Abstract

In fluid dynamics, predicting and characterizing bifurcations, from the onset of unsteadiness to the transition to turbulence, is of critical importance for both academic and industrial applications. Different tools from dynamical systems theory can be used for this purpose. In this review, we present a concise theoretical and numerical framework focusing on practical aspects of the computation and stability analyses of steady and time-periodic solutions, with emphasis on high-dimensional systems such as those arising from the spatial discretization of the Navier–Stokes equations. Using a matrix-free approach based on Krylov methods, we extend the capabilities of the open-source high-performance spectral element-based time-stepper Nek5000. The numerical methods discussed are implemented in nekStab, an open-source and user-friendly add-on toolbox dedicated to the study of stability properties of flows in complex three-dimensional geometries. The performance and accuracy of the methods are illustrated and examined using standard benchmarks from the fluid mechanics literature. Thanks to its flexibility and domain-agnostic nature, the methodology presented in this work can be applied to develop similar toolboxes for other solvers, most importantly outside the field of fluid mechanics.

References

1.
Reynolds
,
O.
,
1883
, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels
,”
Philos. Trans. R. Soc.,
174, pp.
935
982
.https://royalsocietypublishing.org/doi/10.1098/rstl.1883.0029
2.
Rayleigh
,
L.
,
1879
, “
On the Stability, or Instability, of Certain Fluid Motions
,”
Proc. London Math. Soc.
,
1
(
1
), pp.
57
72
.10.1112/plms/s1-11.1.57
3.
Fjørtoft
,
R.
,
1950
,
Application of Integral Theorems in Deriving Criteria of Stability for Laminar Flows and for the Baroclinic Circular Vortex
Grøndahl & Søns Boktr., I kommisjon hos Cammermeyers boghandel.
4.
Squire
,
H. B.
,
1933
, “
On the Stability for Three-Dimensional Disturbances of Viscous Fluid Flow Between Parallel Walls
,”
Proc. Math. Phys. Eng. Sci.
,
142
(
847
), pp.
621
628
.10.1098/rspa.1933.0193
5.
Reddy
,
S. C.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1993
, “
Pseudospectra of the Orr–Sommerfeld Operator
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
15
47
.10.1137/0153002
6.
Schmid
,
P. J.
, and
Brandt
,
L.
,
2014
, “
Analysis of Fluid Systems: Stability, Receptivity, Sensitivitylecture Notes From the Flow-Nordita Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p. 024803.10.1115/1.4026375
7.
Tollmien
,
W.
,
1930
, “
Über Die Entstehung Der Turbulenz
,”
Vorträge Aus Dem Gebiete Der Aerodynamik Und Verwandter Gebiete
,
Springer
, Berlin, pp.
18
21
.
8.
Schlichting
,
H.
,
1933
, “
Zur Enstehung Der Turbulenz Bei Der Plattenströmung
,”
Nachr. Von Der Gesellschaft Der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
,
1933
, pp.
181
208
.
9.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1985
, “
Absolute and Convective Instabilities in Free Shear Layers
,”
J. Fluid Mech.
,
159
(
1
), pp.
151
168
.10.1017/S0022112085003147
10.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.10.1146/annurev.fl.22.010190.002353
11.
Cossu
,
C.
, and
Loiseleux
,
T.
,
1998
, “
On the Convective and Absolute Nature of Instabilities in Finite Difference Numerical Simulations of Open Flows
,”
J. Comput. Phys.
,
144
(
1
), pp.
98
108
.10.1006/jcph.1998.5990
12.
Monkewitz
,
P. A.
,
Huerre
,
P.
, and
Chomaz
,
J.-M.
,
1993
, “
Global Linear Stability Analysis of Weakly Non-Parallel Shear Flows
,”
J. Fluid Mech.
,
251
, pp.
1
20
.10.1017/S0022112093003313
13.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2000
,
Stability and Transition in Shear Flows
, Vol.
142
,
Springer Science & Business Media
, Berlin.
14.
Schmid
,
P. J.
, and
Sipp
,
D.
,
2016
, “
Linear Control of Oscillator and Amplifier Flows
,”
ASME Phys. Rev. Fluids
,
1
(
4
), p.
040501
.10.1103/PhysRevFluids.1.040501
15.
Cossu
,
C.
,
2014
, “
An Introduction to Optimal Control Lecture Notes From the flow - NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p. 024801.10.1115/1.4026482
16.
Megerian
,
S.
,
Davitian
,
J.
,
De B Alves
,
L.
, and
Karagozian
,
A.
,
2007
, “
Transverse-Jet Shear-Layer Instabilities. Part 1. Experimental Studies
,”
J. Fluid Mech.
,
593
, pp.
93
129
.10.1017/S0022112007008385
17.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr–Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
(
4
), pp.
689
703
.10.1017/S0022112071002842
18.
Chomaz
,
J.
,
Huerre
,
P.
, and
Redekopp
,
L.
,
1988
, “
Bifurcations to Local and Global Modes in Spatially Developing Flows
,”
Phys. Rev. Lett.
,
60
(
1
), pp.
25
28
.10.1103/PhysRevLett.60.25
19.
Benjamin
,
A.
, and
Denny
,
V.
,
1979
, “
On the Convergence of Numerical Solutions for 2-D Flows in a Cavity at Large Re
,”
J. Comput. Phys.
,
33
(
3
), pp.
340
358
.10.1016/0021-9991(79)90160-8
20.
Winters
,
K.
, and
Cliffe
,
K.
