Abstract

Many animals in nature travel in groups either for protection, survival, or endurance. Among these, certain species do so under the burden of aero/hydrodynamic loads, which incites questions as to the significance of the multibody fluid-mediated interactions that are inherent to collective flying/swimming. Prime examples of such creatures are fish, which are commonly seen traveling in highly organized groups of large numbers. Indeed, over the years, there have been numerous attempts to examine hydrodynamic interactions among self-propelled fish-like swimmers. Though many have studied this phenomenon, their motivations have varied from understanding animal behavior to extracting universal fluid dynamical principles and transplanting them into engineering applications. The approaches utilized to carry out these investigations include theoretical and computational analyses, field observations, and experiments using various abstractions of biological fish. Here, we compile representative investigations focused on the collective hydrodynamics of fish-like swimmers. The selected body of works are reviewed in the context of their methodologies and findings, so as to draw parallels, contrast differences, and highlight open questions. Overall, the results of the surveyed studies provide foundational insights into the conditions (such as the relative positioning and synchronization between the members, as well as their swimming kinematics and speed) under which hydrodynamic interactions can lead to efficiency gains and/or group cohesion in two- and three-dimensional scenarios. They also shed some light on the mechanisms responsible for such energetic and stability enhancements in the context of wake-body, wake-wake, and body-body interactions.

References

1.
Ramaswamy
,
S.
,
2010
, “
The Mechanics and Statistics of Active Matter
,”
Annu. Rev. Condens. Matter Phys.
,
1
(
1
), pp.
323
345
.10.1146/annurev-conmatphys-070909-104101
2.
Marchetti
,
M. C.
,
Joanny
,
J.-F.
,
Ramaswamy
,
S.
,
Liverpool
,
T. B.
,
Prost
,
J.
,
Rao
,
M.
, and
Simha
,
R. A.
,
2013
, “
Hydrodynamics of Soft Active Matter
,”
Rev. Mod. Phys.
,
85
(
3
), p.
1143
.10.1103/RevModPhys.85.1143
3.
Radakov
,
D. V.
,
1973
, “
Schooling in the Ecology of Fish
,” Translated From Russian by Mills, H., Halsted Press (A vision of John Wiley and Sons), New York.
4.
Fish
,
F. E.
,
1999
, “
Energetics of Swimming and Flying in Formation
,”
Comm. Theor. Biol.
,
5
, pp.
283
304
.https://www.researchgate.net/publication/285354993_Energetics_of_swimming_and_flying_in_formation
5.
Fish
,
F. E.
,
2010
, “
Swimming Strategies for Energy Economy
,” Fish Locomotion: Fish Swimming: An Etho-Ecological Perspective, Domenici, P., and Kapoor, B. G., eds., CRC Press, Boca Raton, FL.
6.
Marras
,
S.
,
Killen
,
S. S.
,
Lindström
,
J.
,
McKenzie
,
D. J.
,
Steffensen
,
J. F.
, and
Domenici
,
P.
,
2015
, “
Fish Swimming in Schools Save Energy Regardless of Their Spatial Position
,”
Behav. Ecol. Sociobiol.
,
69
(
2
), pp.
219
226
.10.1007/s00265-014-1834-4
7.
Trenchard
,
H.
, and
Perc
,
M.
,
2016
, “
Energy Saving Mechanisms, Collective Behavior and the Variation Range Hypothesis in Biological Systems: A Review
,”
Biosystems
,
147
, pp.
40
66
.10.1016/j.biosystems.2016.05.010
8.
Cullen
,
J. M.
,
Shaw
,
E.
, and
Baldwin
,
H. A.
,
1965
, “
Methods for Measuring the Three-Dimensional Structure of Fish Schools
,”
Anim. Behav.
,
13
(
4
), pp.
534
543
.10.1016/0003-3472(65)90117-X
9.
Breder
,
C. M.
,
1967
, “
On the Survival Value of Fish Schools
,”
Zoologica
,
52
(
2
), pp.
25
40
.10.5962/p.203258
10.
Pitcher
,
T. J.
,
1973
, “
The Three-Dimensional Structure of Schools in the Minnow, Phoxinus Phoxinus (L.)
,”
Anim. Behav.
,
21
(
4
), pp.
673
686
.10.1016/S0003-3472(73)80091-0
11.
Partridge
,
B. L.
, and
Pitcher
,
T. J.
,
1979
, “
Evidence Against a Hydrodynamic Function for Fish Schools
,”
Nature
,
279
(
5712
), pp.
418
419
.10.1038/279418a0
12.
Partridge
,
B. L.
,
Pitcher
,
T.
,
Cullen
,
J. M.
, and
Wilson
,
J.
,
1980
, “
The Three-Dimensional Structure of Fish Schools
,”
Behav. Ecol. Sociobiol.
,
6
(
4
), pp.
277
288
.10.1007/BF00292770
13.
Partridge
,
B. L.
,
Johansson
,
J.
, and
Kalish
,
J.
,
1983
, “
The Structure of Schools of Giant Bluefin Tuna in Cape Cod Bay
,”
Environ. Biol. Fishes
,
9
(
3
), pp.
253
262
.10.1007/BF00692374
14.
Fréon
,
P.
,
Gerlotto
,
F.
, and
Soria
,
M.
,
1992
, “
Changes in School Structure According to External Stimuli: Description and Influence on Acoustic Assessment
,”
Fish. Res.
,
15
(
1–2
), pp.
45
66
.10.1016/0165-7836(92)90004-D
15.
Herskin
,
J.
, and
Steffensen
,
J. F.
,
1998
, “
Energy Savings in Sea Bass Swimming in a School: Measurements of Tail Beat Frequency and Oxygen Consumption at Different Swimming Speeds
,”
J. Fish Biol.
,
53
(
2
), pp.
366
376
.10.1111/j.1095-8649.1998.tb00986.x
16.
