Abstract

Accurate multiphysics modeling is necessary to simulate and predict the long-term behavior of subsurface porous rocks. Despite decades of modeling subsurface multiphysics processes in porous rocks, there are still considerable uncertainties and challenges remaining partly because of the way the constitutive equations describing such processes are derived (thermodynamically or phenomenologically) and treated (continuum or discrete) regardless of the way they are solved (e.g., finite element or finite volume methods). We review here continuum multiphysics models covering aspects of poromechanics, chemo-poromechanics, thermo-poromechanics, and thermo-chemo-poromechanics. We focus on models that are derived based on thermodynamics to signify the importance of such a basis and discuss the limitations of the phenomenological models and how thermodynamics-based modeling can overcome such limitations. The review highlights that the experimental determination of thermodynamics response coefficients (coupling or constitutive coefficients) and field applicability of the developed thermodynamics models are significant research gaps to be addressed. Verification and validation of the constitutive models, preferably through physical experiments, is yet to be comprehensively realized which is further discussed in this review. The review also shows the versatility of the multiphysics models to address issues from shale gas production to CO2 sequestration and energy storage and highlights the need for inclusion of thermodynamically consistent damage mechanics, coupling of chemical and mechanical damage, and two-phase fluid flow in multiphysics models.

References

1.
Regenauer-Lieb
,
K.
,
Hobbs
,
B.
,
Ord
,
A.
,
Gaede
,
O.
, and
Vernon
,
R.
,
2009
, “
Deformation With Coupled Chemical Diffusion
,”
Phys. Earth Planet Inter.
, 172(1–2), pp. 43–44.10.1016/j.pepi.2008.08.013
2.
de Boer
,
R.
, and
Katsube
,
N.
,
2002
, “
Theory of Porous Media: Highlights in Historical Development and Current State
,”
ASME Appl. Mech. Rev.
, 55(2), pp. B32–B33.10.1115/1.1451169
3.
Katsube
,
N.
, and
Carroll
,
M. M.
,
1987
, “
The Modified Mixture Theory for Fluid-Filled Porous Materials: Theory
,”
ASME J. Appl. Mech.
, 54(1), pp. 35–40.10.1115/1.3172991
4.
Cheng
,
A. H. D.
,
2016
, “
Poroelasticity
,”
Theory and Applications of Transport in Porous Media
,
Hassanizadeh
S. M.
, ed., 27th ed.,
Springer
, Berlin, p.
893
.
5.
B. J. M.
,
1961
, Encyclopaedic Dictionary of Physics,
J.
Thewlis
, ed.,
Pergamon Press
,
Oxford, London, New York
, pp. xv,
800
, Vol.
1
. P£12 10 s. Q J R Meteorol Soc. 1962.10.1002/qj.49708837521
6.
Ottosen
,
N. S.
, and
Ristinmaa
,
M.
,
2005
, “
Thermodynamic Framework for Constitutive Modeling
,”
The Mechanics of Constitutive Modeling
, Elsevier, Amsterdam, The Netherlands.
7.
Ottosen
,
N. S.
, and
Ristinmaa
,
M.
,
2005
, “
Basic Principles of Thermodynamics
,”
The Mechanics of Constitutive Modeling
, Elsevier, Amsterdam, The Netherlands.
8.
Lemaitre
,
J.
,
1992
,
A Course on Damage Mechanics
,
Springer Berlin
,
Heidelberg
.
9.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1975
, “
A Non-Linear Model of Creep-Fatigue Damage Cumulation and Interaction
,”
Mechanics of Visco-Elastic Media and Bodies
Springer, Berlin.10.1007/978-3-642-48924-2
10.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
, 107(1), pp. 83–89.10.1115/1.3225775
11.
Lemaitre
,
J.
,
1984
, “
How to Use Damage Mechanics
,”
Nucl. Eng. Des.
, 80(2), pp. 233–245.10.1016/0029-5493(84)90169-9
12.
Heidug
,
W. K.
, and
Wong
,
S.-W.
,
1996
, “
Hydration Swelling of Water-Absorbing Rocks: A Constitutive Model
,”
Int. J. Numer. Anal. Methods Geomech.
,
20
(
6
), p.
403
.10.1002/(SICI)1096-9853(199606)20:6%3C403::AID-NAG832%3E3.0.CO;2-7
13.
Pahr
,
D. H.
, and
Reisinger
,
A. G.
,
2020
, “
A Review on Recent Advances in the Constitutive Modeling of Bone Tissue
,”
Curr. Osteoporos. Rep.
, 18, pp.
696
704
.10.1007/s11914-020-00631-1
14.
Dewar
,
R. C.
,
Lineweaver
,
C. H.
,
Niven
,
R. K.
, and
Regenauer-Lieb
,
K.
,
2014
,
Beyond the Second Law: An Overview
, Springer, Berlin.
15.
Aubertin
,
M.
,
Gill
,
D. E.
, and
Ladanyi
,
B.
,
1994
, “
Constitutive Equations With Internal State Variables for the Inelastic Behavior of Soft Rocks
,”
ASME Appl. Mech. Rev.
, 47(6S), pp. S97–S101.10.1115/1.3124449
16.
Kjelstrup
,
S.
, and
Bedeaux
,
D.
,
2020
,
Non-Equilibrium Thermodynamics of Heterogeneous Systems
, 2nd ed., World Scientific, Singapore.
17.
Steeb
,
H.
, and
Renner
,
J.
,
2019
, “
Mechanics of Poro-Elastic Media: A Review With Emphasis on Foundational State Variables
,”
Transp. Porous Media
, 130, pp. 437–461.10.1007/s11242-019-01319-6
18.
Gurtin
,
M. E.
, and
Williams
,
W. O.
,
1966
, “
On the Clausius-Duhem Inequality
,”
Z. Angew. Math. Und Phys. ZAMP
, 17, pp. 626–633.10.1007/BF01597243
19.
Evans
,
D. J.
,
Searles
,
D. J.
, and
Williams
,
S. R.
,
2008
, “
On the Fluctuation Theorem for the Dissipation Function and Its Connection With Response Theory
,”
J. Chem. Phys.
, 128(1), p. 014504.10.1063/1.2812241
20.
Dewar
,
R. C.
,
Juretić
,
D.
, and
Županović
,
P.
,
2006
, “
The Functional Design of the Rotary Enzyme ATP Synthase is Consistent With Maximum Entropy Production
,”
Chem. Phys. Lett.
, 430(1–3), pp. 177–182.10.1016/j.cplett.2006.08.095
21.
Seifert
,
U.
,
2008
, “
Stochastic Thermodynamics: Principles and Perspectives
,”
Eur. Phys. J. B
, 64, pp. 423–431.10.1140/epjb/e2008-00001-9
22.
Ziman
,
J. M.
,
1956
, “
The General Variational Principle of Transport Theory
,”
Can. J. Phys.
, 34(12A), pp. 1256–1273.10.1139/p56-139
23.
Dewar
,
R. C.
,
2005
, “
Maximum Entropy Production and the Fluctuation Theorem
,”
J. Phys. A Math. Gen.
, 38(21), pp. L371–L381.10.1088/0305-4470/38/21/L01
24.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
, 47(2), pp. 597–613.10.1063/1.1711937
25.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration Mech. Anal.
, 13, pp. 167–178.10.1007/BF01262690
26.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
, 37, pp. 405–426.10.1103/PhysRev.37.405
27.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. II
,”
Phys. Rev.
, 38, pp.
2265
2279
.10.1103/PhysRev.38.2265
28.
Flem
,
B. E.
,
Ratkje
,
S. K.
, and
Sterten
,
A.
,
1996
, “
Peltier Heats in Cryolite Melts With Alumina
,”
Light Metals: Proceedings of Sessions, TMS Annual Meeting,
Warrendale, PA.https://www.osti.gov/etdeweb/servlets/purl/496316
29.
Flem
,
B. E.
,
Xu
,
Q.
,
Kjelstrup
,
S.
, and
Sterten
,
Å.
,
2001
, “
Thermoelectric Powers of Cells With NaF-AlF3-Al2O3 Melts
,”
J. Non-Equilibrium Thermodyn.
, 26, pp. 125–151.10.1515/JNETDY.2001.010
30.
Mason
,
E. A.
,
Wendt
,
R. P.
, and
Bresler
,
E. H.
,
1972
, “
Test of the Onsager Relation for Ideal Gas Transport in Membranes
,”
J. Chem. Soc. Faraday Trans 2 Mol. Chem. Phys.
, 68, pp.
1938
1950
.https://pubs.rsc.org/en/content/articlelanding/1972/f2/f29726801938
31.
Cussler
,
E. L.
,
1997
,
Diffusion: Mass Transfer in Fluid Systems
, 2nd ed., Cambridge, UK.
32.
Prigogine
,
I.
,
1949
, “
Le domaine de Validité de la Thermodynamique Des Phénomènes Irréversibles
,”
Physica
, 15(1–2), pp. 272–284.10.1016/0031-8914(49)90056-7
33.
Meixner
,
J.
,
1941
, “
Zur Thermodynamik Der Thermodiffusion
,”
Ann. Phys.
, 431(5), pp. 333–356.10.1002/andp.19414310505
34.
Meixner
,
J.
,
1943
, “
Zur Thermodynamik Der Irreversiblen Prozesse in Gasen Mit Chemisch Reagierenden, Dissoziierenden Und Anregbaren Komponenten
,”
Ann. Phys.
, 435(4), pp.
244
270
.
35.
Mitchell
,
P.
,
1961
, “
Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic Type of Mechanism
,”
Nature
, 191, pp. 144–148.10.1038/191144a0
36.
Lv
,
A.
,
Ali Aghighi
,
M.
,
Masoumi
,
H.
, and
Roshan
,
H.
,
2022
, “
On Swelling Stress–Strain of Coal and Their Interaction With External Stress
,”
Fuel
, 311, p. 122534.10.1016/j.fuel.2021.122534
37.