,
1979
, “
A Finite Element Study of Laminar Flow in a Square Cavity
,” UKAERE Harwell Report No. R-9444.
21.
Meyer-Spasche
,
R.
, and
Keller
,
H. B.
,
1980
, “
Computations of the Axisymmetric Flow Between Rotating Cylinders
,”
J. Comput. Phys.
,
35
(
1
), pp.
100
109
.10.1016/0021-9991(80)90037-6
22.
Schreiber
,
R.
, and
Keller
,
H. B.
,
1983
, “
Driven Cavity Flows by Efficient Numerical Techniques
,”
J. Comput. Phys.
,
49
(
2
), pp.
310
333
.10.1016/0021-9991(83)90129-8
23.
Jackson
,
C.
,
1987
, “
A Finite-Element Study of the Onset of Vortex Shedding in Flow Past Variously Shaped Bodies
,”
J. Fluid Mech.
,
182
(
-1
), pp.
23
45
.10.1017/S0022112087002234
24.
Zebib
,
A.
,
1987
, “
Stability of Viscous Flow Past a Circular Cylinder
,”
J. Eng. Math.
,
21
(
2
), pp.
155
165
.10.1007/BF00127673
25.
Eriksson
,
L. E.
, and
Rizzi
,
A.
,
1985
, “
Computer-Aided Analysis of the Convergence to Steady State of Discrete Approximations to the Euler Equations
,”
J. Comput. Phys.
,
57
(
1
), pp.
90
128
.10.1016/0021-9991(85)90054-3
26.
Tuckerman
,
L. S.
, and
Marcus
,
P.
,
1985
, “
Formation of Taylor Vortices in Spherical Couette Flow
,”
Ninth International Conference on Numerical Methods in Fluid Dynamics
,
Springer
, Berlin, pp.
552
556
.10.1007/3-540-13917-6_198
27.
Marcus
,
P. S.
, and
Tuckerman
,
L. S.
,
1987
, “
Simulation of Flow Between Concentric Rotating Spheres. Part 1. Steady States
,”
J. Fluid Mech.
,
185
, pp.
1
30
.10.1017/S0022112087003069
28.
Marcus
,
P. S.
, and
Tuckerman
,
L. S.
,
1987
, “
Simulation of Flow Between Concentric Rotating Spheres. Part 2. Transitions
,”
J. Fluid Mech.
,
185
, pp.
31
65
.10.1017/S0022112087003070
29.
Goldhirsch
,
L.
,
Orszag
,
S. A.
, and
Maulik
,
B.
,
1987
, “
An Efficient Method for Computing Leading Eigenvalues and Eigenvectors of Large Asymmetric Matrices
,”
J. Sci. Comput.
,
2
(
1
), pp.
33
58
.10.1007/BF01061511
30.
Christodoulou
,
K.
, and
Scriven
,
L.
,
1988
, “
Finding Leading Modes of a Viscous Free Surface Flow: An Asymmetric Generalized Eigenproblem
,”
J. Sci. Comput.
,
3
(
4
), pp.
355
406
.10.1007/BF01065178
31.
Tuckerman
,
L. S.
,
1989
, “
Steady-State Solving Via Stokes Preconditioning; Recursion Relations for Elliptic Operators
,”
11th International Conference on Numerical Methods in Fluid Dynamics
,
Springer
, Berlin, pp.
573
577
.10.1007/3-540-51048-6_95
32.
Edwards
,
W. S.
,
Tuckerman
,
L. S.
,
Friesner
,
R. A.
, and
Sorensen
,
D. C.
,
1994
, “
Krylov Methods for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
110
(
1
), pp.
82
102
.10.1006/jcph.1994.1007
33.
Natarajan
,
R.
, and
Acrivos
,
A.
,
1993
, “
The Instability of the Steady Flow Past Spheres and Disks
,”
J. Fluid Mech.
,
254
, pp.
323
344
.10.1017/S0022112093002150
34.
Ramanan
,
N.
, and
Homsy
,
G. M.
,
1994
, “
Linear Stability of Lid-Driven Cavity Flow
,”
Phys. Fluids
,
6
(
8
), pp.
2690
2701
.10.1063/1.868158
35.
Barkley
,
D.
, and
Tuckerman
,
L. S.
,
1999
, “
Stability Analysis of Perturbed Plane Couette Flow
,”
Phys. Fluids
,
11
(
5
), pp.
1187
1195
.10.1063/1.869987
36.
Theofilis
,
V.
,
Hein
,
S.
, and
Dallmann
,
U.
,
2000
, “
On the Origins of Unsteadiness and Three-Dimensionality in a Laminar Separation Bubble
,”
Philos. Trans. R. Soc. A
,
358
(
1777
), pp.
3229
3246
.10.1098/rsta.2000.0706
37.
Albensoeder
,
S.
,
Kuhlmann
,
H. C.
, and
Rath
,
H. J.
,
2001
, “
Three-Dimensional Centrifugal-Flow Instabilities in the Lid-Driven-Cavity Problem
,”
Phys. Fluids
,
13
(
1
), pp.
121
135
.10.1063/1.1329908
38.
Theofilis
,
V.
,
Duck
,
P.
, and
Owen
,
J.
,
2004
, “
Viscous Linear Stability Analysis of Rectangular Duct and Cavity Flows
,”
J. Fluid Mech.
,
505
, pp.
249
286
.10.1017/S002211200400850X
39.
Lanzerstorfer
,
D.