Pavlov
,
D. S.
, and
Kasumyan
,
A. O.
,
2000
, “
Patterns and Mechanisms of Schooling Behavior in Fish: A Review
,”
J. Ichthyol.
,
40
(
2
), p.
S163
.https://www.researchgate.net/publication/264977013_Patterns_and_mechanisms_of_schooling_behavior_in_fish_A_review
17.
Svendsen
,
J. C.
,
Skov
,
J.
,
Bildsoe
,
M.
, and
Steffensen
,
J. F.
,
2003
, “
Intra-School Positional Preference and Reduced Tail Beat Frequency in Trailing Positions in Schooling Roach Under Experimental Conditions
,”
J. Fish Biol.
,
62
(
4
), pp.
834
846
.10.1046/j.1095-8649.2003.00068.x
18.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
, and
Triantafyllou
,
M. S.
,
2003
, “
The Kármán Gait: Novel Body Kinematics of Rainbow Trout Swimming in a Vortex Street
,”
J. Exp. Biol.
,
206
(
6
), pp.
1059
1073
.10.1242/jeb.00209
19.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
, and
Triantafyllou
,
M. S.
,
2003
, “
Fish Exploiting Vortices Decrease Muscle Activity
,”
Science
,
302
(
5650
), pp.
1566
1569
.10.1126/science.1088295
20.
Liao
,
J. C.
,
2004
, “
Neuromuscular Control of Trout Swimming in a Vortex Street: Implications for Energy Economy During the Karman Gait
,”
J. Exp. Biol.
,
207
(
20
), pp.
3495
3506
.10.1242/jeb.01125
21.
Makris
,
N. C.
,
Ratilal
,
P.
,
Symonds
,
D. T.
,
Jagannathan
,
S.
,
Lee
,
S.
, and
Nero
,
R. W.
,
2006
, “
Fish Population and Behavior Revealed by Instantaneous Continental Shelf-Scale Imaging
,”
Science
,
311
(
5761
), pp.
660
663
.10.1126/science.1121756
22.
Liao
,
J. C.
,
2007
, “
A Review of Fish Swimming Mechanics and Behaviour in Altered Flows
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
,
362
(
1487
), pp.
1973
1993
.10.1098/rstb.2007.2082
23.
Ward
,
A. J. W.
,
Sumpter
,
D. J. T.
,
Couzin
,
I. D.
,
Hart
,
P. J. B.
, and
Krause
,
J.
,
2008
, “
Quorum Decision-Making Facilitates Information Transfer in Fish Shoals
,”
Proc. Natl. Acad. Sci. USA
,
105
(
19
), pp.
6948
6953
.10.1073/pnas.0710344105
24.
Newlands
,
N. K.
, and
Porcelli
,
T. A.
,
2008
, “
Measurement of the Size, Shape and Structure of Atlantic Bluefin Tuna Schools in the Open Ocean
,”
Fish. Res.
,
91
(
1
), pp.
42
55
.10.1016/j.fishres.2007.11.019
25.
Jagannathan
,
S.
,
Bertsatos
,
I.
,
Symonds
,
D.
,
Chen
,
T.
,
Nia
,
H. T.
,
Jain
,
A. D.
,
Andrews
,
M.
, et al.,
2009
, “
Ocean Acoustic Waveguide Remote Sensing (Oawrs) of Marine Ecosystems
,”
Mar. Ecol. Prog. Ser.
,
395
, pp.
137
160
.10.3354/meps08266
26.
Makris
,
N. C.
,
Ratilal
,
P.
,
Jagannathan
,
S.
,
Gong
,
Z.
,
Andrews
,
M.
,
Bertsatos
,
I.
,
Godø
,
O. R.
,
Nero
,
R. W.
, and
Jech
,
J. M.
,
2009
, “
Critical Population Density Triggers Rapid Formation of Vast Oceanic Fish Shoals
,”
Science
,
323
(
5922
), pp.
1734
1737
.10.1126/science.1169441
27.
Abaid
,
N.
, and
Porfiri
,
M.
,
2010
, “
Fish in a Ring: Spatio-Temporal Pattern Formation in One-Dimensional Animal Groups
,”
J. R. Soc. Interface
,
7
(
51
), pp.
1441
1453
.10.1098/rsif.2010.0175
28.
Katz
,
Y.
,
Tunstrøm
,
K.
,
Ioannou
,
C. C.
,
Huepe
,
C.
, and
Couzin
,
I. D.
,
2011
, “
Inferring the Structure and Dynamics of Interactions in Schooling Fish
,”
Proc. Natl. Acad. Sci. USA
,
108
(
46
), pp.
18720
18725
.10.1073/pnas.1107583108
29.
Aureli
,
M.
,
Fiorilli
,
F.
, and
Porfiri
,
M.
,
2012
, “
Portraits of Self-Organization in Fish Schools Interacting With Robots
,”
Phys. D
,
241
(
9
), pp.
908
920
.10.1016/j.physd.2012.02.005
30.
Handegard
,
N. O.
,
Boswell
,
K. M.
,
Ioannou
,
C. C.
,
Leblanc
,
S. P.
,
Tjøstheim
,
D. B.
, and
Couzin
,
I. D.
,
2012
, “
The Dynamics of Coordinated Group Hunting and Collective Information Transfer Among Schooling Prey
,”
Curr. Biol.
,
22
(
13
), pp.
1213
1217
.10.1016/j.cub.2012.04.050
31.
Butail
,
S.
,
Bartolini
,
T.
, and
Porfiri
,
M.
,
2013
, “
Collective Response of Zebrafish Shoals to a Free-Swimming Robotic Fish
,”
PLoS One
,
8
(
10
), p.
e76123
.10.1371/journal.pone.0076123
32.
Tunstrøm
,
K.
,
Katz
,
Y.
,
Ioannou
,
C. C.
,
Huepe
,
C.
,
Lutz
,
M. J.
, and
Couzin
,
I. D.
,
2013
, “
Collective States, Multistability and Transitional Behavior in Schooling Fish
,”
PLoS Comput. Biol.
