification
,”
Eng. Comput.
,
31
(
1
), pp.
141
159
.10.1007/s00366-013-0337-7
43.
Hartmann
,
S.
, and
Gilbert
,
R. R.
,
2018
, “
Identifiability of Material Parameters in Solid Mechanics
,”
Archive Appl. Mech.
,
88
(
1–2
), pp.
3
26
.10.1007/s00419-017-1259-4
44.
Beveridge
,
G. S. G.
, and
Schechter
,
R. S.
,
1970
,
Optimization: Theory and Practice
, 1st ed.,
McGraw-Hill Book Company
,
New York
.
45.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
46.
Sewerin
,
F.
,
2020
, “
On the Local Identifiability of Constituent Stress-Strain Laws for Hyperelastic Composite Materials
,”
Comput. Mech.
,
65
(
3
), pp.
853
876
.10.1007/s00466-019-01798-w
47.
Mahnken
,
R.
, and
Stein
,
E.
,
1996
, “
A Unified Approach for Parameter Identification of Inelastic Material Models in the Frame of the Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
136
(
3–4
), pp.
225
258
.10.1016/0045-7825(96)00991-7
48.
Vexler
,
B.
,
2004
, “
Adaptive Finite Element Methods for Parameter Identification Problems
,” Ph.D. thesis,
Sonderforschungsbereiche, Fakultät für Mathematik und Informatik, Universität Heidelberg
,
Germany
.
49.
Mahnken
,
R.
,
2018
,
Identification of Material Parameters for Constitutive Equations
, Encyclopedia of Computational Mechanics, E. Stein, R. de Borst, and T. J. R. Hughes, eds., 2nd ed.,
Wiley
,
Hoboken, NJ
, pp.
1165
1185
.
50.
Kreißig
,
R.
,
Benedix
,
U.
, and
Görke
,
U.-J.
,
2001
, “
Statistical Aspects of the Identification of Material Parameters for Elasto-Plastic Models
,”
Archive Appl. Mech.
,
71
(
2–3
), pp.
123
134
.10.1007/s004190000106
51.
Christensen
,
R. M.
,
2005
,
Mechanics of Composite Materials
,
Dover Publication
,
Mineola, New York
.
52.
Hartmann
,
S.
,
Gilbert
,
R. R.
,
Kheiri Marghzar
,
A.
,
Leistner
,
C.
, and
Dileep
,
P. K.
,
2021
, “
Material Parameter Identification of Unidirectional Fiber-Reinforced Composites
,”
Archive Appl. Mech.
,
91
(
2
), pp.
687
712
.10.1007/s00419-021-01895-4
53.
Talesnick
,
M. L.
,
Lee
,
M. Y.
, and
Haimson
,
B. C.
,
1995
, “
On the Determination of Elastic Material Parameters of Transverse Isotropic Rocks From a Single Test Specimen
,”
Rock Mech. Rock Eng.
,
28
(
1
), pp.
17
35
.10.1007/BF01024771
54.
Dileep
,
P. K.
,
Hartmann
,
S.
,
Hua
,
W.
,
Palkowski
,
H.
,
Fischer
,
T.
, and
Ziegmann
,
G.
,
2022
, “
Parameter Estimation and Its Influence on Layered Metal-Composite-Metal Plates Simulation
,”
Acta Mech.
,
233
(
7
), pp.
2891
2929
.10.1007/s00707-022-03245-z
55.
Lecompte
,
D.
,
Smits
,
A.
,
Sol
,
H.
,
Vantomme
,
J.
, and
Van Hemelrijck
,
D.
,
2007
, “
Mixed Numerical-Experimental Technique for Orthotropic Parameter Identification Using Biaxial Tensile Tests on Cruciform Specimens
,”
Int. J. Solids Struct.
,
44
(
5
), pp.
1643
1656
.10.1016/j.ijsolstr.2006.06.050
56.
Ehlers
,
W.
, and
Eipper
,
G.
,
1998
, “
The Simple Tension Problem at Large Volumetric Strains Computed From Finite Hyperelastic Material Laws
,”
Acta Mech.
,
130
(
1–2
), pp.
17
27
.10.1007/BF01187040
57.
Hartmann
,
S.
, and
Neff
,
P.
,
2003
, “
Polyconvexity of Generalized Polynomial-Type Hyperelastic Strain Energy Functions for Near-Incompressibility
,”
Int. J. Solids Struct.
,
40
(
11
), pp.
2767
2791
.10.1016/S0020-7683(03)00086-6
58.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
59.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Series A
,
243
, pp.
251
288
.
60.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity - on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proceedings of the Royal Society of London
, Series A,
326
, pp.
565
584
.10.1098/rspa.1972.0026
61.
Hartmann
,
S.
,
2001
, “
Numerical Studies on the Identification of the Material Parameters of Rivlin's Hyperelasticity Using Tension-Torsion Tests
,”
Acta Mech.
,
148
(
1–4
), pp.
129
155
.10.1007/BF01183674
62.
Hartmann
,
S.
,
2001
, “
Parameter Estimation of Hyperelasticity Relations of Generalized Polynomial-Type With Constraint Conditions
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
7999
8018
.10.1016/S0020-7683(01)00018-X
63.
Baker
,
M.
, and
Ericksen
,
J. L.
,
1954
, “
Inequalities Restricting the Form of the Stress-Deformation Relations for Isotropic Elastic Solids and Reiner-Rivlin Fluids
,”
J. Washington Acad. Sci.
,
44
, pp.
33
35
.https://www.jstor.org/stable/24533303
64.
Yeoh
,
O. H.
,
1993
, “
Some Forms of Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
754
771
.10.5254/1.3538343
65.
Kao
,
B. G.
, and
Razgunas
,
L.
,
1986
, “
On the Determination of Strain Energy Functions of Rubbers
,”
SAE
Paper No. 860816.10.4271/860816
66.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.10.1007/s00466-004-0593-y
67.
Twizell
,
E. H.
, and
Ogden
,
R. W.
,
1983
, “
Non-Linear Optimization of the Material Constants in Ogden's Stress-Deformation Function for Incompressible Isotropic Elastic Materials
,”
J. Aust. Math. Soc., Ser. B
,
24
(
4
), pp.
424
434
.10.1017/S0334270000003787
68.
Benjeddou
,
A.
,
Jankovich
,
E.
, and
Hadhri
,
T.
,
1993
, “
Determination of the Parameters of Ogden's Law Using Biaxial Data and Levenberg-Marquardt-Fletcher Algorithm
,”
J. Elast. Plast.
,
25
(
3
), pp.
224
248
.10.1177/009524439302500304
69.
Mahnken
,
R.
,
2022
, “
Strain Mode-Dependent Weighting Functions in Hyperelasticity Accounting for Verification, Validation, and Stability of Material Parameters
,”
Archive Appl. Mech.
,
92
(
3
), pp.
713
754
.10.1007/s00419-021-02069-y
70.
Seibert
,
D. J.
, and
Schöche
,
N.
,
2000
, “
Direct Comparison of Some Recent Rubber Elasticity Models
,”
Rubber Chem. Technol.
,
73
(
2
), pp.
366
384
.10.5254/1.3547597
71.
Marckmann
,
G.
, and
Verron
,
E.
,
2006
, “
Comparison of Hyperelastic Models for Rubber-Like Materials
,”
Rubber Chem. Technol.
,
79
(
5
), pp.
835
858
.10.5254/1.3547969
72.
Ricker
,
A.
, and
Wriggers
,
P.
,
2023
, “
Systematic Fitting and Comparison of Hyperelastic Continuum Models for Elastomers
,”
Arch. Comput. Methods Eng.
,
30
(
3
), pp.
2257
2288
.10.1007/s11831-022-09865-x
73.
Mihai
,
L. A.
, and
Goriely
,
A.
,
2017
, “
How to Characterize a Nonlinear Elastic Material? A Review on Nonlinear Constitutive Parameters in Isotropic Finite Elasticity
,”
Proc. R. Soc. London, A
,
473
(
2207
), p.
20170607
.10.1098/rspa.2017.0607
74.
Gao
,
H.
,
Li
,
W. G.
,
Cai
,
L.
,
Berry
,
C.
, and
Luo
,
X. Y.
,
2015
, “
Parameter Estimation in a Holzapfel–Ogden Law for Healthy Myocardium
,”
J. Eng. Math.
,
95
(
1
), pp.
231
248
.10.1007/s10665-014-9740-3
75.
Gilbert
,
R. R.
,
Hartmann
,
S.
,
Kudela
,
L.
,
Rank
,
E.
,
Sahar
,
G.
,
Yosibash
,
Z.
, and
Yossef
,
O.
,
2016
, “
Parameter identification of the passive response in arteries
,”
Faculty of Mathematics/Computer Science and Mechanical Engineering, Clausthal University of Technology,
Germany,
Report No. Fac3-16-01.
76.
Shariff
,
M. H. B. M.
,
2022
, “
A Generalized Strain Approach to Anisotropic Elasticity
,”
Sci. Rep.
,
12
(
1
), p. 172.10.1038/s41598-021-03842-3
77.
Schröder
,
J.
,
Neff
,
P.
, and
Balzani
,
D.
,
2005
, “
A Variational Approach for Materially Stable Anisotropic Hyperelasticity
,”
Int. J. Solids Struct.
,
42
(
15
), pp.
4352
4371
.10.1016/j.ijsolstr.2004.11.021
78.
Avril
,
S.
, and
Evans
,
S.
,
2017
,
Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics
,
CISM International Centre for Mechanical Sciences, Springer
,
Cham, Switzerland
.