, and
Kuhlmann
,
H. C.
,
2012
, “
Global Stability of Multiple Solutions in Plane Sudden-Expansion Flow
,”
J. Fluid Mech.
,
702
, pp.
378
402
.10.1017/jfm.2012.184
40.
Ehrenstein
,
U.
, and
Gallaire
,
F.
,
2005
, “
On Two-Dimensional Temporal Modes in Spatially Evolving Open Flows: The Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
536
, pp.
209
218
.10.1017/S0022112005005112
41.
Ehrenstein
,
U.
, and
Gallaire
,
F.
,
2008
, “
Two-Dimensional Global Low-Frequency Oscillations in a Separating Boundary-Layer Flow
,”
J. Fluid Mech.
,
614
, pp.
315
327
.10.1017/S0022112008003285
42.
Bagheri
,
S.
,
Åkervik
,
E.
,
Brandt
,
L.
, and
Henningson
,
D. S.
,
2009
, “
Matrix-Free Methods for the Stability and Control of Boundary Layers
,”
AIAA J.
,
47
(
5
), pp.
1057
1068
.10.2514/1.41365
43.
Alizard
,
F.
, and
Robinet
,
J.-C.
,
2007
, “
Spatially Convective Global Modes in a Boundary Layer
,”
Phys. Fluids
,
19
(
11
), p.
114105
.10.1063/1.2804958
44.
Gelfgat
,
A. Y.
,
2007
, “
Stability of Convective Flows in Cavities: Solution of Benchmark Problems by a Low-Order Finite Volume Method
,”
Int. J. Numer. Methods Fluids
,
53
(
3
), pp.
485
506
.10.1002/fld.1291
45.
Gulberg
,
Y.
, and
Feldman
,
Y.
,
2016
, “
Flow Control Through the Use of Heterogeneous Porous Media: “Smart” Passive Thermo-Insulating Materials
,”
Int. J. Therm. Sci.
,
110
, pp.
369
382
.10.1016/j.ijthermalsci.2016.07.008
46.
Theofilis
,
V.
,
2011
, “
Global Linear Instability
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
319
352
.10.1146/annurev-fluid-122109-160705
47.
Juniper
,
M. P.
,
Hanifi
,
A.
, and
Theofilis
,
V.
,
2014
, “
Modal Stability Theory Lecture Notes From the Flow - NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p. 024804.10.1115/1.4026604
48.
Bagheri
,
S.
,
Schlatter
,
P.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2009
, “
Global Stability of a Jet in Crossflow
,”
J. Fluid Mech.
,
624
(
9
), pp.
33
44
.10.1017/S0022112009006053
49.
Ilak
,
M.
,
Schlatter
,
P.
,
Bagheri
,
S.
, and
Henningson
,
D. S.
,
2012
, “
Bifurcation and Stability Analysis of a Jet in Cross-Flow: Onset of Global Instability at a Low Velocity Ratio
,”
J. Fluid Mech.
,
696
, pp.
94
121
.10.1017/jfm.2012.10
50.
Peplinski
,
A.
,
Schlatter
,
P.
,
Fischer
,
P.
, and
Henningson
,
D. S.
,
2014
, “
Stability Tools for the Spectral-Element Code Nek5000: Application to Jet-in-Crossflow
,”
Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012
,
Springer
, Berlin, pp.
349
359
.https://www.mcs.anl.gov/~oanam/Nekdoc/stabtools/peplinski_schlatter_fischer_henningson_2013.pdf
51.
Loiseau
,
J.-C.
,
Robinet
,
J.-C.
,
Cherubini
,
S.
, and
Leriche
,
E.
,
2014
, “
Investigation of the Roughness-Induced Transition: Global Stability Analyses and Direct Numerical Simulations
,”
J. Fluid Mech.
,
760
, pp.
175
211
.10.1017/jfm.2014.589
52.
Citro
,
V.
,
Giannetti
,
F.
,
Luchini
,
P.
, and
Auteri
,
F.
,
2015
, “
Global Stability and Sensitivity Analysis of Boundary-Layer Flows Past a Hemispherical Roughness Element
,”
Phys. Fluids
,
27
(
8
), p.
084110
.10.1063/1.4928533
53.
Kurz
,
H. B. E.
, and
Kloker
,
M. J.
,
2016
, “
Mechanisms of Flow Tripping by Discrete Roughness Elements in a Swept-Wing Boundary Layer
,”
J. Fluid Mech.
,
796
, pp.
158
194
.10.1017/jfm.2016.240
54.
Brynjell-Rahkola
,
M.
,
Shahriari
,
N.
,
Schlatter
,
P.
,
Hanifi
,
A.
, and
Henningson
,
D. S.
,
2017
, “
Stability and Sensitivity of a Cross-Flow-Dominated Falkner–Skan–Cooke Boundary Layer With Discrete Surface Roughness
,”
J. Fluid Mech.
,
826
, pp.
830
850
.10.1017/jfm.2017.466
55.
Bucci
,
M. A.
,
Puckert
,
D. K.
,
Andriano
,
C.
,
Loiseau
,
J.-C.
,
Cherubini
,
S.
,
Robinet
,
J.-C.
, and
Rist
,
U.
,
2018
, “
Roughness-Induced Transition by Quasi-Resonance of a Varicose Global Mode
,”
J. Fluid Mech.
,
836
, pp.
167
191
.10.1017/jfm.2017.791
56.
Bucci
,
M. A.
,
Cherubini
,
S.
,
Loiseau
,
J.-C.
, and
Robinet
,
J.-C.