Kasani
,
H. A.
, and
Selvadurai
,
A. P. S.
,
2023
, “
A Review of Techniques for Measuring the Biot Coefficient and Other Effective Stress Parameters for Fluid-Saturated Rocks
,”
ASME Appl. Mech. Rev.
,
75
(
2
), p.
020801
.10.1115/1.4055888
38.
Zhang
,
J.
,
Al-Bazali
,
T. M.
,
Chenevert
,
M. E.
, and
Sharma
,
M. M.
,
2008
, “
Factors Controlling the Membrane Efficiency of Shales When Interacting With Water-Based and Oil-Based Muds
,”
SPE Drill. Complet.
, 23(2), pp.
150
158
.10.2118/100735-MS
39.
Aadnøy
,
B. S.
, and
Belayneh
,
M.
,
2004
, “
Elasto-Plastic Fracturing Model for Wellbore Stability Using Non-Penetrating Fluids
,”
J. Pet. Sci. Eng.
, 45(3–4), pp. 179–192.10.1016/j.petrol.2004.07.006
40.
McLean
,
M. R.
, and
Addis
,
M. A.
,
1990
, “Wellbore Stability: The Effect of Strength Criteria on Mud Weight Recommendations,” Paper presented at the SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 23–26, Paper No.
SPE-20405-MS
.10.2118/20405-MS
41.
Zeynali
,
M. E.
,
2012
, “
Mechanical and Physico-Chemical Aspects of Wellbore Stability During Drilling Operations
,”
J. Pet. Sci. Eng.
, 82–83, pp.
120
124
.10.1016/j.petrol.2012.01.006
42.
Sidaoui
,
Z.
,
Siddiqui
,
M. A. Q.
, and
Aldawood
,
J.
,
2014
, “
A Productive Technique to Do Drilling Analysis and Risk Assessment
,”
Society of Petroleum Engineers - SPE Saudi Arabia Section Technical Symposium and Exhibition,
Al-Khobar, Saudi Arabia, Apr. 21–24, Paper No.
SPE-172168-MS
.10.2118/172168-MS
43.
Steiger
,
R. P.
, and
Leung
,
P. K.
,
1992
, “
Quantitative Determination of the Mechanical Properties of Shales
,”
SPE Drill. Eng.
, 7(3), pp.
181
185
.10.2118/18024-PA
44.
Chen
,
X.
,
Tan
,
C. P.
, and
Detournay
,
C.
,
2003
, “
A Study on Wellbore Stability in Fractured Rock Masses With Impact of Mud Infiltration
,”
J. Pet. Sci. Eng.
, 38(3–4), pp.
145
154
.10.1016/S0920-4105(03)00028-7
45.
Siddiqui
,
M. A. Q.
,
Ali
,
S.
,
Fei
,
H.
, and
Roshan
,
H.
,
2018
, “
Current Understanding of Shale Wettability: A Review on Contact Angle Measurements
,”
Earth-Sci. Rev.
,
181
, pp.
1
11
.10.1016/j.earscirev.2018.04.002
46.
Siddiqui
,
M. A. Q.
,
Chen
,
X.
,
Iglauer
,
S.
, and
Roshan
,
H.
,
2019
, “
A Multiscale Study on Shale Wettability: Spontaneous Imbibition Versus Contact Angle
,”
Water Resour. Res.
, 55(6), pp.
5012
5032
.10.1029/2019WR024893
47.
Siddiqui
,
M. A. Q.
,
Salvemini
,
F.
,
Ramandi
,
H. L.
,
Fitzgerald
,
P.
, and
Roshan
,
H.
,
2021
, “
Configurational Diffusion Transport of Water and Oil in Dual Continuum Shales
,”
Sci Rep.
, 11(2152), pp.
1
17
.10.1038/s41598-021-81004-1
48.
Pusch
,
R.
,
2006
, “
Chapter 11.4 Clays and Nuclear Waste Management
,”
Dev. Clay Sci.
, 1, pp.
703
716
.10.1016/S1572-4352(05)01023-8
49.
Dohrmann
,
R.
,
Kaufhold
,
S.
, and
Lundqvist
,
B.
,
2013
, “
The Role of Clays for Safe Storage of Nuclear Waste
,”
Develop. Clay Sci.
, 5, pp.
677
710
.10.1016/B978-0-08-098259-5.00024-X
50.
Laloui
,
L.
, and
Cekerevac
,
C.
,
2003
, “
Thermo-Plasticity of Clays: An Isotropic Yield Mechanism
,”
Comput. Geotech.
, 30(8), pp.
649
660
.10.1016/j.compgeo.2003.09.001
51.
Bibi
,
I.
,
Icenhower
,
J.
,
Niazi
,
N. K.
,
Naz
,
T.
,
Shahid
,
M.
, and
Bashir
,
S.
,
2016
, “
Clay Minerals: Structure, Chemistry, and Significance in Contaminated Environments and Geological CO2 Sequestration
,”
Environmental Materials and Waste: Resource Recovery and Pollution Prevention
, Academic Press, Elsevier, Cambridge, MA.
52.
Kalinin
,
D.
,
2018
, “
Alleviating the Solids Issue in Surat Basin CSG Wells
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Society of Petroleum Engineers
,
Brisbane, Australia
, Oct. 23–25, p.
12
.10.2118/191923-MS
53.
Shi
,
J.
, and
Kong
,
D.
,
2021
, “
Floor Heave Mechanism and Anti-Slide Piles Control Technology in Deep and Large-Span Chamber
,”
Appl. Sci.
, 11(10), p.
4576
.10.3390/app11104576
54.
Mo
,
S.
,
Tutuk
,
K.
, and
Saydam
,
S.
,
2019
, “
Management of Floor Heave at Bulga Underground Operations – A Case Study
,”
Int. J. Min. Sci. Technol.
, 29(1), pp.
73
78
.10.1016/j.ijmst.2018.11.015
55.
Perry
,
K.
,
Bradley
,
J.
,
Unrug
,
K.
, and
Klimek
,
M.
,
2016
, “
Mitigation of Floor Heave in West Kentucky Coal Mine
,”
Int. J. Min. Sci. Technol.
, 26(3), pp.
521
525
.10.1016/j.ijmst.2016.02.023
56.
Roshan
,
H.
,
Lv
,
A.
,
Aghighi
,
M. A.
, et al.,
2022
, “
Stabilization of Clay-Rich Interburdens Using Silica Nanoparticles
,”
J. Pet. Sci. Eng.
, 211, p.
110126
.10.1016/j.petrol.2022.110126
57.
Coussy
,
O.
,
2005
,
Poromechanics
, John Wiley & Sons, Hoboken, NJ.
58.
Miao
,
S.
,
Wang
,
M. L.
, and
Schreyer
,
H. L.
,
1995
, “
Constitutive Models for Healing of Materials With Application to Compaction of Crushed Rock Salt
,”
J. Eng. Mech.
, 121(10), pp.
1122
1129
.10.1061/(ASCE)0733-9399(1995)121:10(1122)
59.
Barbero
,
E. J.
,
Greco
,
F.
, and
Lonetti
,
P.
,
2005
, “
Continuum Damage-Healing Mechanics With Application to Self-Healing Composites
,”
Int. J. Damage Mech.
, 14(1), pp.
51
81
.10.1177/1056789505045928
60.
Behnke
,
R.
,
Kaliske
,
M.
, and
Klüppel
,
M.
,
2016
, “
Thermo-Mechanical Analysis of Cyclically Loaded Particle-Reinforced Elastomer Components: Experiment and Finite Element Simulation
,”
Rubber Chem. Technol.
, 89(1), pp.
154
176
.10.5254/rct.15.84852
61.
Johlitz
,
M.
,
Scharding
,
D.
,
Diebels
,
S.
,
Retka
,
J.
, and
Lion
,
A.
,
2010
, “
Modelling of Thermo-Viscoelastic Material Behaviour of Polyurethane Close to the Glass Transition Temperature
,”
ZAMM Z. Fur Angew Math Und Mech.
, 90(5), pp.
387
398
.10.1002/zamm.200900361
62.
Espinoza
,
D. N.
,
Vandamme
,
M.
,
Dangla
,
P.
,
Pereira
,
J. M.
, and
Vidal-Gilbert
,
S.
,
2013
, “
A Transverse Isotropic Model for Microporous Solids: Application to Coal Matrix Adsorption and Swelling
,”
J. Geophys. Res. Solid Earth
, 118(12), pp.
6113
6123
.10.1002/2013JB010337
63.
Espinoza
,
D. N.
,
Vandamme
,
M.
,
Pereira
,
J. M.
,
Dangla
,
P.
, and
Vidal-Gilbert
,
S.
,
2014
, “
Measurement and Modeling of Adsorptive-Poromechanical Properties of Bituminous Coal Cores Exposed to CO2: Adsorption, Swelling Strains, Swelling Stresses and Impact on Fracture Permeability
,”
Int. J. Coal Geol.
, 134–135, pp.
80
95
.10.1016/j.coal.2014.09.010
64.
Hobbs
,
B. E.
,
Ord
,
A.
, and
Regenauer-Lieb
,
K.
,
2011
, “
The Thermodynamics of Deformed Metamorphic Rocks: A Review
,”
J. Struct. Geol.
, 33(5), pp.
758
818
.10.1016/j.jsg.2011.01.013
65.
Natali
,
A. N.
,
Pavan
,
P. G.
,
Carniel
,
E. L.
,
Lucisano
,
M. E.
, and
Taglialavoro
,
G.
,
2005
, “
Anisotropic Elasto-Damage Constitutive Model for the Biomechanical Analysis of Tendons
,”
Med. Eng. Phys.
, 27(3), 209–214.10.1016/j.medengphy.2004.10.011
66.
Saxena
,
P.
,
Hossain
,
M.
, and
Steinmann
,
P.
,
2013
, “
A Theory of Finite Deformation Magneto-Viscoelasticity
,”
Int. J. Solids Struct.
, 50(24), pp.
3886
3897
.10.1016/j.ijsolstr.2013.07.024
67.
Chen
,
X.