79.
Makhool
,
L.
, and
Balzani
,
D.
,
2024
, “
Unique Identification of Stiffness Parameters in Hyperelastic Models for Anisotropic, Deformable, Thin Materials Based on a Single Experiment – A Feasibility Study Based on Virtual Full–Field Data
,”
Exp. Mech.
,
64
(
3
), pp.
353
375
.10.1007/s11340-024-01034-4
80.
Haupt
,
P.
,
Lion
,
A.
, and
Backhaus
,
E.
,
2000
, “
On the Dynamic Behaviour of Polymers Under Finite Strains: Constitutive Modelling and Identification of Parameters
,”
Int. J. Solids Struct.
,
37
(
26
), pp.
3633
3646
.10.1016/S0020-7683(99)00165-1
81.
Leistner
,
C.
,
2022
, “
Thermo-Mechanically Coupled Curing Processes of Epoxy Resin Systems
,” Ph.D. thesis,
Institute of Applied Mechanics, Clausthal University of Technology
,
Clausthal-Zellerfeld
, Report No. 1/2022.
82.
Jalocha
,
D.
,
Constantinescu
,
A.
, and
Neviere
,
R.
,
2015
, “
Revisiting the Identification of Generalized Maxwell Models From Experimental Results
,”
Int. J. Solids Struct.
,
67-68
, pp.
169
181
.10.1016/j.ijsolstr.2015.04.018
83.
Gerlach
,
S.
, and
Matzenmiller
,
A.
,
2007
, “
On Parameter Identification for Material and Microstructural Properties
,”
Gamm-Mitteilungen
,
30
(
2
), pp.
481
505
.10.1002/gamm.200790028
84.
Schittkowski
,
K.
,
2002
,
Numerical Data Fitting in Dynamical Systems
,
Kluwer Academic Publication
,
Dordrecht, The Netherlands
.
85.
Dunker
,
A. M.
,
1984
, “
The Decoupled Direct Method for Calculating Sensitivity Coefficients in Chemical Kinetics
,”
J. Chem. Phys.
,
81
(
5
), pp.
2385
2393
.10.1063/1.447938
86.
Leis
,
J. R.
, and
Kramer
,
M. A.
,
1985
, “
Sensitivity Analysis of Systems of Differential and Algebraic Equations
,”
Comput. Chem. Eng.
,
9
(
1
), pp.
93
96
.10.1016/0098-1354(85)87008-3
87.
Leis
,
J. R.
, and
Kramer
,
M. A.
,
1988
, “
The Simultaneous Solution and Sensitivity Analysis of Systems Described by Ordinary Differential Equations
,”
ACM Trans. Math. Software
,
14
(
1
), pp.
45
60
.10.1145/42288.46156
88.
Bock
,
H. G.
,
1983
, “
Recent Advances in Parameter Identification Techniques for ODEs
,”
Numerical Treatment of Inverse Problems in Differential and Integral Equations
,
C. W.
Gear
,
T.
Vu
,
P.
Deuflhard
, and
E.
Hairer
, eds.,
Progress in Scientific Computing
,
Birkhäuser, Basel
, pp.
95
121
.
89.
Hartmann
,
S.
,
2017
, “
A Remark on Material Parameter Identification Using Finite Elements Based on Constitutive Models of Evolutionary-Type
,”
Comput. Assist. Methods Eng. Sci.
,
24
, pp.
113
126
.10.24423/cames.172
90.
Kleuter
,
B.
,
Menzel
,
A.
, and
Steinmann
,
P.
,
2007
, “
Generalized Parameter Identification for Finite Viscoelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
35–36
), pp.
3315
3334
.10.1016/j.cma.2007.03.010
91.
Hartmann
,
S.
, and
Gilbert
,
R. R.
,
2021
, “
Material Parameter Identification Using Finite Elements With Time-Adaptive Higher-Order Time Integration and Experimental Full-Field Strain Information
,”
Comput. Mech.
,
68
(
3
), pp.
633
650
.10.1007/s00466-021-01998-3
92.
Ekh
,
M.
,
2001
, “
Thermo-Elastic-Viscoplastic Modeling of IN792
,”
J. Mech. Behav. Mater.
,
12
(
6
), pp.
359
388
.10.1515/JMBM.2001.12.6.359
93.
Johansson
,
G.
,
Ahlström
,
J.
, and
Ekh
,
M.
,
2006
, “
Parameter Identification and Modeling of Large Ratcheting Strains in Carbon Steel
,”
Comput. Struct.
,
84
(
15–16
), pp.
1002
1011
.10.1016/j.compstruc.2006.02.016
94.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
General Electricity Generating Board, Berkeley Nuclear Laboratories
,
Berkeley, CA
,
Report No. RD/B/N731.
95.
Fossum
,
A. F.
,
Senseny
,
P. E.
,
Pfeifle
,
T. W.
, and
Mellegard
,
K. D.
,
1995
, “
Experimental Determination of Probability Distributions for Parameters of a Salem Limestone Cap Plasticity Model
,”
Mech. Mater.
,
21
(
2
), pp.
119
137
.10.1016/0167-6636(95)00002-X
96.
Mahnken
,
R.
,
Johansson
,
M.
, and
Runesson
,
K.
,
1998
, “
Parameter Estimation for a Viscoplastic Damage Model Using Gradient-Based Optimization Algorithm
,”
Eng. Comput.
,
15
(
7
), pp.
925
955
.10.1108/02644409810236920
97.
Zhang
,
Y.
,
Van Bael
,
A.
,
Andrade-Campos
,
A.
, and
Coppieters
,
S.
,
2022
, “
Parameter Identifiability Analysis: Mitigating the Non-Uniqueness Issue in the Inverse Identification of an Anisotropic Yield Function
,”
Int. J. Solids Struct.
,
243
, p.
111543
.10.1016/j.ijsolstr.2022.111543
98.
Furukawa
,
T.
, and
Yagawa
,
G.
,
1997
, “
Inelastic Constitutive Parameter Identification Using an Evolutionary Algorithm With Continuous Individuals
,”
Int. J. Numer. Methods Eng.
,
40
(
6
), pp.
1071
1090
.10.1002/(SICI)1097-0207(19970330)40:6<1071::AID-NME99>3.0.CO;2-8
99.
Shutov
,
A. V.
, and
Kreißig
,
R.
,
2010
, “
Regularized Strategies for Material Parameter Identification in the Context of Finite Strain Plasticity
,”
Tech. Mech.
,
30
, pp.
280
295
.https://journals.ub.ovgu.de/index.php/techmech/article/view/794
100.
Shutov
,
A. V.
, and
Kaygorodtseva
,
A. A.
,
2019
, “
Parameter Identification in Elasto-Plasticity: Distance Between Parameters and Impact of Measurement Errors
,”
Z. Angew. Math. Mech.
,
99
, p.
e201800340
.10.1002/zamm.201800340
101.
Rossi
,
M.
,
Lattanzi
,
A.
,
Morichelli
,
L.
,
Martins
,
J. M. P.
,
Thuillier
,
S.
,
Andrade-Campos
,
A.
, and
Coppieters
,
S.
,
2022
, “
Testing Methodologies for the Calibration of Advanced Plasticity Models for Sheet Metals: A Review
,”
Strain
,
58
(
6
), p.
e12426
.10.1111/str.12426
102.
Hartmann
,
S.
,
Quint
,
K. J.
, and
Hamkar
,
A.-W.
,
2008
, “
Displacement Control in Time-Adaptive Non-Linear Finite-Element Analysis
,”
ZAMM J. Appl. Math. Mech.
,
88
(
5
), pp.
342
364
.10.1002/zamm.200800002
103.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations II
, 2nd ed.,
Springer
,
Berlin, Germany
.
104.
Hartmann
,
S.
,
2005
, “
A Remark on the Application of the Newton-Raphson Method in Non-Linear Finite Element Analysis
,”
Comput. Mech.
,
36
(
2
), pp.
100
116
.10.1007/s00466-004-0630-9
105.
Rabbat
,
N. B. G.
,
Sangiovanni-Vincentelli
,
A. L.
, and
Hsieh
,
H. Y.
,
1979
, “
A Multilevel Newton Algorithm With Macromodeling and Latency for the Analysis of Large-Scale Nonlinear Circuits in the Time Domain
,”
IEEE Trans. Circuits Syst.
,
26
(
9
), pp.
733
741
.10.1109/TCS.1979.1084693
106.
Wasserman
,
L.
,
2004
,
All of Statistics: A Concise Course in Statistical Inference
, Vol.
26
,
Springer
,
New York
.
107.
Kavanagh
,
K. T.
, and
Clough
,
R. W.
,
1971
, “
Finite Element Applications in the Characterization of Elastic Solids
,”
Int. J. Solids Struct.
,
7
(
1
), pp.
11
23
.10.1016/0020-7683(71)90015-1
108.
Schnur
,
D. S.
, and
Zabaras
,
N.
,
1992
, “
An Inverse Method for Determining Elastic Material Properties and a Material Interface
,”
Int. J. Numer. Methods Eng.
,
33
(
10
), pp.
2039
2057
.10.1002/nme.1620331004
109.
Springmann
,
M.
, and
Kuna
,
M.
,
2005
, “
Identification of Material Parameters of the Gurson-Tvergaard-Needleman Model by Combined Experimental and Numerical Techniques
,”
Comput. Mater. Sci.
,
33
(
4
), pp.
501
509
.10.1016/j.commatsci.2005.02.002
110.