,
2021
, “
Influence of Freestream Turbulence on the Flow Over a Wall Roughness
,”
Phys. Rev. Fluids
,
6
(
6
), p.
063903
.10.1103/PhysRevFluids.6.063903
57.
Ma
,
R.
, and
Mahesh
,
K.
,
2022
, “
Global Stability Analysis and Direct Numerical Simulation of Boundary Layers With an Isolated Roughness Element
,”
J. Fluid Mech.
,
949
, p.
A12
.10.1017/jfm.2022.749
58.
Wu
,
Y.
,
Römer
,
T.
,
Axtmann
,
G.
, and
Rist
,
U.
,
2022
, “
Transition Mechanisms in a Boundary Layer Controlled by Rotating Wall-Normal Cylindrical Roughness Elements
,”
J. Fluid Mech.
,
945
, p.
A20
.10.1017/jfm.2022.546
59.
Feldman
,
Y.
, and
Gelfgat
,
A. Y.
,
2010
, “
Oscillatory Instability of a Three-Dimensional Lid-Driven Flow in a Cube
,”
Phys. Fluids
,
22
(
9
), p.
093602
.10.1063/1.3487476
60.
Kuhlmann
,
H. C.
, and
Albensoeder
,
S.
,
2014
, “
Stability of the Steady Three-Dimensional Lid-Driven Flow in a Cube and the Supercritical Flow Dynamics
,”
Phys. Fluids
,
26
(
2
), p.
024104
.10.1063/1.4864264
61.
Loiseau
,
J.-C.
,
Robinet
,
J.-C.
, and
Leriche
,
E.
,
2016
, “
Intermittency and Transition to Chaos in the Cubical Lid-Driven Cavity Flow
,”
Fluid Dyn. Res.
,
48
(
6
), p.
061421
.10.1088/0169-5983/48/6/061421
62.
Liu
,
Q.
,
Gómez
,
F.
, and
Theofilis
,
V.
,
2016
, “
Linear Instability Analysis of low-Re Incompressible Flow Over a Long Rectangular Finite-Span Open Cavity
,”
J. Fluid Mech.
,
799
, pp.
1
16
.10.1017/jfm.2016.391
63.
Picella
,
F.
,
Loiseau
,
J.-C.
,
Lusseyran
,
F.
,
Robinet
,
J.-C.
,
Cherubini
,
S.
, and
Pastur
,
L.
,
2018
, “
Successive Bifurcations in a Fully Three-Dimensional Open Cavity Flow
,”
J. Fluid Mech.
,
844
, pp.
855
877
.10.1017/jfm.2018.169
64.
Gelfgat
,
A. Y.
,
2019
, “
Linear Instability of the Lid-Driven Flow in a Cubic Cavity
,”
Theor. Comput. Fluid Dyn.
,
33
(
1
), pp.
59
82
.10.1007/s00162-019-00483-1
65.
Zikanov
,
O.
,
Krasnov
,
D.
,
Boeck
,
T.
,
Thess
,
A.
, and
Rossi
,
M.
,
2014
, “
Laminar-Turbulent Transition in Magnetohydrodynamic Duct, Pipe, and Channel Flows
,”
ASME Appl. Mech. Rev.
,
66
(
3
), p. 030802.10.1115/1.4027198
66.
Blackburn
,
H. M.
,
Barkley
,
D.
, and
Sherwin
,
S. J.
,
2008
, “
Convective Instability and Transient Growth in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
603
, pp.
271
304
.10.1017/S0022112008001109
67.
Blackburn
,
H. M.
,
Sherwin
,
S. J.
, and
Barkley
,
D.
,
2008
, “
Convective Instability and Transient Growth in Steady and Pulsatile Stenotic Flows
,”
J. Fluid Mech.
,
607
, pp.
267
277
.10.1017/S0022112008001717
68.
Semeraro
,
O.
, and
Pralits
,
J. O.
,
2018
, “
Full-Order Optimal Compensators for Flow Control: The Multiple Inputs Case
,”
Theor. Comput. Fluid Dyn.
,
32
(
3
), pp.
285
305
.10.1007/s00162-018-0454-4
69.
Sansica
,
A.
,
Ohmichi
,
Y.
,
Robinet
,
J.-C.
, and
Hashimoto
,
A.
,
2020
, “
Laminar Supersonic Sphere Wake Unstable Bifurcations
,”
Phys. Fluids
,
32
(
12
), p.
126107
.10.1063/5.0031599
70.
Fabre
,
D.
,
Auguste
,
F.
, and
Magnaudet
,
J.
,
2008
, “
Bifurcations and Symmetry Breaking in the Wake of Axisymmetric Bodies
,”
Phys. Fluids
,
20
(
5
), p.
051702
.10.1063/1.2909609
71.
Fabre
,
D.
,
Citro
,
V.
,
Ferreira Sabino
,
D.
,
Bonnefis
,
P.
,
Sierra
,
J.
,
Giannetti
,
F.
, and
Pigou
,
M.
,
2018
, “
A Practical Review on Linear and Nonlinear Global Approaches to Flow Instabilities
,”
ASME Appl. Mech. Rev.
,
70
(
6
), p. 060802.10.1115/1.4042737
72.
Robinet
,
J.-C.
,
2007
, “
Bifurcations in Shock-Wave/Laminar-Boundary-Layer Interaction: Global Instability Approach
,”
J. Fluid Mech.
,
579
, pp.
85
112
.10.1017/S0022112007005095
73.
Guiho
,
F.
,
Alizard
,
F.
, and
Robinet
,
J.-C.