,
2009
, “
On Magneto-Thermo-Viscoelastic Deformation and Fracture
,”
Int. J. Non Linear Mech.
, 44(2), pp.
244
248
.10.1016/j.ijnonlinmec.2008.11.018
68.
Hossain
,
M.
,
Vu
,
D. K.
, and
Steinmann
,
P.
,
2012
, “
Experimental Study and Numerical Modelling of VHB 4910 Polymer
,”
Comput. Mater. Sci.
, 59, pp.
65
74
.10.1016/j.commatsci.2012.02.027
69.
Liao
,
Z.
,
Hossain
,
M.
,
Yao
,
X.
,
Mehnert
,
M.
, and
Steinmann
,
P.
,
2020
, “
On Thermo-Viscoelastic Experimental Characterization and Numerical Modelling of VHB Polymer
,”
Int. J. Non Linear Mech.
, 118, p.
103263
.10.1016/j.ijnonlinmec.2019.103263
70.
Lion
,
A.
,
1997
, “
A Physically Based Method to Represent the Thermo-Mechanical Behaviour of Elastomers
,”
Acta Mech.
, 123, pp.
1
25
.10.1007/BF01178397
71.
Lin
,
R. C.
,
Brocks
,
W.
, and
Betten
,
J.
,
2006
, “
On Internal Dissipation Inequalities and Finite Strain Inelastic Constitutive Laws: Theoretical and Numerical Comparisons
,”
Int. J. Plast.
, 22(10), pp.
1825
1857
.10.1016/j.ijplas.2006.01.002
72.
Schrefler
,
B. A.
,
2002
, “
Mechanics and Thermodynamics of Saturated/Unsaturated Porous Materials and Quantitative Solutions
,”
ASME Appl. Mech. Rev.
, 55(4), pp.
351
388
.10.1115/1.1484107
73.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
, 12(2), pp.
155
164
.10.1063/1.1712886
74.
Naili
,
S.
,
Galo
,
L.
, and
Geiger
,
O.
,
1995
, “
D. Some Remarks About Mechanics of Porous Elastically Deformable Media
,”
ASME Appl. Mech. Rev.
, 48(10), pp.
707
716
.
75.
Terzaghi
,
K.
,
1943
, Theoretical Soil Mechanics, John Wiley & Sons, Hoboken, NJ.
76.
Biot
,
M. A.
,
1955
, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
, 97, p.
1463
.10.1103/PhysRev.97.1463
77.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
, 28(2), pp.
179
191
.10.1121/1.1908239
78.
Biot
,
M. A.
,
1973
, “
Nonlinear and Semilinear Rheology of Porous Solids
,”
J. Geophys. Res.
, 78(23), pp.
4924
4937
.10.1029/JB078i023p04924
79.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid‐Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys.
, 14(2), pp.
227
241
.10.1029/RG014i002p00227
80.
Zienkiewicz
,
O. C.
,
Chang
,
C. T.
, and
Bettess
,
P.
,
1980
, “
Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils
,”
Geotechnique
, 30(4), pp.
385
395
.10.1680/geot.1980.30.4.385
81.
Prévost
,
J. H.
,
1980
, “
Mechanics of Continuous Porous Media
,”
Int. J. Eng. Sci.
, 18(6), pp.
787
800
.10.1016/0020-7225(80)90026-9
82.
Prevost
,
J. H.
,
1982
, “
Nonlinear Transient Phenomena in Saturated Porous Media
,”
Comput. Methods Appl. Mech. Eng.
, 30(1), pp.
3
18
.10.1016/0045-7825(82)90052-4
83.
Gajo
,
A.
,
Cecinato
,
F.
, and
Hueckel
,
T.
,
2019
, “
Chemo-Mechanical Modeling of Artificially and Naturally Bonded Soils
,”
Geomech. Energy Environ.
, 18, pp.
13
29
.10.1016/j.gete.2018.11.005
84.
Coussy
,
O.
,
1991
,
Mecanique des Milieux Poreux (Mechanics of Porous Media)
, Acoustical Society of America, Melville, NY.
85.
Jacquey
,
A. B.
,
Regenauer-Lieb
,
K.
, and
Cacace
,
M.
,
2021
, “
Thermomechanics for Geological, Civil Engineering and Geodynamic Applications: Numerical Implementation and Application to the Bentheim Sandstone
,”
Rock Mech. Rock Eng.
, 54, pp.
5337
5354
.10.1007/s00603-021-02582-0
86.
Jacquey
,
A. B.
, and
Regenauer-Lieb
,
K.
,
2021
, “
Thermomechanics for Geological, Civil Engineering and Geodynamic Applications: Rate-Dependent Critical State Line Models
,”
Rock Mech. Rock Eng.
,
54
(
10
), pp.
5355
5373
.10.1007/s00603-021-02397-z
87.
Kümpel
,
H.‐J.
,
1991
, “
Poroelasticity: Parameters Reviewed
,”
Geophys. J. Int.
, 105(3), pp.
783
799
.10.1111/j.1365-246X.1991.tb00813.x
88.
Detournay
,
E.
, and
Cheng
,
A. H. D.
,
1993
, “
Fundamentals of Poroelasticity
,”
Compr. Rock Eng.
,
2
, pp.
113
171
.10.1016/B978-0-08-040615-2.50011-3
89.
Lopatnikov
,
S. L.
, and
Cheng
,
A. H.-D.
,
2005
, “
If You Ask a Physicist From Any Country: A Tribute to Yacov Il'ich Frenkel
,”
J. Eng. Mech.
, 131(9), pp.
875
878
.https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282005%29131%3A9%28875%29
90.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
,
The Classical Field Theories
, Springer, Berlin.
91.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A Dynamical Theory of Interacting Continua
,”
Int. J. Eng. Sci.
, 3(2), pp.
231
241
.10.1016/0020-7225(65)90046-7
92.
Goodman
,
M. A.
, and
Cowin
,
S. C.
,
1972
, “
A Continuum Theory for Granular Materials
,”
Arch. Ration Mech. Anal.
, 44, pp.
249
266
.10.1007/BF00284326
93.
Passman
,
S. L.
,
1977
, “
Mixtures of Granular Materials
,”
Int. J. Eng. Sci.
, 15(2), pp.
117
129
.10.1016/0020-7225(77)90027-1
94.
Siddique
,
J. I.
,
Ahmed
,
A.
,
Aziz
,
A.
, and
Khalique
,
C. M.
,
2017
, “
A Review of Mixture Theory for Deformable Porous Media and Applications
,”
Appl. Sci.
, 7(9), p.
917
.10.3390/app7090917
95.
Bowen
,
R. M.
,
1980
, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
, 18(9), pp.
1129
1148
.10.1016/0020-7225(80)90114-7
96.
Regenauer-Lieb
,
K.
,
Veveakis
,
M.
,
Poulet
,
T.
, et al.,
2014
, “
Multiscale Coupling and Multiphysics Approaches in Earth Sciences: Applications
,”
J. Coupled Syst. Multiscale Dyn.
, 1(1), pp.
49
73
.10.1166/jcsmd.2013.1012
97.
Sherwood
,
J. D.
,
1993
, “
Biot Poroelasticity of a Chemically Active Shale
,”
Proc. R Soc London Ser. A Math Phys. Sci.
, 440(1909), pp.
365
377
.10.1098/rspa.1993.0021
98.
Sherwood
,
J. D.
,
1995
, “
Ionic Transport in Swelling Shale
,”
Adv. Colloid Interface Sci.
, 61, pp.
51
64
.10.1016/0001-8686(95)00259-S
99.
Lubetkin
,
S. D.
,
Middleton
,
S. R.
, and
Ottewill
,
R. H.
,
1984
, “
Some Properties of Clay-Water Dispersions
,”
Philos. Trans. R Soc. London
, 311(1517), pp.
353
368
.10.1098/rsta.1984.0033
100.
Ghassemi
,
A.
, and
Diek
,
A.
,
2003
, “
Linear Chemo-Poroelasticity for Swelling Shales: Theory and Application
,”
J. Pet. Sci. Eng.
,
38
(
3–4
), pp.
199
212
.10.1016/S0920-4105(03)00033-0
101.
Zhou
,
X.
, and
Ghassemi
,
A.
,
2009
, “
Finite Element Analysis of Coupled Chemo-Poro-Thermo-Mechanical Effects Around a Wellbore in Swelling Shale
,”
Int J Rock Mech Min Sci.
, 46(4), pp.
769
778
.10.1016/j.ijrmms.2008.11.009
102.
Ekbote
,
S.
, and
Abousleiman
,
Y.
,
2006
, “
Porochemoelastic Solution for an Inclined Borehole in a Transversely Isotropic Formation
,”
J. Eng. Mech.
, 132(7), pp.
754
763
.https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9399%282006%29132%3A7%28754%29
103.
Nguyen
,
V. X.
, and
Abousleiman
,
Y. N.
,
2009
, “
The Porochemothermoelastic Coupled Solutions of Stress and Pressure With Applications to Wellbore Stability in Chemically Active Shale
,” Proceedings—SPE Annual Technical Conference and Exhibition, New Orleans, LA, Oct. 4–7, Paper No.
SPE-124422-MS
.10.2118/124422-MS
104.
Chen
,
X.
, and
Hicks
,
M. A.
,
2010
, “
Influence of Water Chemical Potential on the Swelling of Water Sensitive Materials
,”
Comput. Struct.
, 88(23–24), pp.
1498
1505
.10.1016/j.compstruc.2009.06.006
105.
Loret
,
B.
,
Hueckel
,
T.
, and
Gajo
,
A.
,
2002
, “
Chemo-Mechanical Coupling in Saturated Porous Media: Elastic-Plastic Behaviour of Homoionic Expansive Clays
,”
Int. J. Solids Struct.
, 39(10), pp.
2773
2806
.10.1016/S0020-7683(02)00151-8
106.
Loret
,
B.
,
Gajo
,
A.