Olberding
,
J. E.
, and
Francis Suh
,
F.-K.
,
2006
, “
A Dual Optimization Method for the Material Parameter Identification of a Biphasic Poroviscoelastic Hydrogel: Potential Application to Hypercompliant Soft Tissues
,”
J. Biomech.
,
39
(
13
), pp.
2468
2475
.10.1016/j.jbiomech.2005.07.019
111.
Hartmann
,
S.
,
Gibmeier
,
J.
, and
Scholtes
,
B.
,
2006
, “
Experiments and Material Parameter Identification Using Finite Elements. Uniaxial Tests and Validation Using Instrumented Indentation Tests
,”
Exp. Mech.
,
46
(
1
), pp.
5
18
.10.1007/s11340-006-5857-2
112.
Kleinermann
,
J.-P.
, and
Ponthot
,
J.-P.
,
2003
, “
Parameter Identification and Shape/Process Optimization in Metal Forming Simulation
,”
J. Mater. Process. Technol.
,
139
(
1–3
), pp.
521
526
.10.1016/S0924-0136(03)00530-2
113.
Rauchs
,
G.
,
2006
, “
Optimization-Based Material Parameter Identification in Indentation Testing for Finite Strain Elasto-Plasticity
,”
Z. Angew. Math. Mech.
,
86
(
7
), pp.
539
562
.10.1002/zamm.200510261
114.
Rauchs
,
G.
,
Bardon
,
J.
, and
Georges
,
D.
,
2010
, “
Identification of the Material Parameters of a Viscous Hyperelastic Constitutive Law From Spherical Indentation Tests of Rubber and Validation by Tensile Tests
,”
Mech. Mater.
,
42
(
11
), pp.
961
973
.10.1016/j.mechmat.2010.08.003
115.
Rauchs
,
G.
, and
Bardon
,
J.
,
2011
, “
Identification of Elasto-Viscoplastic Material Parameters by Indentation Testing and Combined Finite Element Modelling and Numerical Optimization
,”
Finite Elem. Anal. Des.
,
47
(
7
), pp.
653
667
.10.1016/j.finel.2011.01.008
116.
Grédiac
,
M.
, and
Hild
,
F.
,
2013
,
Full-Field Measurements and Identification in Solid Mechanics
,
Wiley
,
Hoboken, NJ
.
117.
Andresen
,
K.
,
Dannemeyer
,
S.
,
Friebe
,
H.
,
Mahnken
,
R.
,
Ritter
,
R.
, and
Stein
,
E.
,
1996
, “
Parameteridentifikation Für Ein Plastisches Stoffgesetz Mit FE-Methoden Und Rasterverfahren
,”
Bauingenieur
,
71
, pp.
21
31
.
118.
Mahnken
,
R.
, and
Stein
,
E.
,
1997
, “
Parameter Identification for Finite Deformation Elasto-Plasticity in Principal Directions
,”
Comput. Methods Appl. Mech. Eng.
,
147
(
1–2
), pp.
17
39
.10.1016/S0045-7825(97)00008-X
119.
Scheday
,
G.
,
2003
, “
Theorie Und Numerik Der Parameteridentifikation Von Materialmodellen Der Finiten Elastizität Und Inelastizität Auf Der Grundlage Optischer Feldmessmethoden
,” Ph.D. thesis,
University of Stuttgart, Institute of Mechanics
,
Germany
, Report No. I-11 (2003).
120.
Rieger
,
A.
,
2005
, “
Zur Parameteridentifikation Komplexer Materialmodelle Auf Der Basis Realer Und Virtueller Testdaten
,” Ph.D. thesis,
University of Stuttgart, Institute of Mechanics
,
Germany
, Report No. I-14 (2005).
121.
Kreißig
,
R.
,
1998
, “
Auswertung Inhomogener Verschiebungsfelder Zur Identifikation Der Parameter Elastisch-Plastischer Deformationsgesetze
,”
For. Ing.
,
64
(
4–5
), pp.
99
109
.10.1007/PL00010769
122.
Benedix
,
U.
,
Görke
,
U.-J.
,
Kreißig
,
R.
, and
Kretzschmar
,
S.
,
1998
, “
Local and Global Analysis of Inhomogeneous Displacement Fields for the Identification of Material Parameters
,”
WIT Transactions on Engineering Sciences
, 21, p. 10.10.10.2495/CP980161
123.
Krämer
,
S.
,
2016
, “
Einfluss Von Unsicherheiten in Materialparametern Auf Finite-Elemente Simulationen
,” Ph.D. thesis,
Institute of Applied Mechanics, Clausthal University of Technology
,
Clausthal-Zellerfeld
, Report No. 5/2016.
124.
Cooreman
,
S.
,
Lecompte
,
D.
,
Sol
,
H.
,
Vantomme
,
J.
, and
Debruyne
,
D.
,
2007
, “
Elasto-Plastic Material Parameter Identification by Inverse Methods: Calculation of the Sensitivity Matrix
,”
Int. J. Solids Struct.
,
44
(
13
), pp.
4329
4341
.10.1016/j.ijsolstr.2006.11.024
125.
Rose
,
L.
, and
Menzel
,
A.
,
2020
, “
Optimisation Based Material Parameter Identification Using Full Field Displacement and Temperature Measurements
,”
Mech. Mater.
,
145
, p.
103292
.10.1016/j.mechmat.2019.103292
126.
Rose
,
L.
,
2022
, “
Optimisation Based Parameter Identification Using Optical Field Measurements
,” Ph.D. thesis,
Institute of Mechanics, University of Dortmund
,
Dortmund, Germany
.
127.
Schmaltz
,
S.
, and
Willner
,
K.
,
2014
, “
Comparison of Different Biaxial Tests for the Identification of Sheet Steel Material Parameters
,”
Strain
,
50
(
5
), pp.
389
403
.10.1111/str.12080
128.
Di Lecce
,
M.
,
Onaizah
,
O.
,
Lloyd
,
P.
,
Chandler
,
J. H.
, and
Valdastri
,
P.
,
2022
, “
Evolutionary Inverse Material Identification: Bespoke Characterization of Soft Materials Using a Metaheuristic Algorithm
,”
Front. Rob. AI
,
8
, p.
790571
.10.3389/frobt.2021.790571
129.
Rossi
,
M.
,
Lattanzi
,
A.
,
Barlat
,
F.
, and
Kim
,
J.-H.
,
2022
, “
Inverse Identification of Large Strain Plasticity Using the Hydraulic Bulge-Test and Full-Field Measurements
,”
Int. J. Solids Struct.
,
242
, p.
111532
.10.1016/j.ijsolstr.2022.111532
130.
Mottershead
,
J.
, and
Friswell
,
M.
,
1993
, “
Model Updating In Structural Dynamics: A Survey
,”
J. Sound Vib.
,
167
(
2
), pp.
347
375
.10.1006/jsvi.1993.1340
131.
Mottershead
,
J. E.
,
Link
,
M.
, and
Friswell
,
M. I.
,
2011
, “
The Sensitivity Method in Finite Element Model Updating: A Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2275
2296
.10.1016/j.ymssp.2010.10.012
132.
Farhat
,
C.
, and
Hemez
,
F. M.
,
1993
, “
Updating Finite Element Dynamic Models Using an Element-by-Element Sensitivity Methodology
,”
AIAA J.
,
31
(
9
), pp.
1702
1711
.10.2514/3.11833
133.
Mahnken
,
R.
,
2000
, “
A Comprehensive Study of a Multiplicative Elastoplasticity Model Coupled to Damage Including Parameter Identification
,”
Comput. Struct.
,
74
(
2
), pp.
179
200
.10.1016/S0045-7949(98)00296-X
134.
Kreißig
,
R.
,
Benedix
,
U.
,
Görke
,
U.-J.
, and
Lindner
,
M.
,
2007
, “
Identification and Estimation of Constitutive Parameters for Material Laws in Elastoplasticity
,”
GAMM-Mitteilung
,
30
(
2
), pp.
458
480
.10.1002/gamm.200790027
135.
Hartmann
,
S.
,
Haupt
,
P.
, and
Tschöpe
,
T.
,
2001
, “
Parameter Identification With a Direct Search Method Using Finite Elements
,”
Constitutive Models of Rubber II
,
D.
Besdo
,
R.
Schuster
, and
J.
Ihlemann
, eds.,
Balkema
,
Lisse
, pp.
249
256
.
136.
Hartmann
,
S.
,
Tschöpe
,
T.
,
Schreiber
,
L.
, and
Haupt
,
P.
,
2003
, “
Large Deformations of a Carbon Black-Filled Rubber. Experiment, Optical Measurement and Parameter Identification Using Finite Elements
,”
Eur. J. Mech., Ser. A/Solids
,
22
(
3
), pp.
309
324
.10.1016/S0997-7538(03)00045-7
137.
Ladevéze
,
P.
, and
Leguillon
,
D.
,
1983
, “
Error Estimate Procedure in the Finite Element Method and Applications
,”
SIAM J. Numer. Anal.
,
20
(
3
), pp.
485
509
.10.1137/0720033
138.
Huang
,
S.
,
Feissel
,
P.
, and
Villon
,
P.
,
2016
, “
Modified Constitutive Relation Error: An Identification Framework Dealing With the Reliability of Information
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
1
17
.10.1016/j.cma.2016.06.030
139.
Ruybalid
,
A. P.
,
Hoefnagels
,
J. P. M.
,
van der Sluis
,
O.
, and
Geers
,
M. G. D.
,
2016
, “
Comparison of the Identification Performance of Conventional FEM Updating and Integrated DIC
,”
Int. J. Numer. Methods Eng.