,
2016
, “
Instabilities in Oblique Shock Wave/Laminar Boundary-Layer Interactions
,”
J. Fluid Mech.
,
789
, pp.
1
35
.10.1017/jfm.2015.729
74.
Hildebrand
,
N.
,
Dwivedi
,
A.
,
Nichols
,
J. W.
,
Jovanović
,
M. R.
, and
Candler
,
G. V.
,
2018
, “
Simulation and Stability Analysis of Oblique Shock-Wave/Boundary-Layer Interactions at Mach 5.92
,”
Phys. Rev. Fluids
,
3
(
1
), p.
013906
.10.1103/PhysRevFluids.3.013906
75.
Bugeat
,
B.
,
Chassaing
,
J.-C.
,
Robinet
,
J.-C.
, and
Sagaut
,
P.
,
2019
, “
3D Global Optimal Forcing and Response of the Supersonic Boundary Layer
,”
J. Comput. Phys.
,
398
, p.
108888
.10.1016/j.jcp.2019.108888
76.
Bugeat
,
B.
,
Robinet
,
J.-C.
,
Chassaing
,
J.-C.
, and
Sagaut
,
P.
,
2022
, “
Low-Frequency Resolvent Analysis of the Laminar Oblique Shock Wave/Boundary Layer Interaction
,”
J. Fluid Mech.
,
942
.10.1017/jfm.2022.390
77.
Bres
,
G. A.
, and
Colonius
,
T.
,
2008
, “
Three-Dimensional Instabilities in Compressible Flow Over Open Cavities
,”
J. Fluid Mech.
,
599
, pp.
309
339
.10.1017/S0022112007009925
78.
Theofilis
,
V.
, and
Colonius
,
T.
,
2003
, “
An Algorithm for the Recovery of 2- and 3D Biglobal Instabilities of Compressible Flow Over 2D Open Cavities
,”
AIAA
Paper No. 2003-414310.2514/6.2003-4143.
79.
Yamouni
,
S.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2013
, “
Interaction Between Feedback Aeroacoustic and Acoustic Resonance Mechanisms in a Cavity Flow: A Global Stability Analysis
,”
J. Fluid Mech.
,
717
, pp.
134
165
.10.1017/jfm.2012.563
80.
Sun
,
Y.
,
Taira
,
K.
,
Cattafesta
,
L. N.
, and
Ukeiley
,
L. S.
,
2017
, “
Spanwise Effects on Instabilities of Compressible Flow Over a Long Rectangular Cavity
,”
Theor. Comput. Fluid Dyn.
,
31
(
5–6
), pp.
555
565
.10.1007/s00162-016-0412-y
81.
Nichols
,
J. W.
, and
Lele
,
S. K.
,
2011
, “
Global Modes and Transient Response of a Cold Supersonic Jet
,”
J. Fluid Mech.
,
669
, pp.
225
241
.10.1017/S0022112010005380
82.
Beneddine
,
S.
,
Mettot
,
C.
, and
Sipp
,
D.
,
2015
, “
Global Stability Analysis of Underexpanded Screeching Jets
,”
Eur. J. Mech. B
,
49
(Part B), pp.
392
399
.10.1016/j.euromechflu.2014.05.006
83.
Semeraro
,
O.
,
Lusseyran
,
F.
,
Pastur
,
L.
, and
Jordan
,
P.
,
2017
, “
Qualitative Dynamics of Wave Packets in Turbulent Jets
,”
Phys. Rev. Fluids
,
2
(
9
).10.1103/PhysRevFluids.2.094605
84.
Crouch
,
J.
,
Garbaruk
,
A.
, and
Magidov
,
D.
,
2007
, “
Predicting the Onset of Flow Unsteadiness Based on Global Instability
,”
J. Comput. Phys.
,
224
(
2
), pp.
924
940
.10.1016/j.jcp.2006.10.035
85.
Crouch
,
J.
,
Garbaruk
,
A.
,
Magidov
,
D.
, and
Travin
,
A.
,
2009
, “
Origin of Transonic Buffet on Aerofoils
,”
J. Fluid Mech.
,
628
, pp.
357
369
.10.1017/S0022112009006673
86.
Timme
,
S.
, and
Thormann
,
R.
,
2016
, “
Towards Three-Dimensional Global Stability Analysis of Transonic Shock Buffet
,”
AIAA
Paper No. 2016-384810.2514/6.2016-3848.
87.
Paladini
,
E.
,
Beneddine
,
S.
,
Dandois
,
J.
,
Sipp
,
D.
, and
Robinet
,
J.-C.
,
2019
, “
Transonic Buffet Instability: From Two-Dimensional Airfoils to Three-Dimensional Swept Wings
,”
Phys. Rev. Fluids
,
4
(
10
), p.
103906
.10.1103/PhysRevFluids.4.103906
88.
Crouch
,
J.
,
Garbaruk
,
A.
, and
Strelets
,
M.
,
2019
, “
Global Instability in the Onset of Transonic-Wing Buffet
,”
J. Fluid Mech.
,
881
, pp.
3
22
.10.1017/jfm.2019.748
89.
Paladini
,
E.
,
Marquet
,
O.
,
Sipp
,
D.
,
Robinet
,
J.-C.
, and
Dandois
,
J.
,
2019
, “
Various Approaches to Determine Active Regions in an Unstable Global Mode: Application to Transonic Buffet
,”
J. Fluid Mech.
,
881
, pp.
617
647
.10.1017/jfm.2019.761
90.
Timme
,
S.