, and
Simões
,
F. M. F.
,
2004
, “
A Note on the Dissipation Due to Generalized Diffusion With Electro-Chemo-Mechanical Couplings in Heteroionic Clays
,”
Eur. J. Mech. A/Solids
, 23(5), pp.
763
782
.10.1016/j.euromechsol.2004.04.004
107.
Roshan
,
H.
, and
Rahman
,
S. S.
,
2013
, “
The Effect of Water Content on Stress Changes Around a Wellbore Drilled in a Chemically Active Elastoplastic Formation
,”
Pet. Sci. Technol.
, 31(20), pp.
2118
2126
.10.1080/10916466.2011.553649
108.
Roshan
,
H.
, and
Rahman
,
S. S.
,
2011
, “
A Fully Coupled Chemo-Poroelastic Analysis of Pore Pressure and Stress Distribution Around a Wellbore in Water Active Rocks
,”
Rock Mech. Rock Eng.
, 44, pp.
199
210
.10.1007/s00603-010-0104-7
109.
Roshan
,
H.
, and
Fahad
,
M.
,
2012
, “
Chemo-Poroplastic Analysis of a Borehole Drilled in a Naturally Fractured Chemically Active Formation
,”
Int. J. Rock Mech. Min. Sci.
, 52, pp.
82
91
.10.1016/j.ijrmms.2012.03.004
110.
Roshan
,
H.
, and
Rahman
,
S. S.
,
2011
, “
Analysis of Pore Pressure and Stress Distribution Around a Wellbore Drilled in Chemically Active Elastoplastic Formations
,”
Rock Mech. Rock Eng.
, 44, pp.
541
552
.10.1007/s00603-011-0141-x
111.
Roshan
,
H.
, and
Oeser
,
M.
,
2012
, “
A Non-Isothermal Constitutive Model for Chemically Active Elastoplastic Rocks
,”
Rock Mech. Rock Eng.
, 45, pp.
361
374
.10.1007/s00603-011-0204-z
112.
Gale
,
J. F. W.
,
Laubach
,
S. E.
,
Olson
,
J. E.
,
Eichhubl
,
P.
, and
Fall
,
A.
,
2017
, “
Natural Fractures in Shale: A Review and New Observations
,”
Am. Assoc. Pet. Geol. Bull.
, 98(11), pp.
2165
2216
.10.1306/08121413151
113.
Tran
,
N. H.
,
Chen
,
Z.
, and
Rahman
,
S. S.
,
2006
, “
Integrated Conditional Global Optimisation for Discrete Fracture Network Modelling
,”
Comput. Geosci.
, 32(1), pp.
17
27
.10.1016/j.cageo.2005.03.019
114.
Roshan
,
H.
, and
Aghighi
,
M. A.
,
2012
, “
Chemo-Poroelastic Analysis of Pore Pressure and Stress Distribution Around a Wellbore in Swelling Shale: Effect of Undrained Response and Horizontal Permeability Anisotropy
,”
Geomech. Geoengin.
, 7(3), pp.
209
218
.10.1080/17486025.2011.616936
115.
Roshan
,
H.
, and
Aghighi
,
M. A.
,
2012
, “
Analysis of Pore Pressure Distribution in Shale Formations Under Hydraulic, Chemical, Thermal and Electrical Interactions
,”
Transp. Porous Media
, 92, pp.
61
81
.10.1007/s11242-011-9891-x
116.
Cao
,
W.
,
Deng
,
J.
,
Yu
,
B.
, et al.,
2017
, “
Wellbore Stability Analysis Based on the Fully Coupled Non-Linear Chemo-Thermo-Poroelastic Theory in Shale Formation
,”
51st US Rock Mechanics/Geomechanics Symposium 2017
, San Fransisco, CA, June 25–28, Paper No.
ARMA-2017-0263
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA17/All-ARMA17/ARMA-2017-0263/124203
117.
Cao
,
W.
,
Deng
,
J.
,
Liu
,
W.
, et al.,
2017
, “
Pore Pressure and Stress Distribution Analysis Around an Inclined Wellbore in a Transversely Isotropic Formation Based on the Fully Coupled Chemo-Thermo-Poroelastic Theory
,”
J. Nat. Gas Sci. Eng.
, 40, pp.
24
37
.10.1016/j.jngse.2017.02.002
118.
Yerro
,
A.
,
Girardi
,
V.
,
Martinelli
,
M.
, and
Ceccato
,
F.
,
2022
, “
Modelling Unsaturated Soils With the Material Point Method. A Discussion of the State-of-the-Art
,”
Geomech. Energy Environ.
, 32, p.
100343
.10.1016/j.gete.2022.100343
119.
Croney
,
D.
,
1952
, “
The Movement and Distribution of Water in Soils
,”
Geotechnique
, 3(1), pp.
1
16
.10.1680/geot.1952.3.1.1
120.
Bishop
,
A. W.
,
1959
, “
The Principle of Effective Stress
,”
Tek Ukebl.
, 32.
121.
Khalili
,
N.
,
Geiser
,
F.
, and
Blight
,
G. E.
,
2004
, “
Effective Stress in Unsaturated Soils: Review With New Evidence
,”
Int. J. Geomech.
, 4(2), pp.
115
126
.10.1061/(ASCE)1532-3641(2004)4:2(115)
122.
Jennings
,
J. E. B.
, and
Burland
,
J. B.
,
1962
, “
Limitations to the Use of Effective Stresses in Partly Saturated Soils
,”
Geotechnique
, 12(2), pp.
125
144
.10.1680/geot.1962.12.2.125
123.
Khalili
,
N.
, and
Loret
,
B.
,
2001
, “
An Elasto-Plastic Model for Non-Isothermal Analysis of Flow and Deformation in Unsaturated Porous Media: Formulation
,”
Int. J. Solids Struct.
, 38(46–47), pp.
8305
8330
.10.1016/S0020-7683(01)00081-6
124.
Loret
,
B.
, and
Khalili
,
N.
,
2002
, “
An Effective Stress Elastic-Plastic Model for Unsaturated Porous Media
,”
Mech. Mater.
, 34(2), pp.
97
116
.10.1016/S0167-6636(01)00092-8
125.
Gens
,
A.
,
Sánchez
,
M.
, and
Sheng
,
D.
,
2006
, “
On Constitutive Modelling of Unsaturated Soils
,”
Acta Geotech.
, 1(3), pp.
137
147
.10.1016/j.compgeo.2014.03.007
126.
Sheng
,
D.
,
Gens
,
A.
,
Fredlund
,
D. G.
, and
Sloan
,
S. W.
,
2008
, “
Unsaturated Soils: From Constitutive Modelling to Numerical Algorithms
,”
Comput. Geotech.
, 35(6), pp.
810
824
.10.1016/j.compgeo.2008.08.011
127.
Sheng
,
D.
,
2011
, “
Review of Fundamental Principles in Modelling Unsaturated Soil Behaviour
,”
Comput. Geotech.
, 38(6), pp.
757
776
.10.1016/j.compgeo.2011.05.002
128.
Cui
,
Y. J.
, and
Delage
,
P.
,
1996
, “
Yielding and Plastic Behaviour of an Unsaturated Compacted Silt
,”
Geotechnique
, 46(2), pp.
291
311
.10.1680/geot.1996.46.2.291
129.
Kohgo
,
Y.
,
Nakano
,
M.
, and
Miyazaki
,
T.
,
1993
, “
Theoretical Aspects of Constitutive Modelling for Unsaturated Soils
,”
Soils Found
, 33(4), pp.
49
63
.10.3208/sandf1972.33.4_49
130.
Borja
,
R. I.
,
2006
, “
On the Mechanical Energy and Effective Stress in Saturated and Unsaturated Porous Continua
,”
Int. J. Solids Struct.
, 43(6), pp.
1764
1786
.10.1016/j.ijsolstr.2005.04.045
131.
Borja
,
R. I.
,
2004
, “
Cam-Clay Plasticity. Part V: A Mathematical Framework for Three-Phase Deformation and Strain Localization Analyses of Partially Saturated Porous Media
,”
Comput. Methods Appl. Mech. Eng.
, 193(48–51), pp.
5301
5338
.10.1016/j.cma.2003.12.067
132.
Song
,
X.
, and
Borja
,
R. I.
,
2014
, “
Mathematical Framework for Unsaturated Flow in the Finite Deformation Range
,”
Int. J. Numer. Methods Eng.
, 97(9), pp.
658
682
.10.1002/nme.4605
133.
Song
,
X.
, and
Borja
,
R. I.
,
2014
, “
Finite Deformation and Fluid Flow in Unsaturated Soils With Random Heterogeneity
,”
Vadose Zo J.
, 13(5), pp.
1
11
.10.2136/vzj2013.07.0131
134.
Coussy
,
O.
,
2007
, “
Revisiting the Constitutive Equations of Unsaturated Porous Solids Using a Lagrangian Saturation Concept
,”
Int. J. Numer. Anal. Methods Geomech.
, 31(15), pp.
1675
1694
.10.1002/nag.613
135.
Oka
,
F.
,
Kodaka
,
T.
,
Kimoto
,
S.
,
Kim
,
Y.-S.
, and
Yamasaki
,
N.
,
2006
, “
An Elasto-Viscoplastic Model and Multiphase Coupled FE Analysis for Unsaturated Soil
,” epub.https://ascelibrary.org/doi/abs/10.1061/40802%28189%29172
136.
Liu
,
Z.
,
Boukpeti
,
N.
,
Li
,
X.
, et al.,
2005
, “
Modelling Chemo-Hydro-Mechanical Behaviour of Unsaturated Clays: A Feasibility Study
,”
Int. J. Numer. Anal. Methods Geomech.
, 29(9), pp.
919
940
.10.1002/nag.444
137.
Guo
,
X. X.
,
Sun
,
X.
,
Shao
,
L. T.
, and
Zhao
,
B. y.
,
2013
, “
Current Situation of Constitutive Model for Soils Based on Thermodynamics Approach
,”
Springer Series in Geomechanics and Geoengineering
, Springer, Berlin.
138.
Scarfone
,
R.