,
9
(
2
), p.
e1002915
.10.1371/journal.pcbi.1002915
33.
Landgraf
,
T.
,
Nguyen
,
H.
,
Schröer
,
J.
,
Szengel
,
A.
,
Clément
,
R. J. G.
,
Bierbach
,
D.
, and
Krause
,
J.
,
2014
, “
Blending in With the Shoal: Robotic Fish Swarms for Investigating Strategies of Group Formation in Guppies
,”
Conference on Biomimetic and Biohybrid Systems
,
Springer
, Berlin, pp.
178
189
.
34.
Swain
,
D. T.
,
Couzin
,
I. D.
, and
Leonard
,
N. E.
,
2015
, “
Coordinated Speed Oscillations in Schooling Killifish Enrich Social Communication
,”
J. Nonlinear Sci.
,
25
(
5
), pp.
1077
1109
.10.1007/s00332-015-9263-8
35.
Jolles
,
J. W.
,
Boogert
,
N. J.
,
Sridhar
,
V. H.
,
Couzin
,
I. D.
, and
Manica
,
A.
,
2017
, “
Consistent Individual Differences Drive Collective Behavior and Group Functioning of Schooling Fish
,”
Curr. Biol.
,
27
(
18
), pp.
2862
2868
.10.1016/j.cub.2017.08.004
36.
Bonnet
,
F.
,
Gribovskiy
,
A.
,
Halloy
,
J.
, and
Mondada
,
F.
,
2018
, “
Closed-Loop Interactions Between a Shoal of Zebrafish and a Group of Robotic Fish in a Circular Corridor
,”
Swarm Intell.
,
12
(
3
), pp.
227
244
.10.1007/s11721-017-0153-6
37.
Murphy
,
D. W.
,
Olsen
,
D.
,
Kanagawa
,
M.
,
King
,
R.
,
Kawaguchi
,
S.
,
Osborn
,
J.
,
Webster
,
D. R.
, and
Yen
,
J.
,
2019
, “
The Three Dimensional Spatial Structure of Antarctic Krill Schools in the Laboratory
,”
Sci. Rep.
,
9
(
1
), pp.
1
12
.10.1038/s41598-018-37379-9
38.
de Bie
,
J.
,
Manes
,
C.
, and
Kemp
,
P. S.
,
2020
, “
Collective Behaviour of Fish in the Presence and Absence of Flow
,”
Anim. Behav.
,
167
, pp.
151
159
.10.1016/j.anbehav.2020.07.003
39.
Suriyampola
,
P.
,
Iruri-Tucker
,
A.
,
Padilla-Veléz
,
L.
,
Enriquez
,
A.
,
Shelton
,
D. S.
, and
Martins
,
E. P.
,
2022
, “
Small Increases in Group Size Improve Small Shoals' Response to Water Flow in Zebrafish
,”
J. Zool.
, 316, pp.
271
281
.10.1111/jzo.12952
40.
Weihs
,
D.
,
1973
, “
Hydromechanics of Fish Schooling
,”
Nature
,
241
(
5387
), pp.
290
291
.10.1038/241290a0
41.
Weihs
,
D.
,
1975
,
Some Hydrodynamical Aspects of Fish Schooling
,
Springer US
,
Boston, MA
, pp.
703
718
.
42.
Lighthill
,
S. J.
,
1975
,
Mathematical Biofluiddynamics
,
SIAM
, Philadelphia, PA.
43.
Alben
,
S.
,
2009
, “
Wake-Mediated Synchronization and Drafting in Coupled Flags
,”
J. Fluid Mech.
,
641
, pp.
489
496
.10.1017/S0022112009992138
44.
Tsang
,
A. C. H.
, and
Kanso
,
E.
,
2013
, “
Dipole Interactions in Doubly Periodic Domains
,”
J. Nonlinear Sci.
,
23
(
6
), pp.
971
991
.10.1007/s00332-013-9174-5
45.
Gazzola
,
M.
,
Tchieu
,
A. A.
,
Alexeev
,
D.
,
de Brauer
,
A.
, and
Koumoutsakos
,
P.
,
2016
, “
Learning to School in the Presence of Hydrodynamic Interactions
,”
J. Fluid Mech.
,
789
, pp.
726
749
.10.1017/jfm.2015.686
46.
Filella
,
A.
,
Nadal
,
F.
,
Sire
,
C.
,
Kanso
,
E.
, and
Eloy
,
C.
,
2018
, “
Model of Collective Fish Behavior With Hydrodynamic Interactions
,”
Phys. Rev. Lett.
,
120
(
19
), p.
198101
.10.1103/PhysRevLett.120.198101
47.
Oza
,
A. U.
,
Ristroph
,
L.
, and
Shelley
,
M. J.
,
2019
, “
Lattices of Hydrodynamically Interacting Flapping Swimmers
,”
Phys. Rev. X
,
9
(
4
), p.
041024
.10.1103/PhysRevX.9.041024
48.
Alaminos-Quesada
,
J.
, and
Fernandez-Feria
,
R.
,
2020
, “
Aerodynamics of Heaving and Pitching Foils in Tandem From Linear Potential Theory
,”
AIAA J.
,
58
(
1
), pp.
37
52
.10.2514/1.J058437
49.
Alaminos-Quesada
,
J.
, and
Fernandez-Feria
,
R.
,
2021
, “
Propulsion Performance of Tandem Flapping Foils With Chordwise Prescribed Deflection From Linear Potential Theory
,”
Phys. Rev. Fluids
,
6
(
1
), p.
013102
.10.1103/PhysRevFluids.6.013102
50.
Heydari
,
S.
, and
Kanso
,
E.
,
2021
, “
School Cohesion, Speed and Efficiency Are Modulated by the Swimmers Flapping Motion
,”
J. Fluid Mech.
,
922
, p. A27.10.1017/jfm.2021.551
51.