,
2020
, “
Global Instability of Wing Shock-Buffet Onset
,”
J. Fluid Mech.
,
885
, p.
A37
.10.1017/jfm.2019.1001
91.
Meliga
,
P.
,
Sipp
,
D.
, and
Chomaz
,
J.-M.
,
2010
, “
Effect of Compressibility on the Global Stability of Axisymmetric Wake Flows
,”
J. Fluid Mech.
,
660
, pp.
499
526
.10.1017/S002211201000279X
92.
Mack
,
C. J.
, and
Schmid
,
P. J.
,
2011
, “
Global Stability of Swept Flow Around a Parabolic Body: Features of the Global Spectrum
,”
J. Fluid Mech.
,
669
, pp.
375
396
.10.1017/S0022112010005252
93.
Mack
,
C. J.
, and
Schmid
,
P. J.
,
2011
, “
Global Stability of Swept Flow Around a Parabolic Body: The Neutral Curve
,”
J. Fluid Mech.
,
678
, pp.
589
599
.10.1017/jfm.2011.158
94.
Sansica
,
A.
,
Robinet
,
J.-C.
,
Alizard
,
F.
, and
Goncalves
,
E.
,
2018
, “
Three-Dimensional Instability of a Flow Past a Sphere: Mach Evolution of the Regular and Hopf Bifurcations
,”
J. Fluid Mech.
,
855
, pp.
1088
1115
.10.1017/jfm.2018.664
95.
Schatz
,
M. F.
,
Barkley
,
D.
, and
Swinney
,
H. L.
,
1995
, “
Instability in a Spatially Periodic Open Flow
,”
Phys. Fluids
,
7
(
2
), pp.
344
358
.10.1063/1.868632
96.
Barkley
,
D.
, and
Henderson
,
R. D.
,
1996
, “
Three-Dimensional Floquet Stability Analysis of the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
322
(
-1
), pp.
215
241
.10.1017/S0022112096002777
97.
Blackburn
,
H. M.
,
Marques
,
F.
, and
Lopez
,
J. M.
,
2005
, “
Symmetry Breaking of Two-Dimensional Time-Periodic Wakes
,”
J. Fluid Mech.
,
522
, pp.
395
411
.10.1017/S0022112004002095
98.
Barkley
,
D.
,
Gomes
,
M. G. M.
, and
Henderson
,
R. D.
,
2002
, “
Three-Dimensional Instability in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
473
, pp.
167
190
.10.1017/S002211200200232X
99.
Carini
,
M.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2014
, “
On the Origin of the Flip-Flop Instability of Two Side-by-Side Cylinder Wakes
,”
J. Fluid Mech.
,
742
, pp.
552
576
.10.1017/jfm.2014.9
100.
Bengana
,
Y.
,
Loiseau
,
J.-C.
,
Robinet
,
J.-C.
, and
Tuckerman
,
L.
,
2019
, “
Bifurcation Analysis and Frequency Prediction in Shear-Driven Cavity Flow
,”
J. Fluid Mech.
,
875
, pp.
725
757
.10.1017/jfm.2019.422
101.
Shaabani-Ardali
,
L.
,
Sipp
,
D.
, and
Lesshafft
,
L.
,
2019
, “
Vortex Pairing in Jets as a Global Floquet Instability: Modal and Transient Dynamics
,”
J. Fluid Mech.
,
862
, pp.
951
989
.10.1017/jfm.2018.977
102.
Tuckerman
,
L. S.
, and
Barkley
,
D.
,
1988
, “
Global Bifurcation to Traveling Waves in Axisymmetric Convection
,”
Phys. Rev. Lett.
,
61
(
4
), pp.
408
411
.10.1103/PhysRevLett.61.408
103.
Dijkstra
,
H. A.
,
Wubs
,
F. W.
,
Cliffe
,
A. K.
,
Doedel
,
E.
,
Dragomirescu
,
I. F.
,
Eckhardt
,
B.
,
Gelfgat
,
A. Y.
, et al.,
U.
,
2014
, “
Numerical Bifurcation Methods and Their Application to Fluid Dynamics: Analysis Beyond Simulation
,”
Commun. Comput. Phys.
,
15
(
1
), pp.
1
45
.10.4208/cicp.240912.180613a
104.
Kreilos
,
T.
,
Veble
,
G.
,
Schneider
,
T. M.
, and
Eckhardt
,
B.
,
2013
, “
Edge States for the Turbulence Transition in the Asymptotic Suction Boundary Layer
,”
J. Fluid Mech.
,
726
, pp.
100
122
.10.1017/jfm.2013.212
105.
Rawat
,
S.
,
Cossu
,
C.
, and
Rincon
,
F.
,
2014
, “
Relative Periodic Orbits in Plane Poiseuille Flow
,”
C. R. Méc.
,
342
(
8
), pp.
485
489
.10.1016/j.crme.2014.05.008
106.
Kawahara
,
G.
, and
Kida
,
S.
,
2001
, “
Periodic Motion Embedded in Plane Couette Turbulence: Regeneration Cycle and Burst
,”
J. Fluid Mech.
,
449
, pp.
291
300
.10.1017/S0022112001006243
107.
Wedin
,
H.
, and
Kerswell
,
R. R.
,
2004
, “
Exact Coherent Structures in Pipe Flow: Travelling Wave Solutions
,”
J. Fluid Mech.
,
508
, pp.
333
371
.10.1017/S0022112004009346
108.
Willis
,
A. P.
,
Cvitanović
,
P.
, and
Avila
,
M.