,
Wheeler
,
S. J.
, and
Lloret-Cabot
,
M.
,
2022
, “
A Hysteretic Hydraulic Constitutive Model for Unsaturated Soils and Application to Capillary Barrier Systems
,”
Geomech. Energy Environ.
, 30, p.
100224
.10.1016/j.gete.2020.100224
139.
Chen
,
X. H.
, and
Hicks
,
M. A.
,
2011
, “
A Constitutive Model Based on Modified Mixture Theory for Unsaturated Rocks
,”
Comput. Geotech.
, 38(8), pp.
925
933
.10.1016/j.compgeo.2011.04.008
140.
Chen
,
X.
,
2013
, “
Constitutive Unsaturated Hydro-Mechanical Model Based on Modified Mixture Theory With Consideration of Hydration Swelling
,”
Int. J. Solids Struct.
, 50(20–21), pp.
3266
3273
.10.1016/j.ijsolstr.2013.05.025
141.
Chen
,
X. H.
, and
Hicks
,
M. A.
,
2013
, “
Unsaturated Hydro-Mechanical-Chemo Coupled Constitutive Model With Consideration of Osmotic Flow
,”
Comput. Geotech.
, 54, pp.
94
103
.10.1016/j.compgeo.2013.06.001
142.
Chen
,
X. H.
,
Pao
,
W.
,
Thornton
,
S.
, and
Small
,
J.
,
2016
, “
Unsaturated Hydro-Mechanical-Chemical Constitutive Coupled Model Based on Mixture Coupling Theory: Hydration Swelling and Chemical Osmosis
,”
Int. J. Eng. Sci.
, 104, pp.
97
109
.10.1016/j.ijengsci.2016.04.010
143.
Chen
,
X.
,
Thornton
,
S. F.
, and
Pao
,
W.
,
2018
, “
Mathematical Model of Coupled Dual Chemical Osmosis Based on Mixture-Coupling Theory
,”
Int. J. Eng. Sci.
, 129, pp.
145
155
.10.1016/j.ijengsci.2018.04.010
144.
Lei
,
X.
,
Wong
,
H.
,
Fabbri
,
A.
,
Limam
,
A.
, and
Cheng
,
Y. M.
,
2016
, “
A Chemo-Elastic-Plastic Model for Unsaturated Expansive Clays
,”
Int. J. Solids Struct.
, 88–89, pp.
354
378
.10.1016/j.ijsolstr.2016.01.008
145.
Lei
,
X.
,
Wong
,
H.
,
Fabbri
,
A.
,
Limam
,
A.
, and
Cheng
,
Y. M.
,
2014
, “
A Thermo-Chemo-Electro-Mechanical Framework of Unsaturated Expansive Clays
,”
Comput. Geotech.
, 62, pp.
175
192
.10.1016/j.compgeo.2014.07.004
146.
Choo
,
J.
,
White
,
J. A.
, and
Borja
,
R. I.
,
2016
, “
Hydromechanical Modeling of Unsaturated Flow in Double Porosity Media
,”
Int. J. Geomech.
, 16(6), Article No. D4016002-1-18.10.1061/(ASCE)GM.1943-5622.0000558
147.
Zhang
,
J.
, and
Roegiers
,
J. C.
,
2005
, “
Double Porosity Finite Element Method for Borehole Modeling
,”
Rock Mech. Rock Eng.
, 38, pp.
217
242
.10.1007/s00603-005-0052-9
148.
Shakeriaski
,
F.
,
Ghodrat
,
M.
,
Escobedo-Diaz
,
J.
, and
Behnia
,
M.
,
2021
, “
Recent Advances in Generalized Thermoelasticity Theory and the Modified Models: A Review
,”
J. Comput. Des. Eng.
, 8(1), pp.
15
35
.10.1093/jcde/qwaa082
149.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
, 27(3), pp.
240
253
.10.1063/1.1722351
150.
Morland
,
L. W.
,
1978
, “
A Theory of Slow Fluid Flow Through a Porous Thermoelastic Matrix
,”
Geophys. J. R. Astron. Soc.
, 55(2), pp.
393
410
.10.1111/j.1365-246X.1978.tb04279.x
151.
Bear
,
J.
, and
Corapcioglu
,
M. Y.
,
1981
, “
A Mathematical Model for Consolidation in a Thermoelastic Aquifer Due to Hot Water Injection or Pumping
,”
Water Resour. Res.
, 17(3), pp.
723
736
.10.1029/WR017i003p00723
152.
Aboustit
,
B. L.
,
Advani
,
S. H.
, and
Lee
,
J. K.
,
1985
, “
Variational Principles and Finite Element Simulations for Thermo‐Elastic Consolidation
,”
Int. J. Numer. Anal. Methods Geomech.
, 9(1), pp.
49
69
.10.1002/nag.1610090105
153.
Bai
,
M.
, and
Abousleiman
,
Y.
,
1997
, “
Thermoporoelastic Coupling With Application to Consolidation
,”
Int. J. Numer. Anal. Methods Geomech.
, 21(2), pp.
121
132
.10.1002/(SICI)1096-9853(199702)21:2<121::AIDNAG861>3.0.CO;2-W
154.
Gomar
,
M.
,
Goodarznia
,
I.
, and
Shadizadeh
,
S. R.
,
2014
, “
Transient Thermo-Poroelastic Finite Element Analysis of Borehole Breakouts
,”
Int. J. Rock Mech. Min. Sci.
, 71, pp.
418
428
.10.1016/j.ijrmms.2014.08.008
155.
Safari
,
R.
, and
Ghassemi
,
A.
,
2015
, “
3D Thermo-Poroelastic Analysis of Fracture Network Deformation and Induced Micro-Seismicity in Enhanced Geothermal Systems
,”
Geothermics
, 58(2015), pp.
1
14
.10.1016/j.geothermics.2015.06.010
156.
Mirabbasi
,
S. M.
,
Ameri
,
M. J.
,
Biglari
,
F. R.
, and
Shirzadi
,
A.
,
2020
, “
Thermo-Poroelastic Wellbore Strengthening Modeling: An Analytical Approach Based on Fracture Mechanics
,”
J. Pet. Sci. Eng.
, 195(2020), p.
107492
.10.1016/j.petrol.2020.107492
157.
Rafieepour
,
S.
,
Zamiran
,
S.
, and
Ostadhassan
,
M.
,
2020
, “
A Cost-Effective Chemo-Thermo-Poroelastic Wellbore Stability Model for Mud Weight Design During Drilling Through Shale Formations
,”
J. Rock Mech. Geotech. Eng.
, 12(4), pp.
768
779
.10.1016/j.jrmge.2019.12.008
158.
Han
,
S.
,
Cheng
,
Y.
,
Gao
,
Q.
,
Yan
,
C.
,
Han
,
Z.
, and
Zhang
,
J.
,
2019
, “
Investigation on Heat Extraction Characteristics in Randomly Fractured Geothermal Reservoirs Considering Thermo-Poroelastic Effects
,”
Energy Sci. Eng.
, 7(5), pp.
1705
1726
.10.1002/ese3.386
159.
Ghassemi
,
A.
, and
Tao
,
Q.
,
2016
, “
Thermo-Poroelastic Effects on Reservoir Seismicity and Permeability Change
,”
Geothermics
, 63(2016), pp.
210
224
.10.1016/j.geothermics.2016.02.006
160.
Chen
,
X.
,
Pao
,
W.
, and
Li
,
X.
,
2013
, “
Coupled Thermo-Hydro-Mechanical Model With Consideration of Thermal-Osmosis Based on Modified Mixture Theory
,”
Int. J. Eng. Sci.
, 64(2013), pp.
1
13
.10.1016/j.ijengsci.2012.12.005
161.
Suvorov
,
A. P.
, and
Selvadurai
,
A. P. S.
,
2011
, “
Macroscopic Constitutive Equations of Thermo-Poroelasticity Derived Using Eigenstrain - Eigenstress Approaches
,”
Philos. Mag.
, 91(18), pp.
2317
2342
.10.1080/14786435.2011.557402
162.
Suvorov
,
A. P.
, and
Selvadurai
,
A. P. S.
,
2010
, “
Macroscopic Constitutive Equations of Thermo-Poroviscoelasticity Derived Using Eigenstrains
,”
J. Mech. Phys. Solids
, 58(10), pp.
1461
1473
.10.1016/j.jmps.2010.07.016
163.
Gee
,
B.
,
Gracie
,
R.
, and
Dusseault
,
M. B.
,
2021
, “
Multiscale Short-Circuiting Mechanisms in Multiple Fracture Enhanced Geothermal Systems
,”
Geothermics
, 94(2021), p.
102094
.10.1016/j.geothermics.2021.102094
164.
Wang
,
Y.
,
Li
,
W.
, and
Dusseault
,
M. B.
,
2021
, “
THM response of a Borehole in Naturally Fractured Media
,”
J. Pet. Sci. Eng.
, 205(2021), p.
108941
.10.1016/j.petrol.2021.108941
165.
Gee
,
B.
, and
Gracie
,
R.
,
2021
, “
Comparison of Fully-Coupled and Sequential Solution Methodologies for Enhanced Geothermal Systems
,”
Comput. Methods Appl. Mech. Eng.
, 373(2021), p.
113554
.10.1016/j.cma.2020.113554
166.
Gao
,
J.
,
Lin
,
H.
,
Wu
,
B.
,
Deng
,
J.
, and
Liu
,
H.
,
2021
, “
Porochemothermoelastic Solutions Considering Fully Coupled Thermo-Hydro-Mechanical-Chemical Processes to Analyze the Stability of Inclined Boreholes in Chemically Active Porous Media
,”
Comput. Geotech.
,
134
(
January
), p.
104019
.10.1016/j.compgeo.2021.104019
167.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
,
2007
, “
Soret and Dufour Effects on Convective Instabilities in Binary Nanofluids for Absorption Application
,”
Int. J. Refrig.
, 30(2), pp.
323
328
.10.1016/j.ijrefrig.2006.04.005
168.
Ghassemi
,
A.