,
106
(
4
), pp.
298
320
.10.1002/nme.5127
140.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
,
1996
,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
, Vol.
16
(Classics in Applied Mathematics),
SIAM Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
141.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer (Springer Series in Operations Research and Financial Engineering)
,
New York
.
142.
Lawson
,
C. L.
, and
Hanson
,
R. J.
,
1995
,
Solving Least Squares Problems
,
SIAM Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
143.
Spellucci
,
P.
,
1993
,
Numerische Verfahren Der Nichtlinearen Optimierung
,
Birkhäuser
,
Basel, Switzerland
.
144.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
,
1993
,
Nonlinear Programming
,
Wiley
,
New York
.
145.
Johansson
,
H.
,
Runesson
,
K.
, and
Larsson
,
F.
,
2007
, “
Parameter Identification With Sensitivity Assessment and Error Computation
,”
GAMM-Mitteilungen
,
30
(
2
), pp.
430
457
.10.1002/gamm.200790026
146.
Schowtjak
,
A.
,
Schulte
,
R.
,
Clausmeyer
,
T.
,
Ostwald
,
R.
,
Tekkaya
,
A. E.
, and
Menzel
,
A.
,
2022
, “
ADAPT–A Diversely Applicable Parameter Identification Tool: Overview and Full-Field Application Examples
,”
Int. J. Mech. Sci.
,
213
, p.
106840
.10.1016/j.ijmecsci.2021.106840
147.
Halpin
,
J. C.
, and
Kardos
,
J. L.
,
1976
, “
The Halpin-Tsai Equations: A Review
,”
Polym. Eng. Sci.
,
16
(
5
), pp.
344
352
.10.1002/pen.760160512
148.
Mallick
,
P. K.
,
2008
,
Fiber-Reinforced Composites
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
149.
Matzenmiller
,
A.
, and
Gerlach
,
S.
,
2005
, “
Parameter Identification of Elastic Interphase Properties in Fiber Composites
,”
Compos. Part B
,
37
(
2–3
), pp.
117
126
.10.1016/j.compositesb.2005.08.003
150.
Schmidt
,
U.
,
Mergheim
,
J.
, and
Steinmann
,
P.
,
2015
, “
Identification of Elastoplastic Microscopic Material Parameters Within a Homogenization Scheme
,”
Int. J. Numer. Methods Eng.
,
104
(
6
), pp.
391
407
.10.1002/nme.4933
151.
Klinge
,
S.
, and
Steinmann
,
P.
,
2015
, “
Inverse Analysis for Heterogeneous Materials and Its Application to Viscoelastic Curing Polymers
,”
Comput. Mech.
,
55
(
3
), pp.
603
615
.10.1007/s00466-015-1126-5
152.
Rokos
,
O.
,
Peerlings
,
R. H. J.
,
Hoefnagels
,
J. P. M.
, and
Geers
,
M. G. D.
,
2023
, “
Integrated Digital Image Correlation for Micro-Mechanical Parameter Identification in Multiscale Experiments
,”
Int. J. Solids Struct.
,
267
, p.
112130
.10.1016/j.ijsolstr.2023.112130
153.
Prahl
,
U.
,
Bourgeois
,
S.
,
Pandorf
,
T.
,
Aboutayeb
,
M.
,
Debordes
,
O.
, and
Weichert
,
D.
,
2002
, “
Damage Parameter Identification by a Periodic Homogenization Approach
,”
Comput. Mater. Sci.
,
25
(
1–2
), pp.
159
165
.10.1016/S0927-0256(02)00260-4
154.
Claire
,
D.
,
Hild
,
F.
, and
Roux
,
S.
,
2004
, “
A Finite Element Formulation to Identify Damage Fields: The Equilibrium Gap Method
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
189
208
.10.1002/nme.1057
155.
Genet
,
M.
,
2023
, “
Finite Strain Formulation of the Discrete Equilibrium Gap Principle: Application to Mechanically Consistent Regularization for Large Motion Tracking
,”
C. R. Méc.
,
351
(
G2
), pp.
429
458
.10.5802/crmeca.228
156.
Grédiac
,
M.
,
1989
, “
Principle of Virtual Work and Identification
,”
C. R. L Acad. Sci. Serie Ii
,
309
(
1
), pp.
1
5
.
157.
Pierron
,
F.
, and
Grédiac
,
M.
,
2012
,
The Virtual Fields Method
,
Springer
,
New York
.
158.
Boddapati
,
J.
,
Flaschel
,
M.
,
Kumar
,
S.
,
De Lorenzis
,
L.
, and
Daraio
,
C.
,
2023
, “
Single-Test Evaluation of Directional Elastic Properties of Anisotropic Structured Materials
,”
J. Mech. Phys. Solids
,
181
, p.
105471
.10.1016/j.jmps.2023.105471
159.
Flaschel
,
M.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2021
, “
Unsupervised Discovery of Interpretable Hyperelastic Constitutive Laws
,”
Comput. Methods Appl. Mech. Eng.
,
381
, p.
113852
.10.1016/j.cma.2021.113852
160.
Joshi
,
A.
,
Thakolkaran
,
P.
,
Zheng
,
Y.
,
Escande
,
M.
,
Flaschel
,
M.
,
De Lorenzis
,
L.
, and
Kumar
,
S.
,
2022
, “
Bayesian-EUCLID: Discovering Hyperelastic Material Laws With Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115225
.10.1016/j.cma.2022.115225
161.
Pierron
,
F.
,
Avril
,
S.
, and
Tran
,
V. T.
,
2010
, “
Extension of the Virtual Fields Method to Elasto-Plastic Material Identification With Cyclic Loads and Kinematic Hardening
,”
Int. J. Solids Struct.
,
47
(
22–23
), pp.
2993
3010
.10.1016/j.ijsolstr.2010.06.022
162.
Huber
,
N.
,
Tsagrakis
,
I.
, and
Tsakmakis
,
C.
,
2000
, “
Determination of Constitutive Properties of Thin Metallic Films on Substrates by Spherical Indentation Using Neural Networks
,”
Int. J. Solids Struct.
,
37
(
44
), pp.
6499
6516
.10.1016/S0020-7683(99)00270-X
163.
Meißner
,
P.
,
Hoppe
,
T.
, and
Vietor
,
T.
,
2022
, “
Comparative Study of Various Neural Network Types for Direct Inverse Material Parameter Identification in Numerical Simulations
,”
Appl. Sci.
,
12
(
24
), p.
12793
.10.3390/app122412793
164.
Schulte
,
R.
,
Karca
,
C.
,
Ostwald
,
R.
, and
Menzel
,
A.
,
2023
, “
Machine Learning-Assisted Parameter Identification for Constitutive Models Based on Concatenated Loading Path Sequences
,”
Eur. J. Mech. A/Solids
,
98
, p.
104854
.10.1016/j.euromechsol.2022.104854
165.
Fuhg
,
J. N.
,
Fau
,
A.
, and
Nackenhorst
,
U.
,
2021
, “
State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging
,”
Arch. Comput. Methods Eng.
,
28
(
4
), pp.
2689
2747
.10.1007/s11831-020-09474-6
166.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Networks
,
9
(
5
), pp.
987
1000
.10.1109/72.712178
167.
Psichogios
,
D. C.
, and
Ungar
,
L. H.
,
1992
, “
A Hybrid Neural Network-First Principles Approach to Process Modeling
,”
Am. Inst. Chem. Eng. J.
,
38
(
10
), pp.
1499
1511
.10.1002/aic.690381003
168.
Baydin
,
A. G.
,
Pearlmutter
,
B. A.
,
Radul
,
A. A.
, and
Siskind
,
J. M.
,
2018
, “
Automatic Differentiation in Machine Learning: A Survey
,”
J. Mach. Learn. Res.
,
18
(
1
), pp.
5595
5637
.https://www.jmlr.org/papers/volume18/17-468/17-468.pdf
169.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
,
Antiga
,
L.
,
Desmaison
,
A.
,
Köpf
,
A.
,
Yang
,
E.
,
DeVito
,
Z.
,
Raison
,
M.
,
Tejani
,
A.
,
Chilamkurthy
,
S.
,
Steiner
,
B.
,
Fang
,
L.
,
Bai
,
J.
, and
Chintala
,
S.
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,” arXiv preprint
arXiv:1912.01703
.10.48550/arXiv.1912.01703
170.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al.,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
,” arXiv preprint
arXiv:1603.04467
.10.48550/arXiv.1603.04467
171.
Bradbury
,
J.
,
Frostig
,
R.
,
Hawkins
,
P.
,
Johnson
,
M. J.
,
Leary
,
C.
,
Maclaurin
,
D.
,
Necula
,
G.
,
Paszke
,
A.
,
VanderPlas
,
J.
,
Wanderman-Milne
,
S.
, and
Zhang
,
Q.
,
2018
, “
JAX: Composable Transformations of Python+NumPy Programs
,” Version 0.3.13, accessed Sept. 3, 2024, http://github.com/google/jax
172.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
173.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.10.1038/s42254-021-00314-5
174.
Wessels
,
H.
,
Weißenfels
,
C.
, and
Wriggers
,
P.
,
2020
, “
The Neural Particle method - An Updated Lagrangian Physics Informed Neural Network for Computational Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113127
.10.1016/j.cma.2020.113127
175.
Hosseini
,
E.
,
Scheel
,
P.
,
Müller
,
O.
,
Molinaro
,
R.
, and
Mishra
,
S.