Baddoo
,
P. J.
,
Moore
,
N. J.
,
Oza
,
A. U.
, and
Crowdy
,
D. G.
,
2021
, “
Generalization of Waving-Plate Theory to Multiple Interacting Swimmers
,” e-print
arXiv:2106.09167
.10.48550/arXiv.2106.09167
52.
Akhtar
,
I.
,
Mittal
,
R.
,
Lauder
,
G. V.
, and
Drucker
,
E.
,
2007
, “
Hydrodynamics of a Biologically Inspired Tandem Flapping Foil Configuration
,”
Theor. Comp. Fluid Dyn.
,
21
(
3
), pp.
155
170
.10.1007/s00162-007-0045-2
53.
Zhu
,
L.
,
2009
, “
Interaction of Two Tandem Deformable Bodies in a Viscous Incompressible Flow
,”
J. Fluid Mech.
,
635
, pp.
455
475
.10.1017/S0022112009007903
54.
Kim
,
S.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
,
2010
, “
Constructive and Destructive Interaction Modes Between Two Tandem Flexible Flags in Viscous Flow
,”
J. Fluid Mech.
,
661
, pp.
511
521
.10.1017/S0022112010003514
55.
Gazzola
,
M.
,
Chatelain
,
P.
,
Van Rees
,
W. M.
, and
Koumoutsakos
,
P.
,
2011
, “
Simulations of Single and Multiple Swimmers With Non-Divergence Free Deforming Geometries
,”
J. Comput. Phys.
,
230
(
19
), pp.
7093
7114
.10.1016/j.jcp.2011.04.025
56.
Zhu
,
X.
,
He
,
G.
, and
Zhang
,
X.
,
2014
, “
Flow-Mediated Interactions Between Two Self-Propelled Flapping Filaments in Tandem Configuration
,”
Phys. Rev. Lett.
,
113
(
23
), p.
238105
.10.1103/PhysRevLett.113.238105
57.
Hemelrijk
,
C. K.
,
Reid
,
D. A. P.
,
Hildenbrandt
,
H.
, and
Padding
,
J. T.
,
2015
, “
The Increased Efficiency of Fish Swimming in a School
,”
Fish Fish.
,
16
(
3
), pp.
511
521
.10.1111/faf.12072
58.
Daghooghi
,
M.
, and
Borazjani
,
I.
,
2015
, “
The Hydrodynamic Advantages of Synchronized Swimming in a Rectangular Pattern
,”
Bioinspiration Biomimetics
,
10
(
5
), p.
056018
.10.1088/1748-3190/10/5/056018
59.
Chen
,
S.-Y.
,
Fei
,
Y.-H. J.
,
Chen
,
Y.-C.
,
Chi
,
K.-J.
, and
Yang
,
J.-T.
,
2016
, “
The Swimming Patterns and Energy-Saving Mechanism Revealed From Three Fish in a School
,”
Ocean Eng.
,
122
, pp.
22
31
.10.1016/j.oceaneng.2016.06.018
60.
Muscutt
,
L. E.
,
Weymouth
,
G. D.
, and
Ganapathisubramani
,
B.
,
2017
, “
Performance Augmentation Mechanism of in-Line Tandem Flapping Foils
,”
J. Fluid Mech.
,
827
, pp.
484
505
.10.1017/jfm.2017.457
61.
Bao
,
Y.
,
Zhou
,
D.
,
Tao
,
J. J.
,
Peng
,
Z.
,
Zhu
,
H. B.
,
Sun
,
Z. L.
, and
Tong
,
H. L.
,
2017
, “
Dynamic Interference of Two Anti-Phase Flapping Foils in Side-by-Side Arrangement in an Incompressible Flow
,”
Phys. Fluids
,
29
(
3
), p.
033601
.10.1063/1.4978301
62.
Novati
,
G.
,
Verma
,
S.
,
Alexeev
,
D.
,
Rossinelli
,
D.
,
Van Rees
,
W. M.
, and
Koumoutsakos
,
P.
,
2017
, “
Synchronisation Through Learning for Two Self-Propelled Swimmers
,”
Bioinspiration Biomimetics
,
12
(
3
), p.
036001
.10.1088/1748-3190/aa6311
63.
Maertens
,
A. P.
,
Gao
,
A.
, and
Triantafyllou
,
M. S.
,
2017
, “
Optimal Undulatory Swimming for a Single Fish-Like Body and for a Pair of Interacting Swimmers
,”
J. Fluid Mech.
,
813
, pp.
301
345
.10.1017/jfm.2016.845
64.
Dai
,
L.
,
He
,
G.
,
Zhang
,
X.
, and
Zhang
,
X.
,
2018
, “
Stable Formations of Self-Propelled Fish-Like Swimmers Induced by Hydrodynamic Interactions
,”
J. R. Soc. Interface
,
15
(
147
), p.
20180490
.10.1098/rsif.2018.0490
65.
Park
,
S. G.
, and
Sung
,
H. J.
,
2018
, “
Hydrodynamics of Flexible Fins Propelled in Tandem, Diagonal, Triangular and Diamond Configurations
,”
J. Fluid Mech.
,
840
, pp.
154
189
.10.1017/jfm.2018.64
66.
Peng
,
Z.-R.
,
Huang
,
H.
, and
Lu
,
X.-Y.
,
2018
, “
Hydrodynamic Schooling of Multiple Self-Propelled Flapping Plates
,”
J. Fluid Mech.
,
853
, pp.
587
600
.10.1017/jfm.2018.634
67.
Verma
,
S.
,
Novati
,
G.
, and
Koumoutsakos
,
P.
,
2018
, “
Efficient Collective Swimming by Harnessing Vortices Through Deep Reinforcement Learning
,”
Proc. Natl. Acad. Sci. USA
,
115
(
23
), pp.
5849
5854
.10.1073/pnas.1800923115
68.
Li
,
G.
,
Kolomenskiy
,
D.
,
Liu
,
H.
,
Thiria
,
B.
, and
Godoy-Diana
,
R.