,
Tao
,
Q.
, and
Diek
,
A.
,
2009
, “
Influence of Coupled Chemo-Poro-Thermoelastic Processes on Pore Pressure and Stress Distributions Around a Wellbore in Swelling Shale
,”
J. Pet. Sci. Eng.
, 67(1–2), pp.
57
64
.10.1016/j.petrol.2009.02.015
169.
Ibrahim
,
A.
,
Akanji
,
L.
,
Hamidi
,
H.
, and
Akisanya
,
A.
,
2017
, “
Chemo-Thermo-Poromechanical Wellbore Stability Modelling Using Multi-Component Drilling Fluids
,” Society of Petroleum Engineers - SPE Kuwait Oil and Gas Show and Conference 2017, Kuwait City, Kuwait, Oct. 15–18, Paper No.
SPE-187627-MS
.10.2118/187627-MS
170.
Zhai
,
X.
, and
Atefi-Monfared
,
K.
,
2020
, “
Local Thermal Non-Equilibrium Effects on Thermal Pressurization in Saturated Porous Media Considering Thermo-Osmosis and Thermal-Filtration
,”
Comput. Geotech.
, 126(2020), p.
103729
.10.1016/j.compgeo.2020.103729
171.
Zheng
,
Q.
, and
Wei
,
G. W.
,
2011
, “
Poisson-Boltzmann-Nernst-Planck Model
,”
J. Chem. Phys.
, 134(194101), pp.
1
17
.10.1063/1.3581031
172.
Cohen
,
H.
, and
Cooley
,
J. W.
,
1965
, “
The Numerical Solution of the Time-Dependent Nernst-Planck Equations
,”
Biophys. J.
, 5(2), pp.
145
162
.10.1016/S0006-3495(65)86707-8
173.
Samson
,
E.
, and
Marchand
,
J.
,
1999
, “
Numerical Solution of the Extended Nernst-Planck Model
,”
J. Colloid Interface Sci.
, 215(1), pp.
1
8
.10.1006/jcis.1999.6145
174.
Siddiqui
,
M. A. Q.
,
Sadeghinezhad
,
E.
,
Regenauer-Lieb
,
K.
, and
Roshan
,
H.
,
2022
, “
Electrolytic Flow in Partially Saturated Charged Micro-Channels: Electrocapillarity versus Electro-Osmosis
,”
Phys. Fluids
,
34
(
11
), p.
112001
.10.1063/5.0100261
175.
Liu
,
C.
,
Mehrabian
,
A.
, and
Abousleiman
,
Y. N.
,
2018
, “
Theory and Analytical Solutions to Coupled Processes of Transport and Deformation in Dual-Porosity Dual-Permeability Poro-Chemo-Electro-Elastic Media
,”
ASME J. Appl. Mech.
, 85(11), p.
111006
.10.1115/1.4040890
176.
Chen
,
X.
,
Wang
,
M.
,
Hicks
,
M. A.
, and
Thomas
,
H. R.
,
2018
, “
A New Matrix for Multiphase Couplings in a Membrane Porous Medium
,”
Int. J. Numer. Anal. Methods Geomech.
, 42(10), pp.
1144
1153
.10.1002/nag.2783
177.
Siddiqui
,
M. A. Q.
, and
Roshan
,
H.
,
2022
, “
Thermodynamic Characterization of Chemical Damage in Variably Saturated Water-Active Shales
,”
Rock Mech. Rock Eng.
, 55(2022), pp.
5259
5284
.10.1007/s00603-022-02916-6
178.
Einav
,
I.
,
2007
, “
Breakage Mechanics-Part I: Theory
,”
J. Mech. Phys. Solids
, 55(6), pp.
1274
1297
.10.1016/j.jmps.2006.11.003
179.
Einav
,
I.
,
2007
, “
Breakage Mechanics-Part II: Modelling Granular Materials
,”
J. Mech. Phys. Solids
, 55(6), pp.
1298
1320
.10.1016/j.jmps.2006.11.004
180.
Ibrahim
,
A.
,
2021
, “
A Review of Mathematical Modelling Approaches to Tackling Wellbore Instability in Shale Formations
,”
J. Nat. Gas Sci. Eng.
,
89
(
2021
), p.
103870
.10.1016/j.jngse.2021.103870
181.
Cagnola
,
A.
,
Li
,
Z.
,
Roshan
,
H.
, and
Masoumi
,
H.
,
2017
, “
Microstructural Evolution of Organic Matter-Rich Shales by Ionic Solutions
,”
51st US Rock Mechanics/Geomechanics Symposium
,
ARMA, American Rock Mechanics Association
,
San Francisco, C
A, June 25–28, Paper No.
ARMA-2017-0138
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA17/All-ARMA17/ARMA-2017-0138/126478
182.
Siddiqui
,
M. A. Q.
,
Lv
,
A.
,
Regenauer-Lieb
,
K.
, and
Roshan
,
H.
,
2020
, “
A Novel Experimental System for Measurement of Coupled Multi-Physics-Induced Surface Alteration Processes in Geomaterials
,”
Meas. J. Int. Meas. Confed.
, 166, p.
108211
.10.1016/j.measurement.2020.108211
183.
ASME
,
2006
,
Guide for Verification and Validation in Computational Solid Mechanics
,
ASME
, New York.
184.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng. Part H J Eng. Med.
, 224(7), pp.
801
812
.10.1243/09544119JEIM649
185.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
ASME Appl. Mech. Rev.
, 57(5), pp.
345
384
.10.1115/1.1767847
186.
Roshan
,
H.
,
Siddiqui
,
M. A. Q.
,
Lv
,
A.
, and
Serati
,
M.
,
2018
, “
Digital Multiphysics Interferometry: A New Approach to Study Chemo-Thermo-Hydro-Mechanical Interactions in Geomaterials
,” ARMA18 - 52nd US Rock Mech/Geomech Symp, Seattle, WA, June 17–20, Paper No.
ARMA-2018-168
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA18/All-ARMA18/ARMA-2018-168/122405
187.
Jommi
,
C.
,
Chao
,
C. Y.
,
Muraro
,
S.
, and
Zhao
,
H. F.
,
2021
, “
Developing a Constitutive Approach for Peats From Laboratory Data
,”
Geomech Energy Environ.
, 27(2021), p.
100220
.10.1016/j.gete.2020.100220
188.
Warren
,
M.
,
Bean
,
J. E.
,
Martinez
,
M. J.
,
Kucala
,
A.
, and
Yoon
,
H.
,
2022
, “
Evaluation of Accuracy and Convergence of Numerical Coupling Approaches for Poroelasticity Benchmark Problems
,”
Geomech. Energy Environ.
,
31
(
100352
), pp.
1
14
.10.1016/j.gete.2022.100352
189.
Aghighi
,
M. A.
,
Lv
,
A.
, and
Roshan
,
H.
,
2021
, “
Non-Equilibrium Thermodynamics Approach to Mass Transport in Sorptive Dual Continuum Porous Media: A Theoretical Foundation and Numerical Simulation
,”
J. Nat. Gas Sci. Eng.
, 87(2021), p.
103757
.10.1016/j.jngse.2020.103757
190.
Cheng
,
A. H. D.
,
2020
, “
A Linear Constitutive Model for Unsaturated Poroelasticity by Micromechanical Analysis
,”
Int. J. Numer. Anal. Methods Geomech.
, 44(4), pp.
455
483
.10.1002/nag.3033
191.
Ashworth
,
M.
, and
Doster
,
F.
,
2019
, “
Foundations and Their Practical Implications for the Constitutive Coefficients of Poromechanical Dual-Continuum Models
,”
Transp. Porous Media
, 130(2019), pp.
699
730
.10.1007/s11242-019-01335-6
192.
Mehnert
,
M.
,
Hossain
,
M.
, and
Steinmann
,
P.
,
2021
, “
A Complete Thermo-Electro-Viscoelastic Characterization of Dielectric Elastomers, Part I: Experimental Investigations
,”
J. Mech. Phys. Solids
,
157
(
June
), p.
104603
.10.1016/j.jmps.2021.104603
193.
Musso
,
G.
,
Volonté
,
G.
,
Gemelli
,
F.
, et al.,
2021
, “
Evaluating the Subsidence Above Gas Reservoirs With an Elasto-Viscoplastic Constitutive Law. Laboratory Evidences and Case Histories
,”
Geomech. Energy Environ.
, 28(2021), p.
100246
.10.1016/j.gete.2021.100246
194.
Aghighi
,
M. A.
,
Lv
,
A.
,
Siddiqui
,
M. A. Q.
,
Masoumi
,
H.
,
Thomas
,
R.
, and
Roshan
,
H.
,
2022
, “
A Multiphysics Field-Scale Investigation of Gas Pre-Drainage in Sorptive Sediments
,”
Int. J. Coal Geol.
,
261
(
May
), p.
104098
.10.1016/j.coal.2022.104098
195.
Dormieux
,
L.
,
Kondo
,
D.
, and
Ulm
,
F.-J.
,
2006
, “
A Mathematical Framework for Upscaling Operations
,”
Microporomechanics
, Wiley, Hoboken, NJ.
196.
Dormieux
,
L.
, and
Kondo
,
D.
,
2006
, “
Part I Modeling of Transport
,”
Microporomechanics
, Wiley, Hoboken, NJ.
197.
Wang
,
Q.
,
Chen
,
X.
,
Jha
,
A. N.
, and
Rogers
,
H.
,
2014
, “
Natural Gas From Shale Formation–The Evolution, Evidences and Challenges of Shale Gas Revolution in United States
,”
Renew. Sustain Energy Rev.
, 30(2014), pp.
1
28
.10.1016/j.rser.2013.08.065
198.
Sakhaee-Pour
,
A.
, and
Bryant
,
S. L.
,
2012
, “
Gas Permeability of Shale
,”
SPE Reserv. Eval. Eng.
, 15(4), pp.
401
409
.10.2118/146944-MS
199.
Speight
,
J. G.
,
2013
,
Shale Gas Production Processes
, GPB, Elsevier, Amsterdam, The Netherlands.