,
2023
, “
Single-Track Thermal Analysis of Laser Powder Bed Fusion Process: Parametric Solution Through Physics-Informed Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
410
, p.
116019
.10.1016/j.cma.2023.116019
176.
Beltrán-Pulido
,
A.
,
Bilionis
,
I.
, and
Aliprantis
,
D.
,
2022
, “
Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems
,”
IEEE Trans. Energy Convers.
,
37
(
4
), pp.
2678
2689
.10.1109/TEC.2022.3180295
177.
Sun
,
Y.
,
Sengupta
,
U.
, and
Juniper
,
M.
,
2023
, “
Physics-Informed Deep Learning for Simultaneous Surrogate Modeling and PDE-Constrained Optimization of an Airfoil Geometry
,”
Comput. Methods Appl. Mech. Eng.
,
411
, p.
116042
.10.1016/j.cma.2023.116042
178.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
379
, p.
113741
.10.1016/j.cma.2021.113741
179.
Zhang
,
E.
,
Dao
,
M.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2022
, “
Analyses of Internal Structures and Defects in Materials Using Physics-Informed Neural Networks
,”
Sci. Adv.
,
8
(
7
), p.
eabk0644
.10.1126/sciadv.abk0644
180.
Hamel
,
C. M.
,
Long
,
K. N.
, and
Kramer
,
S. L. B.
,
2022
, “
Calibrating Constitutive Models With Full-Field Data Via Physics-Informed Neural Networks
,”
Strain
, 59(2), p.
e12431
.10.1111/str.12431
181.
Liu
,
C.
, and
Wu
,
H. A.
,
2023
, “
A Variational Formulation of Physics-Informed Neural Network for the Applications of Homogeneous and Heterogeneous Material Properties Identification
,”
Int. J. Appl. Mech.
,
15
(
8
), p.
2350065
.10.1142/S1758825123500655
182.
Zhang
,
E.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging
,” arXiv preprint
arXiv:2009.04525
.10.48550/arXiv.2009.04525
183.
Wu
,
W.
,
Daneker
,
M.
,
Jolley
,
M. A.
,
Turner
,
K. T.
, and
Lu
,
L.
,
2023
, “
Effective Data Sampling Strategies and Boundary Condition Constraints of Physics-Informed Neural Networks for Identifying Material Properties in Solid Mechanics
,”
Appl. Math. Mech.
,
44
(
7
), pp.
1039
1068
.10.1007/s10483-023-2995-8
184.
Anton
,
D.
, and
Wessels
,
H.
,
2022
, “
Physics-Informed Neural Networks for Material Model Calibration From Full-Field Displacement Data
,” arXiv preprint
arXiv:2212.07723
.10.48550/arXiv.2212.07723
185.
Koza
,
J.
,
1994
, “
Genetic Programming as a Means for Programming Computers by Natural Selection
,”
Stat. Comput.
,
4
(
2
), pp.
87
112
.10.1007/BF00175355
186.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.: Ser. B (Methodological)
,
58
(
1
), pp.
267
288
.10.1111/j.2517-6161.1996.tb02080.x
187.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.10.1126/science.1165893
188.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
189.
Schoenauer
,
M.
,
Sebag
,
M.
,
Jouve
,
F.
,
Lamy
,
B.
, and
Maitournam
,
H.
,
1996
, “
Evolutionary Identification of Macro-Mechanical Models
,” Advances in Genetic Programming II, MIT Press, Cambridge, MA, pp. 467–488.
190.
Versino
,
D.
,
Tonda
,
A.
, and
Bronkhorst
,
C. A.
,
2017
, “
Data Driven Modeling of Plastic Deformation
,”
Comput. Methods Appl. Mech. Eng.
,
318
, pp.
981
1004
.10.1016/j.cma.2017.02.016
191.
Bomarito
,
G.
,
Townsend
,
T.
,
Stewart
,
K.
,
Esham
,
K.
,
Emery
,
J.
, and
Hochhalter
,
J.
,
2021
, “
Development of Interpretable, Data-Driven Plasticity Models With Symbolic Regression
,”
Comput. Struct.
,
252
, p.
106557
.10.1016/j.compstruc.2021.106557
192.
Kabliman
,
E.
,
Kolody
,
A. H.
,
Kronsteiner
,
J.
,
Kommenda
,
M.
, and
Kronberger
,
G.
,
2021
, “
Application of Symbolic Regression for Constitutive Modeling of Plastic Deformation
,”
Appl. Eng. Sci.
,
6
, p.
100052
.10.1016/j.apples.2021.100052
193.
Park
,
H.
, and
Cho
,
M.
,
2021
, “
Multiscale Constitutive Model Using Data–Driven Yield Function
,”
Compos. Part B: Eng.
,
216
, p.
108831
.10.1016/j.compositesb.2021.108831
194.
Abdusalamov
,
R.
,
Hillgärtner
,
M.
, and
Itskov
,
M.
,
2023
, “
Automatic Generation of Interpretable Hyperelastic Material Models by Symbolic Regression
,”
Int. J. Numer. Methods Eng.
,
124
(
9
), pp.
2093
2104
.10.1002/nme.7203
195.
Wang
,
Z.
,
Estrada
,
J.
,
Arruda
,
E.
, and
Garikipati
,
K.
,
2021
, “
Inference of Deformation Mechanisms and Constitutive Response of Soft Material Surrogates of Biological Tissue by Full-Field Characterization and Data-Driven Variational System Identification
,”
J. Mech. Phys. Solids
,
153
, p.
104474
.10.1016/j.jmps.2021.104474
196.
Wang
,
M.
,
Chen
,
C.
, and
Liu
,
W.
,
2022
, “
Establish Algebraic Data-Driven Constitutive Models for Elastic Solids With a Tensorial Sparse Symbolic Regression Method and a Hybrid Feature Selection Technique
,”
J. Mech. Phys. Solids
,
159
, p.
104742
.10.1016/j.jmps.2021.104742
197.
Meyer
,
K. A.
, and
Ekre
,
F.
,
2023
, “
Thermodynamically Consistent Neural Network Plasticity Modeling and Discovery of Evolution Laws
,”
J. Mech. Phys. Solids
, 180, p.
105416
.10.1016/j.jmps.2023.105416
198.
Kissas
,
G.
,
Mishra
,
S.
,
Chatzi
,
E.
, and
De Lorenzis
,
L.
,
2024
, “
The Language of Hyperelastic Material Models
,”
Comput. Methods Appl. Mech. Eng.
, 428, p.
117053
.10.1016/j.cma.2024.117053
199.
Flaschel
,
M.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2022
, “
Discovering Plasticity Models Without Stress Data
,”
Npj Comput. Mater.
,
8
(
1
), p.
91
.10.1038/s41524-022-00752-4
200.
Marino
,
E.
,
Flaschel
,
M.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2023
, “
Automated Identification of Linear Viscoelastic Constitutive Laws With EUCLID
,”
Mech. Mater.
,
181
, p.
104643
.10.1016/j.mechmat.2023.104643
201.
Flaschel
,
M.
,
2023
, “
Automated Discovery of Material Models in Continuum Solid Mechanics
,” Ph.D. thesis,
ETH Zurich
,
Switzerland
.
202.
Flaschel
,
M.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2023
, “
Automated Discovery of Generalized Standard Material Models With EUCLID
,”
Comput. Methods Appl. Mech. Eng.
,
405
, p.
115867
.10.1016/j.cma.2022.115867
203.
Flaschel
,
M.
,
Yu
,
H.
,
Reiter
,
N.
,
Hinrichsen
,
J.
,
Budday
,
S.
,
Steinmann
,
P.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2023
, “
Automated Discovery of Interpretable Hyperelastic Material Models for Human Brain Tissue With EUCLID
,”
J. Mech. Phys. Solids
,
180
, p.
105404
.10.1016/j.jmps.2023.105404
204.
Sussman
,
T.
, and
Bathe
,
K.-J.
,
2009
, “
A Model of Incompressible Isotropic Hyperelastic Material Behavior Using Spline Interpolations of Tension-Compression Test Data
,”
Commun. Numer. Methods Eng.
,
25
(
1
), pp.
53
63
.10.1002/cnm.1105
205.
Frankel
,
A. L.
,
Jones
,
R. E.
, and
Swiler
,
L. P.
,
2020
, “
Tensor Basis Gaussian Process Models of Hyperelastic Materials
,”
J. Mach. Learn. Model. Comput.
,
1
(
1
), pp.
1
17
.10.1615/JMachLearnModelComput.2020033325
206.
Tac
,
V.
,
Sahli Costabal
,
F.
, and
Tepole
,
A. B.
,
2022
, “
Data-Driven Tissue Mechanics With Polyconvex Neural Ordinary Differential Equations
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115248
.10.1016/j.cma.2022.115248
207.
Ghaboussi
,
J.
,
Garrett
,
J. H.
, and
Wu
,
X.
,
1991
, “
Knowledge–Based Modeling of Material Behavior With Neural Networks
,”
J. Eng. Mech.
,
117
(
1
), pp.
132
153
.10.1061/(ASCE)0733-9399(1991)117:1(132)
208.
Huang
,
D.
,
2021
, “
Meshfree Modelling of Metal Cutting Using Phenomenological and Data-Driven Material Models
,”
Leibniz Universität Hannover, Institute of Continnum Mechanics
,
Hannover, Germany
,
Report No. B20/5.
209.
As'Ad
,
F.
,
Avery
,
P.
, and
Farhat
,
C.