,
2019
, “
On the Energetics and Stability of a Minimal Fish School
,”
PLoS One
,
14
(
8
), p.
e0215265
.10.1371/journal.pone.0215265
69.
Lin
,
X.
,
Wu
,
J.
,
Zhang
,
T.
, and
Yang
,
L.
,
2019
, “
Phase Difference Effect on Collective Locomotion of Two Tandem Autopropelled Flapping Foils
,”
Phys. Rev. Fluids
,
4
(
5
), p.
054101
.10.1103/PhysRevFluids.4.054101
70.
Lin
,
X.
,
Wu
,
J.
,
Zhang
,
T.
, and
Yang
,
L.
,
2020
, “
Self-Organization of Multiple Self-Propelling Flapping Foils: Energy Saving and Increased Speed
,”
J. Fluid Mech.
,
884
, p. R1.10.1017/jfm.2019.954
71.
Lin
,
X.
,
Wu
,
J.
,
Zhang
,
T.
, and
Yang
,
L.
,
2021
, “
Flow-Mediated Organization of Two Freely Flapping Swimmers
,”
J. Fluid Mech.
,
912
, p. A37.
72.
Alben
,
S.
,
2021
, “
Collective Locomotion of Two-Dimensional Lattices of Flapping Plates. Part 1. numerical Method, Single-Plate Case and Lattice Input Power
,”
J. Fluid Mech.
,
915
, p. A20.
73.
Alben
,
S.
,
2021
, “
Collective Locomotion of Two-Dimensional Lattices of Flapping Plates. Part 2. lattice Flows and Propulsive Efficiency
,”
J. Fluid Mech.
,
915
, p. A21.
74.
Dal Jeong
,
Y.
,
Lee
,
J. H.
, and
Park
,
S. G.
,
2021
, “
Flow-Mediated Interactions Between Two Self-Propelled Flexible Fins Near Sidewalls
,”
J. Fluid Mech.
,
913
, p. A39.
75.
Saadat
,
M.
,
Berlinger
,
F.
,
Sheshmani
,
A.
,
Nagpal
,
R.
,
Lauder
,
G. V.
, and
Haj-Hariri
,
H.
,
2021
, “
Hydrodynamic Advantages of in-Line Schooling
,”
Bioinspiration Biomimetics
,
16
(
4
), p.
046002
.10.1088/1748-3190/abe137
76.
Lin
,
X.
,
Wu
,
J.
,
Yang
,
L.
, and
Dong
,
H.
,
2022
, “
Two-Dimensional Hydrodynamic Schooling of Two Flapping Swimmers Initially in Tandem Formation
,”
J. Fluid Mech.
,
941
, p.
A29
.10.1017/jfm.2022.315
77.
Gungor
,
A.
,
Khalid
,
M. S. U.
, and
Hemmati
,
A.
,
2022
, “
Classification of Vortex Patterns of Oscillating Foils in Side-by-Side Configurations
,”
J. Fluid Mech.
,
951
, p.
A37
.10.1017/jfm.2022.785
78.
Arranz
,
G.
,
Flores
,
O.
, and
Garcia-Villalba
,
M.
,
2022
, “
Flow Interaction of Three-Dimensional Self-Propelled Flexible Plates in Tandem
,”
J. Fluid Mech.
,
931
.10.1017/jfm.2021.918
79.
Zhu
,
Y.
,
Pang
,
J.-H.
, and
Tian
,
F.-B.
,
2022
, “
Stable Schooling Formations Emerge From the Combined Effect of the Active Control and Passive Self-Organization
,”
Fluids
,
7
(
1
), p.
41
.10.3390/fluids7010041
80.
Seo
,
J.-H.
, and
Mittal
,
R.
,
2022
, “
Improved Swimming Performance in Schooling Fish Via Leading-Edge Vortex Enhancement
,”
Bioinspiration Biomimetics
,
17
(
6
), p.
066020
.10.1088/1748-3190/ac9bb4
81.
Gursul
,
I.
, and
Rockwell
,
D.
,
1990
, “
Vortex Street Impinging Upon an Elliptical Leading Edge
,”
J. Fluid Mech.
,
211
, pp.
211
242
.10.1017/S0022112090001550
82.
Gopalkrishnan
,
R.
,
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Barrett
,
D.
,
1994
, “
Active Vorticity Control in a Shear Flow Using a Flapping Foil
,”
J. Fluid Mech.
,
274
, pp.
1
21
.10.1017/S0022112094002016
83.
Streitlien
,
K.
, and
Triantafyllou
,
M. S.
,
1995
, “
Force and Moment on a Joukowski Profile in the Presence of Point Vortices
,”
AIAA J.
,
33
(
4
), pp.
603
610
.10.2514/3.12621
84.
Streitlien
,
K.
,
Triantafyllou
,
G. S.
, and
Triantafyllou
,
M. S.
,
1996
, “
Efficient Foil Propulsion Through Vortex Control
,”
AIAA J.
,
34
(
11
), pp.
2315
2319
.10.2514/3.13396
85.
Triantafyllou
,
M. S.
,
Techet
,
A. H.
,
Zhu
,
Q.
,
Beal
,
D. N.
,
Hover
,
F. S.
, and
Yue
,
D. K. P.
,
2002
, “
Vorticity Control in Fish-Like Propulsion and Maneuvering
,”
Integr. Comp. Biol.
,
42
(
5
), pp.
1026
1031
.10.1093/icb/42.5.1026
86.
Beal
,
D. N.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
,
Liao
,
J. C.
, and
Lauder
,
G. V.
,
2006
, “
Passive Propulsion in Vortex Wakes
,”
J. Fluid Mech.
,
549
, pp.
385
402
.10.1017/S0022112005007925
87.
Ristroph
,
L.
, and
Zhang
,
J.
,
2008
, “
Anomalous Hydrodynamic Drafting of Interacting Flapping Flags
,”
Phys. Rev. Lett.
,
101
(
19
), p.