200.
Khodadadi
,
B.
,
Qadeer Siddiqui
,
M. A.
,
Pirzada
,
M. A.
,
Le-Hussain
,
F.
,
Iglauer
,
S.
, and
Roshan
,
H.
,
2020
, “
Direct Observation of Two-Phase Flow in Deformable Fractures of Shales: A Utica Shale Example
,”
J. Pet. Sci. Eng.
, 194(2020), p.
107487
.10.1016/j.petrol.2020.107487
201.
Li
,
W.
,
Liu
,
J.
,
Zeng
,
J.
, et al.,
2020
, “
A Fully Coupled Multidomain and Multiphysics Model for Evaluation of Shale Gas Extraction
,”
Fuel
, 278(2020), p.
118214
.10.1016/j.fuel.2020.118214
202.
Siddiqui
,
M. A. Q.
,
Al-Nuaim
,
S.
, and
Khan
,
R. A.
,
2014
, “
Stochastic Optimization of Gas Cycling in Gas Condensate Reservoirs
,” Society of Petroleum Engineers - 30th Abu Dhabi International Petroleum Exhibition and Conference, ADIPEC 2014: Challenges and Opportunities for the Next 30 Years, Abu Dhabi, UAE, Nov. 10–13, Paper No.
SPE-172107-MS.
10.2118/172107-MS
203.
Siddiqui
,
M. A. Q.
,
Ueda
,
K.
,
Komatsu
,
H.
,
Shimamoto
,
T.
, and
Roshan
,
H.
,
2020
, “
Caveats of Using Fractal Analysis for Clay Rich Pore Systems
,”
J. Pet. Sci. Eng.
, 195(2020), p.
107622
.10.1016/j.petrol.2020.107622
204.
Cipolla
,
C. L.
,
Lolon
,
E. P.
,
Erdle
,
J. C.
, and
Rubin
,
B.
,
2010
, “
Reservoir Modeling in Shale-Gas Reservoirs
,”
SPE Reserv. Eval. Eng.
, 13(4), pp.
638
653
.10.2118/125530-PA
205.
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2014
, “
Simulation of Gas Desorption and Geomechanics Effects for Unconventional Gas Reservoirs
,”
Fuel
, 116(2014), 455–464.10.1016/j.fuel.2013.08.032
206.
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2014
, “
An Efficient Reservoir-Simulation Approach to Design and Optimize Unconventional Gas Production
,”
J. Can. Pet. Technol.
, 53(2), pp.
109
121
.10.2118/165343-PA
207.
Wang
,
J.
,
Luo
,
H.
,
Liu
,
H.
,
Cao
,
F.
,
Li
,
Z.
, and
Sepehrnoori
,
K.
,
2017
, “
An Integrative Model to Simulate Gas Transport and Production Coupled With Gas Adsorption, Non-Darcy Flow, Surface Diffusion, and Stress Dependence in Organic-Shale Reservoirs
,”
SPE J.
, 22(1), pp.
244
264
.10.2118/174996-PA
208.
Clifton
,
R. J.
, and
Chiang
,
F. P.
,
1985
, “
Experimental Mechanics
,”
ASME Appl. Mech. Rev.
, 38(10), pp.
1279
1281
.10.1115/1.3143691
209.
Algazlan
,
M.
,
Pinetown
,
K.
,
Grigore
,
M.
,
Chen
,
Z.
,
Sarmadivaleh
,
M.
, and
Roshan
,
H.
,
2019
, “
Petrophysical Assessment of Australian Organic-Rich Shales: Beetaloo, Cooper and Perth Basins
,”
J. Nat. Gas Sci. Eng.
, 70(2019), p.
102952
.10.1016/j.jngse.2019.102952
210.
Curtis
,
M. E.
,
Ambrose
,
R. J.
,
Sondergeld
,
C. H.
, and
Rai
,
C. S.
,
2010
, “
Structural Characterization of Gas Shales on the Micro- and Nano-Scales
,” Society of Petroleum Engineers - Canadian Unconventional Resources and International Petroleum Conference 2010, Calgary, AB, Canada, Oct. 19–21, Paper No.
SPE-137693-MS
.10.2118/137693-MS
211.
Cao
,
P.
,
Liu
,
J.
, and
Leong
,
Y. K.
,
2016
, “
Combined Impact of Flow Regimes and Effective Stress on the Evolution of Shale Apparent Permeability
,”
J. Unconv. Oil Gas Resour.
, 14(2016), pp.
32
43
.10.1016/j.juogr.2016.01.004
212.
Liu
,
J.
,
Wang
,
J. G.
,
Gao
,
F.
,
Leung
,
C. F.
, and
Ma
,
Z.
,
2019
, “
A Fully Coupled Fracture Equivalent Continuum-Dual Porosity Model for Hydro-Mechanical Process in Fractured Shale Gas Reservoirs
,”
Comput. Geotech.
, 106(2019), pp.
143
160
.10.1016/j.compgeo.2018.10.017
213.
Cui
,
G.
,
Liu
,
J.
,
Wei
,
M.
,
Feng
,
X.
, and
Elsworth
,
D.
,
2018
, “
Evolution of Permeability During the Process of Shale Gas Extraction
,”
J. Nat. Gas Sci. Eng.
, 49(2018), pp.
94
109
.10.1016/j.jngse.2017.10.018
214.
Yucel Akkutlu
,
I.
, and
Fathi
,
E.
,
2012
, “
Multiscale Gas Transport in Shales With Local Kerogen Heterogeneities
,”
SPE J.
, 17(4), pp.
1002
1011
.10.2118/146422-PA
215.
Ambrose
,
R. J.
,
Hartman
,
R. C.
,
Diaz-Campos
,
M.
,
Akkutlu
,
I. Y.
, and
Sondergeld
,
C. H.
,
2012
, “
Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations
,”
SPE J.
, 17(1), pp.
219
229
.10.2118/131772-PA
216.
Jia
,
B.
,
Tsau
,
J. S.
, and
Barati
,
R.
,
2018
, “
A Workflow to Estimate Shale Gas Permeability Variations During the Production Process
,”
Fuel
, 220(2018), pp.
879
889
.10.1016/j.fuel.2017.11.087
217.
Siddiqui
,
M. A. Q.
,
Serati
,
M.
,
Regenauer-Lieb
,
K.
, and
Roshan
,
H.
,
2022
, “
A Thermodynamics-Based Multi-Physics Constitutive Model for Variably Saturated Fractured Sorptive Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
158
(
August
), p.
105202
.10.1016/j.ijrmms.2022.105202
218.
Taylor
,
J. B.
,
Alderson
,
J. E. A.
,
Kalyanam
,
K. M.
,
Lyle
,
A. B.
, and
Phillips
,
L. A.
,
1986
, “
Technical and Economic Assessment of Methods for the Storage of Large Quantities of Hydrogen
,”
Int. J. Hydrogen Energy
, 11(1), pp.
5
22
.10.1016/0360-3199(86)90104-7
219.
Panfilov
,
M.
,
2010
, “
Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation
,”
Transp. Porous Media
, 85(2010), pp.
841
865
.10.1007/s11242-010-9595-7
220.
Gregory
,
D. P.
,
1975
, “
Electrochemistry and the Hydrogen Economy
,”
Modern Aspects of Electrochemistry
, Springer, Berlin.
221.
Abe
,
J. O.
,
Popoola
,
A. P. I.
,
Ajenifuja
,
E.
, and
Popoola
,
O. M.
,
2019
, “
Hydrogen Energy, Economy and Storage: Review and Recommendation
,”
Int. J. Hydrogen Energy
, 44(29), pp.
15072
15086
.10.1016/j.ijhydene.2019.04.068
222.
Caglayan
,
D. G.
,
Weber
,
N.
,
Heinrichs
,
H. U.
, et al.,
2020
, “
Technical Potential of Salt Caverns for Hydrogen Storage in Europe
,”
Int. J. Hydrogen Energy
, 45(11), pp.
6793
6805
.10.1016/j.ijhydene.2019.12.161
223.
Hassanpouryouzband
,
A.
,
Joonaki
,
E.
,
Edlmann
,
K.
, and
Haszeldine
,
R. S.
,
2021
, “
Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero?
,”
ACS Energy Lett.
, 6(6), pp.
2181
2186
.10.1021/acsenergylett.1c00845
224.
Gabrielli
,
P.
,
Poluzzi
,
A.
,
Kramer
,
G. J.
,
Spiers
,
C.
,
Mazzotti
,
M.
, and
Gazzani
,
M.
,
2020
, “
Seasonal Energy Storage for Zero-Emissions Multi-Energy Systems Via Underground Hydrogen Storage
,”
Renew. Sustain. Energy Rev.
, 121(2020), p.
109629
.10.1016/j.rser.2019.109629
225.
Khaledi
,
K.
,
Mahmoudi
,
E.
,
Datcheva
,
M.
, and
Schanz
,
T.
,
2016
, “
Stability and Serviceability of Underground Energy Storage Caverns in Rock Salt Subjected to Mechanical Cyclic Loading
,”
Int. J. Rock Mech. Min. Sci.
, 86(2016), pp.
115
131
.10.1016/j.ijrmms.2016.04.010
226.
Ramesh Kumar
,
K.
, and
Hajibeygi
,
H.
,
2021
, “
Multiscale Simulation of Inelastic Creep Deformation for Geological Rocks
,”
J. Comput. Phys.
, 440(2021), p.
110439
.10.1016/j.jcp.2021.110439
227.
Hagemann
,
B.
,
Rasoulzadeh
,
M.
,
Panfilov
,
M.
,
Ganzer
,
L.
, and
Reitenbach
,
V.
,
2015
, “
Mathematical Modeling of Unstable Transport in Underground Hydrogen Storage
,”
Environ. Earth Sci.
, 73(2015), pp.
6891
6898
.10.1007/s12665-015-4414-7
228.
Hemme
,
C.
, and
van Berk
,
W.
,
2018
, “
Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields
,”
Appl. Sci.