,
2022
, “
A Mechanics-Informed Artificial Neural Network Approach in Data-Driven Constitutive Modeling
,”
Int. J. Numer. Methods Eng.
, 123(12), pp.
2738
2759
.10.1002/nme.6957
210.
Klein
,
D. K.
,
Fernández
,
M.
,
Martin
,
R. J.
,
Neff
,
P.
, and
Weeger
,
O.
,
2022
, “
Polyconvex Anisotropic Hyperelasticity With Neural Networks
,”
J. Mech. Phys. Solids
,
159
, p.
104703
.10.1016/j.jmps.2021.104703
211.
Thakolkaran
,
P.
,
Joshi
,
A.
,
Zheng
,
Y.
,
Flaschel
,
M.
,
De Lorenzis
,
L.
, and
Kumar
,
S.
,
2022
, “
NN-EUCLID: Deep-Learning Hyperelasticity Without Stress Data
,”
J. Mech. Phys. Solids
,
169
, p.
105076
.10.1016/j.jmps.2022.105076
212.
Linka
,
K.
, and
Kuhl
,
E.
,
2023
, “
A New Family of Constitutive Artificial Neural Networks Towards Automated Model Discovery
,”
Comput. Methods Appl. Mech. Eng.
,
403
, p.
115731
.10.1016/j.cma.2022.115731
213.
Masi
,
F.
,
Stefanou
,
I.
,
Vannucci
,
P.
, and
Maffi-Berthier
,
V.
,
2021
, “
Thermodynamics-Based Artificial Neural Networks for Constitutive Modeling
,”
J. Mech. Phys. Solids
,
147
, p.
104277
.10.1016/j.jmps.2020.104277
214.
Huang
,
S.
,
He
,
Z.
,
Chem
,
B.
, and
Reina
,
C.
,
2022
, “
Variational Onsager Neural Networks (VONNs): A Thermodynamics-Based Variational Learning Strategy for Non-Equilibrium PDEs
,”
J. Mech. Phys. Solids
,
163
, p.
104856
.10.1016/j.jmps.2022.104856
215.
Masi
,
F.
, and
Stefanou
,
I.
,
2023
, “
Evolution TANN and the Identification of Internal Variables and Evolution Equations in Solid Mechanics
,”
J. Mech. Phys. Solids
,
174
, p.
105245
.10.1016/j.jmps.2023.105245
216.
Rosenkranz
,
M.
,
Kalina
,
K. A.
,
Brummund
,
J.
, and
Kästner
,
M.
,
2023
, “
A Comparative Study on Different Neural Network Architectures to Model Inelasticity
,”
Int. J. Numer. Methods Eng.
,
124
(
21
), pp.
4802
4840
.10.1002/nme.7319
217.
Lourenço
,
R.
,
Georgieva
,
P.
,
Cueto
,
E.
, and
Andrade-Campos
,
A.
,
2024
, “
An Indirect Training Approach for Implicit Constitutive Modelling Using Recurrent Neural Networks and the Virtual Fields Method
,”
Comput. Methods Appl. Mech. Eng.
,
425
, p.
116961
.10.1016/j.cma.2024.116961
218.
Fuhg
,
J. N.
,
Padmanabha
,
G. A.
,
Bouklas
,
N.
,
Bahmani
,
B.
,
Sun
,
W.
,
Vlassis
,
N. N.
,
Flaschel
,
M.
,
Carrara
,
P.
, and
De Lorenzis
,
L.
,
2024
, “
A Review on Data-Driven Constitutive Laws for Solids
,” arXiv preprint
arXiv:2405.03658
.10.48550/arXiv.2405.03658
219.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
1995
,
Bayesian Data Analysis
,
Chapman and Hall/CRC, New York
.
220.
Calvetti
,
D.
, and
Somersalo
,
E.
,
2018
, “
Inverse Problems: From Regularization to Bayesian Inference
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
10
(
3
), p.
e1427
.10.1002/wics.1427
221.
Bardsley
,
J. M.
,
Solonen
,
A.
,
Haario
,
H.
, and
Laine
,
M.
,
2014
, “
Randomize-Then-Optimize: A Method for Sampling From Posterior Distributions in Nonlinear Inverse Problems
,”
SIAM J. Sci. Comput.
,
36
(
4
), pp.
A1895
A1910
.10.1137/140964023
222.
Shin
,
M.
, and
Liu
,
J. S.
,
2022
, “
Neuronized Priors for Bayesian Sparse Linear Regression
,”
J. Am. Stat. Assoc.
,
117
(
540
), pp.
1695
1710
.10.1080/01621459.2021.1876710
223.
Sinsbeck
,
M.
, and
Nowak
,
W.
,
2017
, “
Sequential Design of Computer Experiments for the Solution of Bayesian Inverse Problems
,”
SIAM/ASA J. Uncertain. Quantif.
,
5
(
1
), pp.
640
664
.10.1137/15M1047659
224.
Rosić
,
B. V.
,
Kučerová
,
A.
,
Sýkora
,
J.
,
Pajonk
,
O.
,
Litvinenko
,
A.
, and
Matthies
,
H. G.
,
2013
, “
Parameter Identification in a Probabilistic Setting
,”
Eng. Struct.
,
50
, pp.
179
196
.10.1016/j.engstruct.2012.12.029
225.
Wagner
,
P.-R.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2021
, “
Bayesian Model Inversion Using Stochastic Spectral Embedding
,”
J. Comput. Phys.
,
436
, p.
110141
.10.1016/j.jcp.2021.110141
226.
Römer
,
U.
,
Liu
,
J.
, and
Böl
,
M.
,
2022
, “
Surrogate-Based Bayesian Calibration of Biomechanical Models With Isotropic Material Behavior
,”
Int. J. Numer. Methods Biomed. Eng.
,
38
(
4
), p.
e3575
.10.1002/cnm.3575
227.
Noii
,
N.
,
Khodadadian
,
A.
,
Ulloa
,
J.
,
Aldakheel
,
F.
,
Wick
,
T.
,
François
,
S.
, and
Wriggers
,
P.
,
2021
, “
Bayesian Inversion for Unified Ductile Phase-Field Fracture
,”
Comput. Mech.
,
68
(
4
), pp.
943
980
.10.1007/s00466-021-02054-w
228.
Wu
,
T.
,
Rosić
,
B.
,
De Lorenzis
,
L.
, and
Matthies
,
H. G.
,
2021
, “
Parameter Identification for Phase-Field Modeling of Fracture: A Bayesian Approach With Sampling-Free Update
,”
Comput. Mech.
,
67
(
2
), pp.
435
453
.10.1007/s00466-020-01942-x
229.
Gogu
,
C.
,
Yin
,
W.
,
Haftka
,
R.
,
Ifju
,
P.
,
Molimard
,
J.
,
Le Riche
,
R.
, and
Vautrin
,
A.
,
2013
, “
Bayesian Identification of Elastic Constants in Multi-Directional Laminate From Moiré Interferometry Displacement Fields
,”
Exp. Mech.
,
53
(
4
), pp.
635
648
.10.1007/s11340-012-9671-8
230.
Rappel
,
H.
,
Beex
,
L. A.
, and
Bordas
,
S. P.
,
2018
, “
Bayesian Inference to Identify Parameters in Viscoelasticity
,”
Mech. Time-Dependent Mater.
,
22
(
2
), pp.
221
258
.10.1007/s11043-017-9361-0
231.
Yue
,
L.
,
Heuzey
,
M.-C.
,
Jalbert
,
J.
, and
Lévesque
,
M.
,
2023
, “
On the Parameters Identification of Three-Dimensional Aging-Temperature-Dependent Viscoelastic Solids Through a Bayesian Approach
,”
Mech. Time-Dependent Mater.
,
27
(
4
), pp.
949
971
.10.1007/s11043-022-09564-x
232.
Ibrahimbegovic
,
A.
,
Matthies
,
H. G.
, and
Karavelić
,
E.
,
2020
, “
Reduced Model of Macro-Scale Stochastic Plasticity Identification by Bayesian Inference: Application to Quasi-Brittle Failure of Concrete
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113428
.10.1016/j.cma.2020.113428
233.
Papadimas
,
N.
, and
Dodwell
,
T.
,
2021
, “
A Hierarchical Bayesian Approach for Calibration of Stochastic Material Models
,”
Data-Centric Eng.
,
2
, p.
e20
.10.1017/dce.2021.20
234.
Noii
,
N.
,
Khodadadian
,
A.
,
Ulloa
,
J.
,
Aldakheel
,
F.
,
Wick
,
T.
,
François
,
S.
, and
Wriggers
,
P.
,
2022
, “
Bayesian Inversion With Open-Source Codes for Various One-Dimensional Model Problems in Computational Mechanics
,”
Arch. Comput. Methods Eng.
,
29
(
6
), pp.
4285
4318
.10.1007/s11831-022-09751-6
235.
Aguilo
,
M. A.
,
Swiler
,
L. P.
, and
Urbina
,
A.
,
2013
, “
An Overview of Inverse Material Identification Within the Frameworks of Deterministic and Stochastic Parameter Estimation
,”
Int. J. Uncertainty Quantif.
,
3
(
4
), pp.
289
319
.10.1615/Int.J.UncertaintyQuantification.2012003668
236.
Fitt
,
D.
,
Wyatt
,
H.
,
Woolley
,
T. E.
, and
Mihai
,
L. A.
,
2019
, “
Uncertainty Quantification of Elastic Material Responses: Testing, Stochastic Calibration and Bayesian Model Selection
,”
Mech. Soft Mater.
,
1
(
1
), p. 13.10.1007/s42558-019-0013-1
237.