194502
.10.1103/PhysRevLett.101.194502
88.
Spagnolie
,
S. E.
,
Moret
,
L.
,
Shelley
,
M. J.
, and
Zhang
,
J.
,
2010
, “
Surprising Behaviors in Flapping Locomotion With Passive Pitching
,”
Phys. Fluids
,
22
(
4
), p.
041903
.10.1063/1.3383215
89.
Lee
,
T.
,
2011
, “
Flow Past Two in-Tandem Airfoils Undergoing Sinusoidal Oscillations
,”
Exp. Fluids
,
51
(
6
), pp.
1605
1621
.10.1007/s00348-011-1173-4
90.
Boschitsch
,
B. M.
,
Dewey
,
P. A.
, and
Smits
,
A. J.
,
2014
, “
Propulsive Performance of Unsteady Tandem Hydrofoils in an in-Line Configuration
,”
Phys. Fluids
,
26
(
5
), p.
051901
.10.1063/1.4872308
91.
Dewey
,
P. A.
,
Quinn
,
D. B.
,
Boschitsch
,
B. M.
, and
Smits
,
A. J.
,
2014
, “
Propulsive Performance of Unsteady Tandem Hydrofoils in a Side-by-Side Configuration
,”
Phys. Fluids
,
26
(
4
), p.
041903
.10.1063/1.4871024
92.
Becker
,
A. D.
,
Masoud
,
H.
,
Newbolt
,
J. W.
,
Shelley
,
M. J.
, and
Ristroph
,
L.
,
2015
, “
Hydrodynamic Schooling of Flapping Swimmers
,”
Nat. Commun.
,
6
, p.
8514
.
93.
Ramananarivo
,
S.
,
Fang
,
F.
,
Oza
,
A.
,
Zhang
,
J.
, and
Ristroph
,
L.
,
2016
, “
Flow Interactions Lead to Orderly Formations of Flapping Wings in Forward Flight
,”
Phys. Rev. Fluids
,
1
(
7
), p.
071201
.10.1103/PhysRevFluids.1.071201
94.
Ashraf
,
I.
,
Godoy-Diana
,
R.
,
Halloy
,
J.
,
Collignon
,
B.
, and
Thiria
,
B.
,
2016
, “
Synchronization and Collective Swimming Patterns in Fish (Hemigrammus Bleheri)
,”
J. R. Soc. Interface
,
13
(
123
), p.
20160734
.10.1098/rsif.2016.0734
95.
Ashraf
,
I.
,
Bradshaw
,
H.
,
Ha
,
T.-T.
,
Halloy
,
J.
,
Godoy-Diana
,
R.
, and
Thiria
,
B.
,
2017
, “
Simple Phalanx Pattern Leads to Energy Saving in Cohesive Fish Schooling
,”
Proc. Natl. Acad. Sci. USA
,
114
(
36
), pp.
9599
9604
.10.1073/pnas.1706503114
96.
Im
,
S.
,
Park
,
S. G.
,
Cho
,
Y.
, and
Sung
,
H. J.
,
2018
, “
Schooling Behavior of Rigid and Flexible Heaving Airfoils
,”
Int. J. Heat Fluid Flow
,
69
, pp.
224
233
.10.1016/j.ijheatfluidflow.2018.01.005
97.
Kurt
,
M.
, and
Moored
,
K. W.
,
2018
, “
Flow Interactions of Two-and Three-Dimensional Networked Bio-Inspired Control Elements in an in-Line Arrangement
,”
Bioinspiration Biomimetics
,
13
(
4
), p.
045002
.10.1088/1748-3190/aabf4c
98.
Newbolt
,
J. W.
,
Zhang
,
J.
, and
Ristroph
,
L.
,
2019
, “
Flow Interactions Between Uncoordinated Flapping Swimmers Give Rise to Group Cohesion
,”
Proc. Natl. Acad. Sci. USA
,
116
(
7
), pp.
2419
2424
.10.1073/pnas.1816098116
99.
Kurt
,
M.
,
Eslam Panah
,
A.
, and
Moored
,
K. W.
,
2020
, “
Flow Interactions Between Low Aspect Ratio Hydrofoils in in-Line and Staggered Arrangements
,”
Biomimetics
,
5
(
2
), p.
13
.10.3390/biomimetics5020013
100.
Li
,
L.
,
Nagy
,
M.
,
Graving
,
J. M.
,
Bak-Coleman
,
J.
,
Xie
,
G.
, and
Couzin
,
I. D.
,
2020
, “
Vortex Phase Matching as a Strategy for Schooling in Robots and in Fish
,”
Nat. Commun.
,
11
(
1
), pp.
1
9
.10.1038/s41467-020-19086-0
101.
Li
,
L.
,
Ravi
,
S.
,
Xie
,
G.
, and
Couzin
,
I. D.
,
2021
, “
Using a Robotic Platform to Study the Influence of Relative Tailbeat Phase on the Energetic Costs of Side-by-Side Swimming in Fish
,”
Proc. R. Soc. Lond. A
,
477
(
2249
), p.
20200810
.10.1098/rspa.2020.0810
102.
Kurt
,
M.
,
Ormonde
,
P. C.
,
Mivehchi
,
A.
, and
Moored
,
K. W.
,
2021
, “
Two-Dimensionally Stable Self-Organization Arises in Simple Schooling Swimmers Through Hydrodynamic Interactions
,”
arXiv:2102.03571
.10.48550/arXiv.2102.03571
103.
Newbolt
,
J. W.
,
Zhang
,
J.
, and
Ristroph
,
L.
,
2022
, “
Lateral Flow Interactions Enhance Speed and Stabilize Formations of Flapping Swimmers
,”
Phys. Rev. Fluids
,
7
(
6
), p.
L061101
.10.1103/PhysRevFluids.7.L061101
104.
Thandiackal
,
R.
, and
Lauder
,
G.