, 8(11), p.
2282
.10.3390/app8112282
229.
Rutqvist
,
J.
,
Liu
,
H. H.
,
Vasco
,
D. W.
,
Pan
,
L.
,
Kappler
,
K.
, and
Majer
,
E.
,
2011
, “
Coupled Non-Isothermal, Multiphase Fluid Flow, and Geomechanical Modeling of Ground Surface Deformations and Potential for Induced Micro-Seismicity at the in Salah CO2 Storage Operation
,”
Energy Procedia
, 4(2011), pp.
3542
3549
.10.1016/j.egypro.2011.02.282
230.
Rutqvist
,
J.
,
Vasco
,
D. W.
, and
Myer
,
L.
,
2010
, “
Coupled Reservoir-Geomechanical Analysis of CO2 Injection and Ground Deformations at in Salah, Algeria
,”
Int. J. Greenh. Gas Control
, 4(2), pp.
225
230
.10.1016/j.ijggc.2009.10.017
231.
Rutqvist
,
J.
, and
Tsang
,
C. F.
,
2002
, “
A Study of Caprock Hydromechanical Changes Associated With CO2-Injection Into a Brine Formation
,”
Environ. Geol.
, 42(2002), pp.
296
305
.10.1007/s00254-001-0499-2
232.
Ampomah
,
W.
,
Balch
,
R.
,
Will
,
R.
,
Cather
,
M.
,
Gunda
,
D.
, and
Dai
,
Z.
,
2017
, “
Co-Optimization of CO2-EOR and Storage Processes Under Geological Uncertainty
,”
Energy Procedia
, 114(2017), pp.
6928
6941
.10.1016/j.egypro.2017.03.1835
233.
Kamali
,
F.
,
Hussain
,
F.
, and
Cinar
,
Y.
,
2015
, “
A Laboratory and Numerical-Simulation Study of Co-Optimizing CO2 Storage and CO2 Enhanced Oil Recovery
,”
SPE J.
, 20(6), pp.
1227
1237
.10.2118/171520-PA
234.
Bouchard
,
R.
, and
Delaytermoz
,
A.
,
2004
, “
Integrated Path Towards Geological Storage
,”
Energy
, 29(9–10), pp.
1339
1346
.10.1016/j.energy.2004.03.069
235.
Saripalli
,
P.
, and
McGrail
,
P.
,
2002
, “
Semi-Analytical Approaches to Modeling Deep Well Injection of CO2 for Geological Sequestration
,”
Energy Convers. Manag.
, 43(2), pp.
185
198
.10.1016/S0196-8904(01)00017-6
236.
Shukla
,
R.
,
Ranjith
,
P.
,
Haque
,
A.
, and
Choi
,
X.
,
2010
, “
A Review of Studies on CO2 Sequestration and Caprock Integrity
,”
Fuel
, 89(10), pp.
2651
2664
.10.1016/j.fuel.2010.05.012
237.
Pan
,
P.
,
Wu
,
Z.
,
Feng
,
X.
, and
Yan
,
F.
,
2016
, “
Geomechanical Modeling of CO2 Geological Storage: A Review
,”
J. Rock Mech. Geotech. Eng.
, 8(6), pp.
936
947
.10.1016/j.jrmge.2016.10.002
238.
Yamamoto
,
S.
,
Miyoshi
,
S.
,
Sato
,
S.
, and
Suzuki
,
K.
,
2013
, “
Study on Geomechanical Stability of the Aquifer-Caprock System During CO2 Sequestration by Coupled Hydromechanical Modeling
,”
Energy Procedia
, 37(2013), pp.
3989
3996
.10.1016/j.egypro.2013.06.298
239.
Zhang
,
Y.
,
Langhi
,
L.
,
Schaubs
,
P. M.
, et al.,
2015
, “
Geomechanical Stability of CO2 Containment at the South West Hub Western Australia: A Coupled Geomechanical-Fluid Flow Modelling Approach
,”
Int. J. Greenh. Gas Control
, 37(2015), pp.
12
23
.10.1016/j.ijggc.2015.03.003
240.
Wei
,
X.
,
Li
,
Q.
,
Li
,
X.
, and
Niu
,
Z.
,
2016
, “
Modeling the Hydromechanical Responses of Sandwich Structure Faults During Underground Fluid Injection
,”
Environ. Earth Sci.
, 75(2016), p.
1155
.10.1007/s12665-016-5975-9
241.
Jha
,
B.
, and
Juanes
,
R.
,
2014
, “
Coupled Modeling of Multiphase Flow and Fault Poromechanics During Geologic CO2 Storage
,”
Energy Procedia
, 63(2014), pp.
3313
3329
.10.1016/j.egypro.2014.11.360
242.
Dempsey
,
D.
,
Kelkar
,
S.
,
Pawar
,
R.
,
Keating
,
E.
, and
Coblentz
,
D.
,
2014
, “
Modeling Caprock Bending Stresses and Their Potential for Induced Seismicity During CO2 Injection
,”
Int. J. Greenh. Gas Control
, 22(2014), pp.
223
236
.10.1016/j.ijggc.2014.01.005
243.
Regenauer-Lieb
,
K.
,
Hobbs
,
B.
, and
Ord
,
A.
,
2004
, “
On the Thermodynamics of Listric Faults
,”
Earth Planets Space
, 56(12), pp.
1111
1120
.10.1186/BF03353330
244.
Regenauer-Lieb
,
K.
, and
Yuen
,
D. A.
,
2008
, “
Multiscale Brittle-Ductile Coupling and Genesis of Slow Earthquakes
,”
Pure Appl. Geophys.
, 165(2009), pp.
523
543
.10.1007/s00024-008-0326-8
245.
Tatomir
,
A.
,
Dimache
,
A. N.
,
Iulian
,
I.
, and
Sauter
,
M.
,
2019
, “
Modelling of CO2 Storage in Geological Formations With DuMux, a Free-Open-Source Numerical Framework. A Possible Tool to Assess Geological Storage of Carbon Dioxide in Romania
,”
E3S Web of Conferences
, Feb.10.1051/e3sconf/20198507002
246.
Nordbotten
,
J. M.
,
Flemisch
,
B.
,
Gasda
,
S. E.
, et al.,
2012
, “
Uncertainties in Practical Simulation of CO2 Storage
,”
Int. J. Greenh. Gas Control
, 9(2012), pp.
234
242
.10.1016/j.ijggc.2012.03.007
247.
Rutqvist
,
J.
,
Wu
,
Y. S.
,
Tsang
,
C. F.
, and
Bodvarsson
,
G.
,
2002
, “
A Modeling Approach for Analysis of Coupled Multiphase Fluid Flow, Heat Transfer, and Deformation in Fractured Porous Rock
,”
Int. J. Rock Mech. Min. Sci.
, 39(4), pp.
429
442
.10.1016/S1365-1609(02)00022-9
248.
Zhang
,
R.
,
Winterfeld
,
P. H.
,
Yin
,
X.
,
Xiong
,
Y.
, and
Wu
,
Y. S.
,
2015
, “
Sequentially Coupled THMC Model for CO2 Geological Sequestration Into a 2D Heterogeneous Saline Aquifer
,”
J. Nat. Gas Sci. Eng.
, 27(2), pp.
579
615
.10.1016/j.jngse.2015.09.013
249.
Page
,
S. C.
,
Williamson
,
A. G.
, and
Mason
,
I. G.
,
2009
, “
Carbon Capture and Storage: Fundamental Thermodynamics and Current Technology
,”
Energy Policy
, 37(9), pp.
3314
3324
.10.1016/j.enpol.2008.10.028
250.
Vandamme
,
M.
,
2019
, “
Coupling Between Adsorption and Mechanics (and Vice Versa)
,”
Curr. Opin. Chem. Eng.
, 24(2019), pp.
12
18
.10.1016/j.coche.2018.12.005
251.
Ravikovitch
,
P. I.
, and
Neimark
,
A. V.
,
2006
, “
Density Functional Theory Model of Adsorption Deformation
,”
Langmuir
, 22(26), pp.
10864
10868
.10.1021/la061092u
252.
Gor
,
G. Y.
,
Huber
,
P.
, and
Weissmüller
,
J.
,
2018
, “
Elastocapillarity in Nanopores: Sorption Strain From the Actions of Surface Tension and Surface Stress
,”
Phys. Rev. Mater.
, 2(8), p.
086002
.10.1103/PhysRevMaterials.2.086002
253.
Vandamme
,
M.
,
Brochard
,
L.
,
Lecampion
,
B.
, and
Coussy
,
O.
,
2010
, “
Adsorption and Strain: The CO2-Induced Swelling of Coal
,”
J. Mech. Phys Solids
, 58(10), pp.
1489
1505
.10.1016/j.jmps.2010.07.014
254.
Espinoza
,
D. N.
,
Pereira
,
J. M.
,
Vandamme
,
M.
,
Dangla
,
P.
, and
Vidal-Gilbert
,
S.
,
2015
, “
Desorption-Induced Shear Failure of Coal Bed Seams During Gas Depletion
,”
Int. J. Coal Geol.
, 137(2015), pp.
142
151
.10.1016/j.coal.2014.10.016
255.
Nikoosokhan
,
S.
,
Vandamme
,
M.
, and
Dangla
,
P.
,
2014
, “
A Poromechanical Model for Coal Seams Saturated With Binary Mixtures of CH4 and CO
2,”
J. Mech. Phys. Solids
, 71(2014), pp.
97
111
.https://www.academia.edu/58057043/A_poromechanical_model_for_coal_seams_saturated_with_binary_mixtures_of_CH4_and_CO2
256.
Algazlan
,
M.
,
Abdul
,
M.
,
Siddiqui
,
Q.
, and
Roshan
,
H.
,
2022
, “
A Sorption-Kinetics Coupled Dual-Porosity Poromechanical Model for Organic-Rich Shales
,”
Comput. Geotech.
,
147
(
March
), p.
104755
.10.1016/j.compgeo.2022.104755
You do not currently have access to this content.