,
2013
, “
Revealing the State Space of Turbulent Pipe Flow by Symmetry Reduction
,”
J. Fluid Mech.
,
721
, pp.
514
540
.10.1017/jfm.2013.75
109.
Paranjape
,
C. S.
,
Duguet
,
Y.
, and
Hof
,
B.
,
2020
, “
Oblique Stripe Solutions of Channel Flow
,”
J. Fluid Mech.
,
897
.10.1017/jfm.2020.322
110.
Itano
,
T.
, and
Toh
,
S.
,
2001
, “
The Dynamics of Bursting Process in Wall Turbulence
,”
J. Phys. Soc. Jpn.
,
70
(
3
), pp.
703
716
.10.1143/JPSJ.70.703
111.
Skufca
,
J. D.
,
Yorke
,
J. A.
, and
Eckhardt
,
B.
,
2006
, “
Edge of Chaos in a Parallel Shear Flow
,”
Phys. Rev. Lett.
,
96
(
17
), p.
174101
.10.1103/PhysRevLett.96.174101
112.
Canton
,
J.
,
Rinaldi
,
E.
,
Örlü
,
R.
, and
Schlatter
,
P.
,
2020
, “
Critical Point for Bifurcation Cascades and Featureless Turbulence
,”
Phys. Rev. Lett.
,
124
(
1
), p.
014501
.10.1103/PhysRevLett.124.014501
113.
Gibson
,
J. F.
,
2014
, “
Channelflow: A Spectral Navier-Stokes Simulator in C++
,”
University of New Hampshire
,
Durham, NH
.
114.
Willis
,
A. P.
,
2017
, “
The Openpipeflow Navier–Stokes Solver
,”
SoftwareX
,
6
, pp.
124
127
.10.1016/j.softx.2017.05.003
115.
Herbert
,
T.
,
1997
, “
Parabolized Stability Equations
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
245
283
.10.1146/annurev.fluid.29.1.245
116.
Li
,
F.
, and
Malik
,
M. R.
,
1995
, “
Mathematical Nature of Parabolized Stability Equations
,”
Laminar-Turbulent Transition
,
Springer
, Berlin, pp.
205
212
.
117.
Herbert
,
T.
,
1991
, “
Boundary-Layer Transition-Analysis and Prediction Revisited
,”
AIAA
Paper No. 1991-737.10.2514/6.1991-737
118.
Bertolotti
,
F. P.
,
Herbert
,
T.
, and
Spalart
,
P.
,
1992
, “
Linear and Nonlinear Stability of the Blasius Boundary Layer
,”
J. Fluid Mech.
,
242
, pp.
441
474
.10.1017/S0022112092002453
119.
Liu
,
Y.
,
Zaki
,
T. A.
, and
Durbin
,
P. A.
,
2008
, “
Floquet Analysis of Secondary Instability of Boundary Layers Distorted by Klebanoff Streaks and Tollmien-Schlichting Waves
,”
Phys. Fluids
,
20
(
12
), p.
124102
.10.1063/1.3040302
120.
Herbert
,
T.
,
Bertolotti
,
F. P.
, and
Santos
,
G. R.
,
1987
, “
Floquet Analysis of Secondary Instability in Shear Flows
,”
Stability of Time Dependent and Spatially Varying Flows
,
Springer
, Berlin, pp.
43
57
.
121.
Herbert
,
T.
,
1988
, “
Secondary Instability of Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
20
(
1
), pp.
487
526
.10.1146/annurev.fl.20.010188.002415
122.
Malik
,
M. R.
,
Li
,
F.
,
Choudhari
,
M. M.
, and
Chang
,
C.-L.
,
1999
, “
Secondary Instability of Crossflow Vortices and Swept-Wing Boundary-Layer Transition
,”
J. Fluid Mech.
,
399
, pp.
85
115
.10.1017/S0022112099006291
123.
Ren
,
J.
, and
Fu
,
S.
,
2015
, “
Secondary Instabilities of Görtler Vortices in High-Speed Boundary Layer Flows
,”
J. Fluid Mech.
,
781
, pp.
388
421
.10.1017/jfm.2015.490
124.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
125.
Maday
,
Y.
, and
Patera
,
A. T.
,
1989
, “
Spectral Element Methods for the Incompressible Navier-Stokes Equations
,”
ASME
Paper No. OMAE2003-37241.10.1115/OMAE2003-37241
126.
Fischer
,
P.
,
Kruse
,
J.
,
Mullen
,
J.
,
Tufo
,
H.
,
Lottes
,
J.
, and
Kerkemeier
,
S.
,
2008
,
Nek5000: Open Source Spectral Element CFD Solver
,
Argonne National Laboratory, Mathematics and Computer Science Division
,
Argonne, IL
.
127.
Åkervik
,
E.
,
Brandt
,
L.
,
Henningson
,
D. S.
,
Hœpffner
,
J.
,
Marxen
,
O.
, and
Schlatter
,
P.
,
2006
, “
Steady Solutions of the Navier-Stokes Equations by Selective Frequency Damping
,”
Phys. Fluids
,
18
(
6
), p.
068102
.10.1063/1.2211705
128.
Lehoucq
,
R. B.
,
Sorensen
,
D. C.
, and
Yang
,
C.
,
1998
,
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
,
SIAM, Philadelphia, PA
.
129.
Maschho
,
K. J.
, and
Sorensen
,
D.
,
1996
, “
A Portable Implementation of ARPACK for Distributed Memory Parallel Architectures
,”
Proceedings of the Copper Mountain Conference on Iterative Methods
, Copper Mountain, CO, Apr. 9–13.https://www.osti.gov/biblio/433364
130.