,
2023
, “
In-Line Swimming Dynamics Revealed by Fish Interacting With a Robotic Mechanism
,”
Elife
,
12
, p.
e81392
.10.7554/eLife.81392
105.
Pandhare
,
R. S.
,
2022
, “
Collective Hydrodynamics of Robotic Fish
,”
Ph.D. thesis
, Michigan Technological University, Houghton, MI.10.37099/mtu.dc.etdr/1455
106.
Hu
,
H.
,
Oyekan
,
J.
, and
Gu
,
D.
,
2011
, “
A School of Robotic Fish for Pollution Detection in Port
,”
Biologically Inspired Robotics
,
Y.
Liu
, and
D.
Sun
, eds.,
CRC Press
, Boca Raton, FL, pp.
85
104
.
107.
Berlinger
,
F.
,
Gauci
,
M.
, and
Nagpal
,
R.
,
2021
, “
Implicit Coordination for 3d Underwater Collective Behaviors in a Fish-Inspired Robot Swarm
,”
Sci. Robot.
,
6
(
50
), p. eabd8668.10.1126/scirobotics.abd8668
108.
Zhang
,
Z.
,
Yang
,
T.
,
Zhang
,
T.
,
Zhou
,
F.
,
Cen
,
N.
,
Li
,
T.
, and
Xie
,
G.
,
2021
, “
Global Vision-Based Formation Control of Soft Robotic Fish Swarm
,”
Soft Rob.
,
8
(
3
), pp.
310
318
.10.1089/soro.2019.0174
109.
Salazar
,
J.
,
Cai
,
L.
,
Cook
,
B.
, and
Rus
,
D.
,
2022
, “
Multi-Robot Visual Control of Autonomous Soft Robotic Fish
,”
2022 IEEE/OES Autonomous Underwater Vehicles Symposium
(
AUV
), Singapore, Sept. 19–21, pp.
1
6
.10.1109/AUV53081.2022.9965882
110.
Dai
,
S.
,
Wu
,
Z.
,
Zhang
,
P.
,
Tan
,
M.
, and
Yu
,
J.
,
2023
, “
Distributed Formation Control for a Multi-Robotic Fish System With Model-Based Event-Triggered Communication Mechanism
,”
IEEE Trans. Ind. Electron.
, pp.
1
10
.10.1109/TIE.2022.3232659
111.
Whittlesey
,
R. W.
,
Liska
,
S.
, and
Dabiri
,
J. O.
,
2010
, “
Fish Schooling as a Basis for Vertical Axis Wind Turbine Farm Design
,”
Bioinspiration Biomimetics
,
5
(
3
), p.
035005
.10.1088/1748-3182/5/3/035005
112.
Breder
,
C. M.
,
1954
, “
Equations Descriptive of Fish Schools and Other Animal Aggregations
,”
Ecology
,
35
(
3
), pp.
361
370
.10.2307/1930099
113.
Reynolds
,
C. W.
,
1987
, “
Flocks, Herds and Schools: A Distributed Behavioral Model
,”
ACM SIGGRAPH Comput. Graph
, 21(4), pp.
25
34
.10.1145/37402.37406
114.
Huth
,
A.
, and
Wissel
,
C.
,
1992
, “
The Simulation of the Movement of Fish Schools
,”
J. Theor. Biol.
,
156
(
3
), pp.
365
385
.10.1016/S0022-5193(05)80681-2
115.
Vicsek
,
T.
,
Czirók
,
A.
,
Ben-Jacob
,
E.
,
Cohen
,
I.
, and
Shochet
,
O.
,
1995
, “
Novel Type of Phase Transition in a System of Self-Driven Particles
,”
Phys. Rev. Lett.
,
75
(
6
), pp.
1226
1229
.10.1103/PhysRevLett.75.1226
116.
Stöcker
,
S.
,
1999
, “
Models for Tuna School Formation
,”
Math. Biosci.
,
156
(
1–2
), pp.
167
190
.10.1016/S0025-5564(98)10065-2
117.
Couzin
,
I. D.
,
Krause
,
J.
,
James
,
R.
,
Ruxton
,
G. D.
, and
Franks
,
N. R.
,
2002
, “
Collective Memory and Spatial Sorting in Animal Groups
,”
J. Theor. Biol.
,
218
(
1
), pp.
1
11
.10.1006/jtbi.2002.3065
118.
Chaté
,
H.
,
Ginelli
,
F.
,
Grégoire
,
G.
,
Peruani
,
F.
, and
Raynaud
,
F.
,
2008
, “
Modeling Collective Motion: Variations on the Vicsek Model
,”
Eur. Phys. J.
B 64, pp.
451
456
.10.1140/epjb/e2008-00275-9
119.
Lopez
,
U.
,
Gautrais
,
J.
,
Couzin
,
I. D.
, and
Theraulaz
,
G.
,
2012
, “
From Behavioural Analyses to Models of Collective Motion in Fish Schools
,”
Interface Focus
,
2
(
6
), pp.
693
707
.10.1098/rsfs.2012.0033
120.
Hemelrijk
,
C. K.
, and
Hildenbrandt
,
H.
,
2012
, “
Schools of Fish and Flocks of Birds: Their Shape and Internal Structure by Self-Organization
,”
Interface Focus
,
2
(
6
), pp.
726
737
.10.1098/rsfs.2012.0025
121.
Toner
,
J.
,
Tu
,
Y.
, and
Ramaswamy
,
S.
,
2005
, “
Hydrodynamics and Phases of Flocks
,”
Ann. Phys.
,
318
(
1
), pp.
170
244
.10.1016/j.aop.2005.04.011
122.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Ocean. Eng.
,
24
(
2
), pp.
237
252
.10.1109/48.757275
123.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Yue
,
D. K. P.
,
2000
, “
Hydrodynamics of Fishlike Swimming
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
33
53
.10.1146/annurev.fluid.32.1.33
124.
Linden
,
P.
, and
Turner
,
J.