Prudencio
,
E.
,
Bauman
,
P.
,
Faghihi
,
D.
,
Ravi-Chandar
,
K.
, and
Oden
,
J.
,
2015
, “
A Computational Framework for Dynamic Data-Driven Material Damage Control, Based on Bayesian Inference and Model Selection
,”
Int. J. Numer. Methods Eng.
,
102
(
3–4
), pp.
379
403
.10.1002/nme.4669
238.
Viana
,
F. A.
, and
Subramaniyan
,
A. K.
,
2021
, “
A Survey of Bayesian Calibration and Physics-Informed Neural Networks in Scientific Modeling
,”
Arch. Comput. Methods Eng.
,
28
(
5
), pp.
3801
3830
.10.1007/s11831-021-09539-0
239.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
240.
Girolami
,
M.
,
Febrianto
,
E.
,
Yin
,
G.
, and
Cirak
,
F.
,
2021
, “
The Statistical Finite Element Method (statFEM) for Coherent Synthesis of Observation Data and Model Predictions
,”
Comput. Methods Appl. Mech. Eng.
,
375
, p.
113533
.10.1016/j.cma.2020.113533
241.
Duffin
,
C.
,
Cripps
,
E.
,
Stemler
,
T.
, and
Girolami
,
M.
,
2022
, “
Low-Rank Statistical Finite Elements for Scalable Model-Data Synthesis
,”
J. Comput. Phys.
,
463
, p.
111261
.10.1016/j.jcp.2022.111261
242.
Narouie
,
V. B.
,
Wessels
,
H.
, and
Römer
,
U.
,
2023
, “
Inferring Displacement Fields From Sparse Measurements Using the Statistical Finite Element Method
,”
Mech. Syst. Signal Process.
,
200
, p.
110574
.10.1016/j.ymssp.2023.110574
243.
Calvetti
,
D.
,
Dunlop
,
M.
,
Somersalo
,
E.
, and
Stuart
,
A.
,
2018
, “
Iterative Updating of Model Error for Bayesian Inversion
,”
Inverse Probl.
,
34
(
2
), p.
025008
.10.1088/1361-6420/aaa34d
244.
Kirchdoerfer
,
T.
, and
Ortiz
,
M.
,
2016
, “
Data-Driven Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
304
, pp.
81
101
.10.1016/j.cma.2016.02.001
245.
Stainier
,
L.
,
Leygue
,
A.
, and
Ortiz
,
M.
,
2019
, “
Model-Free Data-Driven Methods in Mechanics: Material Data Identification and Solvers
,”
Comput. Mech.
,
64
(
2
), pp.
381
393
.10.1007/s00466-019-01731-1
246.
Fuhg
,
J. N.
,
Marino
,
M.
, and
Bouklas
,
N.
,
2022
, “
Local Approximate Gaussian Process Regression for Data-Driven Constitutive Models: Development and Comparison With Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
388
, p.
114217
.10.1016/j.cma.2021.114217
247.
Conti
,
S.
,
Hoffmann
,
F.
, and
Ortiz
,
M.
,
2023
, “
Model-Free and Prior-Free Data-Driven Inference in Mechanics
,”
Archive Rational Mech. Anal.
,
247
(
1
), p.
7
.10.1007/s00205-022-01836-7
248.
Haber
,
E.
, and
Ascher
,
U. M.
,
2001
, “
Preconditioned All-at-Once Methods for Large, Sparse Parameter Estimation Problems
,”
Inverse Probl.
,
17
(
6
), pp.
1847
1864
.10.1088/0266-5611/17/6/319
249.
Burger
,
M.
, and
M$uuml$hlhuber
,
W.
,
2002
, “
Iterative Regularization of Parameter Identification Problems by Sequential Quadratic Programming Methods
,”
Inverse Probl.
,
18
(
4
), pp.
943
969
.10.1088/0266-5611/18/4/301
250.
Herzog
,
R.
, and
Kunisch
,
K.
,
2010
, “
Algorithms for PDE-Constrained Optimization
,”
GAMM-Mitteilungen
,
33
(
2
), pp.
163
176
.10.1002/gamm.201010013
251.
Rees
,
T.
,
Stoll
,
M.
, and
Wathen
,
A.
,
2010
, “
All-at-Once Preconditioning in PDE-Constrained Optimization
,”
Kybernetika
,
46
(
2
), pp.
341
360
.
252.
Ito
,
K.
, and
Kunisch
,
K.
,
1990
, “
The Augmented Lagrangian Method for Parameter Estimation in Elliptic Systems
,”
SIAM J. Control Optim.
,
28
(
1
), pp.
113
136
.10.1137/0328006
253.
Krantz
,
S. G.
, and
Parks
,
H. R.
,
2003
,
The Implicit Function Theorem
, 1st ed.,
Birkhäuser
,
Boston, FL
.
254.
Samaniego
,
E.
,
Anitescu
,
C.
,
Goswami
,
S.
,
Nguyen-Thanh
,
V. M.
,
Guo
,
H.
,
Hamdia
,
K.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2020
, “
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics Via Machine Learning: Concepts, Implementation and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112790
.10.1016/j.cma.2019.112790
255.
Fuhg
,
J. N.
, and
Bouklas
,
N.
,
2022
, “
The Mixed Deep Energy Method for Resolving Concentration Features in Finite Strain Hyperelasticity
,”
J. Comput. Phys.
,
451
, p.
110839
.10.1016/j.jcp.2021.110839
256.
Haghighat
,
E.
,
Bekar
,
A. C.
,
Madenci
,
E.
, and
Juanes
,
R.
,
2021
, “
A Nonlocal Physics-Informed Deep Learning Framework Using the Peridynamic Differential Operator
,”
Comput. Methods Appl. Mech. Eng.
,
385
, p.
114012
.10.1016/j.cma.2021.114012
257.
Henkes
,
A.
,
Wessels
,
H.
, and
Mahnken
,
R.
,
2022
, “
Physics Informed Neural Networks for Continuum Micromechanics
,”
Comput. Methods Appl. Mech. Eng.
,
393
, p.
114790
.10.1016/j.cma.2022.114790
258.
Berg
,
J.
, and
Nyström
,
K.
,
2018
, “
A Unified Deep Artificial Neural Network Approach to Partial Differential Equations in Complex Geometries
,”
Neurocomputing
,
317
, pp.
28
41
.10.1016/j.neucom.2018.06.056
259.
Leistner
,
C.
,
Hartmann
,
S.
,
Abliz
,
D.
, and
Ziegmann
,
G.
,
2020
, “
Modeling and Simulation of the Curing Process of Epoxy Resins Using Finite Elements
,”
Continuum Mech. Thermodyn.
,
32
(
2
), pp.
327
350
.10.1007/s00161-018-0708-9
260.
Efron
,
B.
,
Hastie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
.10.1214/009053604000000067
261.
Guth
,
P. A.
,
Schillings
,
C.
, and
Weissmann
,
S.
,
2022
,
Ensemble Kalman Filter for Neural Network-Based One-Shot Inversion
,
De Gruyter
,
Berlin, Boston
, FL, pp.
393
418
.
262.
Benning
,
M.
, and
Burger
,
M.
,
2018
, “
Modern Regularization Methods for Inverse Problems
,”
Acta Numer.
,
27
, pp.
1
111
.10.1017/S0962492918000016
263.
Schlintl
,
A.
, and
Kaltenbacher
,
B.
,
2021
, “
All-at-Once Formulation Meets the Bayesian Approach: A Study of Two Prototypical Linear Inverse Problems
,”
Deterministic and Stochastic Optimal Control and Inverse Problems
,
CRC Press
,
Boca Raton, FL
, pp.
1
44
.
264.
Anton
,
D.
, and
Wessels
,
H.
,
2022
, “
Identification of Material Parameters From Full-Field Displacement Data Using Physics-Informed Neural Networks
,”
Proceedings of the 8th International Symposium on Reliability Engineering and Risk Management
,
M.
Beer
,
E.
Zio
,
K.-K.
Phoon
, and
B. M.
Ayyub
, eds.,
Research Publishing
,
Hannover
, pp.
813
820
.
265.
Wang
,
S.
,
Teng
,
Y.
, and
Perdikaris
,
P.
,
2021
, “
Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks
,”
SIAM J. Sci. Comput.
,
43
(
5
), pp.
A3055
A3081
.10.1137/20M1318043
266.
McClenny
,
L. D.
, and
Braga-Neto
,
U. M.
,
2023
, “
Self-Adaptive Physics-Informed Neural Networks
,”
J. Comput. Phys.
,
474
, p.
111722
.10.1016/j.jcp.2022.111722
267.
McCullagh
,
P.
,
2002
, “
What is a Statistical Model?
,”
Ann. Stat.
,
30
(
5
), pp.
1225
1310
.10.1214/aos/1035844977
268.
Cobelli
,
C.
, and
DiStefano
,
J. J.
, III
,
1980
, “
Parameter and Structural Identifiability Concepts and Ambiguities: A Critical Review and Analysis
,”
Am. J. Physiol.
,
239
(
1
), pp.
R7
R24
.10.1152/ajpregu.1980.239.1.R7
269.
Huber
,
P. J
et al.,
1967
, “
The Behavior of Maximum Likelihood Estimates Under Nonstandard Conditions
,”
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, Vol.
1
,
University of California Press
,
Berkeley, CA
, pp.
221
233
.
270.
Björck
,
A.
,
1996
,
Numerical Methods for Least Squares Problems
,
SIAM (Society for Industrial and Applied Mathematics)
,
Philadelphia, PA
.