,
2004
, “
Optimal' Vortex Rings and Aquatic Propulsion Mechanisms
,”
Proc. Biol. Sci.
, 271(1539), pp.
647
653
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691636/
125.
Triantafyllou
,
M. S.
,
Hover
,
F. S.
,
Techet
,
A. H.
, and
Yue
,
D. K. P.
,
2005
, “
Review of Hydrodynamic Scaling Laws in Aquatic Locomotion and Fishlike Swimming
,”
ASME Appl. Mech. Rev.
,
58
(
4
), pp.
226
237
.10.1115/1.1943433
126.
Fish
,
F. E.
, and
Lauder
,
G. V.
,
2006
, “
Passive and Active Flow Control by Swimming Fishes and Mammals
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
193
224
.10.1146/annurev.fluid.38.050304.092201
127.
Lauder
,
G. V.
, and
Madden
,
P. G. A.
,
2006
, “
Learning From Fish: Kinematics and Experimental Hydrodynamics for Roboticists
,”
Int. J. Autom. Comput.
,
3
(
4
), pp.
325
335
.10.1007/s11633-006-0325-0
128.
Lauder
,
G. V.
,
Anderson
,
E. J.
,
Tangorra
,
J.
, and
Madden
,
P. G. A.
,
2007
, “
Fish Biorobotics: Kinematics and Hydrodynamics of Self-Propulsion
,”
J. Exp. Biol.
,
210
(
16
), pp.
2767
2780
.10.1242/jeb.000265
129.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
On the Role of Form and Kinematics on the Hydrodynamics of Self-Propelled Body/Caudal Fin Swimming
,”
J. Exp. Biol.
,
213
(
1
), pp.
89
107
.10.1242/jeb.030932
130.
Tytell
,
E. D.
,
Borazjani
,
I.
,
Sotiropoulos
,
F.
,
Baker
,
T. V.
,
Anderson
,
E. J.
, and
Lauder
,
G. V.
,
2010
, “
Disentangling the Functional Roles of Morphology and Motion in the Swimming of Fish
,”
Integr. Comp. Biol.
,
50
(
6
), pp.
1140
1154
.10.1093/icb/icq057
131.
Wu
,
T. Y.
,
2011
, “
Fish Swimming and Bird/Insect Flight
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
25
58
.10.1146/annurev-fluid-122109-160648
132.
Gazzola
,
M.
,
Argentina
,
M.
, and
Mahadevan
,
L.
,
2014
, “
Scaling Macroscopic Aquatic Locomotion
,”
Nat. Phys.
,
10
(
10
), pp.
758
761
.10.1038/nphys3078
133.
Cha
,
Y.
,
Laut
,
J.
,
Phamduy
,
P.
, and
Porfiri
,
M.
,
2016
, “
Swimming Robots Have Scaling Laws, Too
,”
IEEE ASME Trans. Mechatron.
,
21
(
1
), pp.
598
600
.10.1109/TMECH.2015.2442759
134.
Lauder
,
G. V.
,
2015
, “
Fish Locomotion: Recent Advances and New Directions
,”
Annu. Rev. Mar. Sci.
,
7
(
1
), pp.
521
545
.10.1146/annurev-marine-010814-015614
135.
Saadat
,
M.
,
Fish
,
F. E.
,
Domel
,
A.
,
Di Santo
,
V.
,
Lauder
,
G.
, and
Haj-Hariri
,
H.
,
2017
, “
On the Rules for Aquatic Locomotion
,”
Phys. Rev. Fluids
,
2
(
8
), p.
083102
.10.1103/PhysRevFluids.2.083102
136.
Smits
,
A. J.
,
2019
, “
Undulatory and Oscillatory Swimming
,”
J. Fluid Mech.
,
874
, p.
P1
.10.1017/jfm.2019.284
137.
Maertens
,
A.
,
Triantafyllou
,
M. S.
, and
Yue
,
D. K.
,
2015
, “
Efficiency of Fish Propulsion
,”
Bioinspiration Biomimetics
,
10
(
4
), p.
046013
.10.1088/1748-3190/10/4/046013
138.
Fish
,
F. E.
, and
Rohr
,
J.
,
1999
, “
Review of Dolphin Hydrodynamics and Swimming Performance
,” Technical Report, Space and Naval Warfare Systems Center, San Diego, CA.
139.
Portugal
,
S. J.
,
Hubel
,
T. Y.
,
Fritz
,
J.
,
Heese
,
S.
,
Trobe
,
D.
,
Voelkl
,
B.
,
Hailes
,
S.
,
Wilson
,
A. M.
, and
Usherwood
,
J. R.
,
2014
, “
Upwash Exploitation and Downwash Avoidance by Flap Phasing in Ibis Formation Flight
,”
Nature
,
505
(
7483
), pp.
399
402
.10.1038/nature12939
140.
Buchholz
,
J. H.
, and
Smits
,
A. J.
,
2008
, “
The Wake Structure and Thrust Performance of a Rigid Low-Aspect-Ratio Pitching Panel
,”
J. Fluid Mech.
,
603
, pp.
331
365
.10.1017/S0022112008000906
141.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2008
, “
Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
211
(
10
), pp.
1541
1558
.10.1242/jeb.015644
142.
Liu
,
G.
,
Ren
,
Y.
,
Dong
,
H.
,
Akanyeti
,
O.
,
Liao
,
J. C.
, and
Lauder
,
G. V.
,
2017
, “
Computational Analysis of Vortex Dynamics and Performance Enhancement Due to Body–Fin and Fin–Fin Interactions in Fish-Like Locomotion
,”
J. Fluid Mech.
,
829
, pp.
65
88
.10.1017/jfm.2017.533
143.
Matthews
,
D. G.
, and
Lauder
,
G. V.
,
2021
, “
Fin–Fin Interactions During Locomotion in a Simplified Biomimetic Fish Model
,”
Bioinspiration Biomimetics
,
16
(
4
), p.
046023
.10.1088/1748-3190/ac03a8
You do not currently have access to this content.