271.
Brooks
,
S.
,
Gelman
,
A.
,
Jones
,
G.
, and
Meng
,
X.-L.
,
2011
,
Handbook of Markov Chain Monte Carlo
,
CRC Press, Boca Raton, FL
.
272.
Jaakkola
,
T. S.
, and
Jordan
,
M. I.
,
2000
, “
Bayesian Parameter Estimation Via Variational Methods
,”
Stat. Comput.
,
10
(
1
), pp.
25
37
.10.1023/A:1008932416310
273.
Lu
,
Y.
,
2017
, “
On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear Bayesian Inverse Problems
,” arXiv preprint
arXiv:1706.00289
.10.48550/arXiv.1706.00289
274.
Bochkina
,
N.
,
2019
, “
Bernstein–Von Mises Theorem and Misspecified Models: A Review
,”
Foundations Mod. Stat.
, 425, pp.
355
380
.10.1007/978-3-031-30114-8_10
275.
Latz
,
J.
,
2023
, “
Bayesian Inverse Problems Are Usually Well-Posed
,”
SIAM Rev.
,
65
(
3
), pp.
831
865
.10.1137/23M1556435
276.
San Martin
,
E.
, and
González
,
J.
,
2010
, “
Bayesian Identifiability: Contributions to an Inconclusive Debate
,”
Chil. J. Stat.
,
1
(
2
), pp.
69
91
.
277.
Wooldridge
,
J. M.
,
2010
,
Econometric Analysis of Cross Section and Panel Data
,
MIT Press
,
Cambridge, MA
.
278.
Tröger
,
J.-A.
, and
Hartmann
,
S.
,
2022
, “
Identification of the Thermal Conductivity Tensor for Transversely Isotropic Materials
,”
GAMM-Mitteilungen
,
45
(
3–4
), p.
e202200013
.10.1002/gamm.202200013
279.
Hartmann
,
S.
,
Müller-Lohse
,
L.
, and
Tröger
,
J.-A.
,
2023
, “
Temperature Gradient Determination With Thermography and Image Correlation in Curved Surfaces With Application to Additively Manufactured Components
,”
Exp. Mech.
,
63
(
1
), pp.
43
61
.10.1007/s11340-022-00886-y
280.
Tröger
,
J.-A.
, and
Hartmann
,
S.
,
2023
, “
Parameter Identification and Uncertainty Quantification of the Thermal Conductivity Tensor for Transversely Isotropic Composite Materials
,”
PAMM
,
22
(
1
), p.
e202200026
.10.1002/pamm.202200026
281.
Goodman
,
J.
, and
Weare
,
J.
,
2010
, “
Ensemble Samplers With Affine Invariance
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
1
), pp.
65
80
.10.2140/camcos.2010.5.65
282.
Broyden
,
C. G.
,
1970
, “
The Convergence of a Class of Double-Rank Minimization Algorithms 1. General Considerations
,”
IMA J. Appl. Math.
,
6
(
1
), pp.
76
90
.10.1093/imamat/6.1.76
283.
Fletcher
,
R.
,
1970
, “
A New Approach to Variable Metric Algorithms
,”
Comput. J.
,
13
(
3
), pp.
317
322
.10.1093/comjnl/13.3.317
284.
Goldfarb
,
D.
,
1970
, “
A Family of Variable-Metric Methods Derived by Variational Means
,”
Math. Comput.
,
24
(
109
), pp.
23
26
.10.1090/S0025-5718-1970-0258249-6
285.
Shanno
,
D. F.
,
1970
, “
Conditioning of Quasi-Newton Methods for Function Minimization
,”
Math. Comput.
,
24
(
111
), pp.
647
656
.10.1090/S0025-5718-1970-0274029-X
286.
Flaschel
,
M.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2021
, “
FEM Data – Unsupervised Discovery of Interpretable Hyperelastic Constitutive Laws
,”
ETH Zurich Research Collection
.10.3929/ethz-b-000505693
287.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformation of Isotropic Materials. VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
,
243
, pp.
251
288
.10.1098/rsta.1951.0004
288.
Isihara
,
A.
,
Hashitsume
,
N.
, and
Tatibana
,
M.
,
1951
, “
Statistical Theory of Rubber-Like Elasticity
,”
J. Chem. Phys.
,
19
(
12
), pp.
1508
1512
.10.1063/1.1748111
289.
Haines
,
D.
, and
Wilson
,
W.
,
1979
, “
Strain-Energy Density Function for Rubberlike Materials
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
345
360
.10.1016/0022-5096(79)90034-6
290.
Hartmann
,
S.
, and
Haupt
,
P.
,
1993
, “
Stress Computation and Consistent Tangent Operator Using Non-Linear Kinematic Hardening Models
,”
Int. J. Numer. Methods Eng.
,
36
(
22
), pp.
3801
3814
.10.1002/nme.1620362204
291.
Hartmann
,
S.
,
Lührs
,
G.
, and
Haupt
,
P.
,
1997
, “
An Efficient Stress Algorithm With Applications in Viscoplasticity and Plasticity
,”
Int. J. Numer. Methods Eng.
,
40
(
6
), pp.
991
1013
.10.1002/(SICI)1097-0207(19970330)40:6<991::AID-NME98>3.0.CO;2-H
292.
Hsu
,
F. P. K.
,
Schwab
,
C.
,
Rigamonti
,
D.
, and
Humphrey
,
J. D.
,
1994
, “
Identification of Response Functions From Axisymmetric Membrane Inflation Tests: Implications for Biomechanics
,”
Int. J. Solids Struct.
,
31
(
24
), pp.
3375
3386
.10.1016/0020-7683(94)90021-3
293.
Orteu
,
J.-J.
,
2009
, “
3-D Computer Vision in Experimental Mechanics
,”
Opt. Lasers Eng.
,
47
(
3–4
), pp.
282
291
.10.1016/j.optlaseng.2007.11.009
294.
Hartmann
,
S.
, and
Rodriguez
,
S.
,
2018
, “
Verification Examples for Strain and Strain-Rate Determination of Digital Image Correlation Systems
,”
Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials
,
H.
Altenbach
,
F.
Jablonski
,
W.
Müller
,
K.
Naumenko
, and
P.
Schneider
, eds.,
Springer International Publishing
,
Cham
, pp.
135
174
.
295.
Hartmann
,
S.
,
Müller-Lohse
,
L.
, and
Tröger
,
J.-A.
,
2021
, “
Full-Field Strain Determination for Additively Manufactured Parts Using Radial Basis Functions
,”
Appl. Sci.
,
11
(
23
), p.
11434
.10.3390/app112311434
296.
Pottier
,
T.
,
Toussaint
,
F.
, and
Vacher
,
P.
,
2011
, “
Contribution of Heterogeneous Strain Field Measurements and Boundary Conditions Modelling in Inverse Identification of Material Parameters
,”
Eur. J. Mech. A/Solids
,
30
(
3
), pp.
373
382
.10.1016/j.euromechsol.2010.10.001
297.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals, Syst.
,
2
(
4
), pp.
303
314
.10.1007/BF02551274
298.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.10.1016/0893-6080(89)90020-8
299.
Li
,
X.
,
1996
, “
Simultaneous Approximations of Multivariate Functions and Their Derivatives by Neural Networks With One Hidden Layer
,”
Neurocomputing
,
12
(
4
), pp.
327
343
.10.1016/0925-2312(95)00070-4
300.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
301.
Rothe
,
S.
, and
Hartmann
,
S.
,
2015
, “
Automatic Differentiation for Stress and Consistent Tangent Computation
,”
Archive Appl. Mech.
,
85
(
8
), pp.
1103
1125
.10.1007/s00419-014-0939-6
302.
Seidl
,
D. T.
, and
Granzow
,
B. N.
,
2022
, “
Calibration of Elastoplastic Constitutive Model Parameters From Full-Field Data With Automatic Differentiation-Based Sensitivities
,”
Int. J. Numer. Methods Eng.
,
123
(
1
), pp.
69
100
.10.1002/nme.6843
303.
Korelc
,
J.
,
2002
, “
Multi-Language and Multi-Environment Generation of Nonlinear Finite Element Codes
,”
Eng. Comput.
,
18
(
4
), pp.
312
327
.10.1007/s003660200028
304.
Korelc
,
J.
,
1997
, “
Automatic Generation of Finite-Element Code by Simultaneous Optimization of Expressions
,”
Theor. Comput. Sci.
,
187
(
1–2
), pp.
231
248
.10.1016/S0304-3975(97)00067-4
305.
Korelc
,
J.
,
1999
, “
Computer Algebra and Automatic Differentation in Derivation of Finite Element Code
,”
Z. Angew. Math. Mech.
,
79
, pp.
811
812
.
306.
Korelc
,
J.
,
2009
, “
Automation of Primal and Sensitivity Analysis of Transient Coupled Problems
,”
Comput. Mech.
,
44
(
5
), pp.
631
649
.10.1007/s00466-009-0395-2
307.
Press
,
W. H.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T. A.
,
1992
,
Numerical Recipes in Fortran
, 2nd ed.,
Cambridge University Press
,
Cambridge
, MA.
308.
Martins
,
J. P.
,
Andrade-Campos
,
A.
, and
Thuillier
,
S.
,
2020
, “
Calibration of Johnson-Cook Model Using Heterogeneous Thermo-Mechanical Tests
,”
Procedia Manuf.
,
47
, pp.
881
888
.10.1016/j.promfg.2020.04.274
You do not currently have access to this content.