Cantwell
,
C. D.
,
Moxey
,
D.
,
Comerford
,
A.
,
Bolis
,
A.
,
Rocco
,
G.
,
Mengaldo
,
G.
,
De Grazia
,
D.
, et al.,
2015
, “
Nektar++: An Open-Source Spectral/hp Element Framework
,”
Comput. Phys. Commun.
,
192
, pp.
205
219
.10.1016/j.cpc.2015.02.008
131.
Karniadakis
,
G.
, and
Sherwin
,
S. J.
,
2005
,
Spectral/hp Element Methods for Computational Fluid Dynamics
,
Oxford University Press
, Oxford, UK.https://academic.oup.com/book/7538
132.
Blackburn
,
H. M.
,
Lee
,
D.
,
Albrecht
,
T.
, and
Singh
,
J.
,
2019
, “
Semtex: A Spectral Element–Fourier Solver for the Incompressible Navier–Stokes Equations in Cylindrical or Cartesian Coordinates
,”
Comput. Phys. Commun.
,
245
, p.
106804
.10.1016/j.cpc.2019.05.015
133.
Sherwin
,
S. J.
, and
Blackburn
,
H. M.
,
2005
, “
Three-Dimensional Instabilities and Transition of Steady and Pulsatile Axisymmetric Stenotic Flows
,”
J. Fluid Mech.
,
533
, pp.
297
327
.10.1017/S0022112005004271
134.
Elston
,
J. R.
,
Blackburn
,
H. M.
, and
Sheridan
,
J.
,
2006
, “
The Primary and Secondary Instabilities of Flow Generated by an Oscillating Circular Cylinder
,”
J. Fluid Mech.
,
550
(
-1
), pp.
359
389
.10.1017/S0022112005008372
135.
Mao
,
X.
,
Sherwin
,
S.
, and
Blackburn
,
H.
,
2011
, “
Transient Growth and Bypass Transition in Stenotic Flow With a Physiological Waveform
,”
Theor. Comput. Fluid Dyn.
,
25
(
1–4
), pp.
31
42
.10.1007/s00162-009-0167-9
136.
Blackburn
,
H. M.
,
Hall
,
P.
, and
Sherwin
,
S. J.
,
2013
, “
Lower Branch Equilibria in Couette Flow: The Emergence of Canonical States for Arbitrary Shear Flows
,”
J. Fluid Mech.
,
726
.10.1017/jfm.2013.254
137.
Albrecht
,
T.
,
Blackburn
,
H.
,
Lopez
,
J. M.
,
Manasseh
,
R.
, and
Meunier
,
P.
,
2015
, “
Triadic Resonances in Precessing Rapidly Rotating Cylinder Flows
,”
J. Fluid Mech.
,
778
.10.1017/jfm.2015.377
138.
Hecht
,
F.
,
2012
, “
New Development in FreeFem++
,”
J. Numerical Mathematics
,
20
(
3–4
), pp.
251
266
.10.1515/jnum-2012-0013
139.
Marquet
,
O.
,
Sipp
,
D.
,
Chomaz
,
J.-M.
, and
Jacquin
,
L.
,
2008
, “
Amplifier and Resonator Dynamics of a low-Reynolds-Number Recirculation Bubble in a Global Framework
,”
J. Fluid Mech.
,
605
, pp.
429
443
.10.1017/S0022112008000323
140.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.10.1017/S0022112008003662
141.
Citro
,
V.
,
Giannetti
,
F.
, and
Pralits
,
J. O.
,
2015
, “
Three-Dimensional Stability, Receptivity and Sensitivity of non-Newtonian Flows Inside Open Cavities
,”
Fluid Dyn. Res.
,
47
(
1
), p.
015503
.10.1088/0169-5983/47/1/015503
142.
Citro
,
V.
,
Giannetti
,
F.
,
Brandt
,
L.
, and
Luchini
,
P.
,
2015
, “
Linear Three-Dimensional Global and Asymptotic Stability Analysis of Incompressible Open Cavity Flow
,”
J. Fluid Mech.
,
768
, pp.
113
140
.10.1017/jfm.2015.72
143.
Kaiser
,
T. L.
,
Poinsot
,
T.
, and
Oberleithner
,
K.
,
2018
, “
Stability and Sensitivity Analysis of Hydrodynamic Instabilities in Industrial Swirled Injection Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
).10.1115/1.4038283
144.
Alnæs
,
M.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The FEniCS Project Version 1.5
,”
Arch. Numer. Software
,
3
(
100
).10.11588/ans.2015.100.20553
145.
Mortensen
,
M.
, and
Langtangen
,
H. P.
,
2016
, “
High Performance Python for Direct Numerical Simulations of Turbulent Flows
,”
Comput. Phys. Commun.
,
203
, pp.
53
65
.10.1016/j.cpc.2016.02.005
146.
Mortensen
,
M.
,
2018
, “
Shenfun: High Performance Spectral Galerkin Computing Platform
,”
J. Open Source Software
,
3
(
31
), p.
1071
.10.21105/joss.01071
147.
Augier
,
P.
,
Mohanan
,
A. V.
, and
Bonamy
,
C.
,
2018
, “
FluidDyn: A Python Open-Source Framework for Research and Teaching in Fluid Dynamics
,” preprint
arXiv:1807.09224
.10.48550/arXiv.1807.09224
148.
Mohanan
,
A. V.
,
Bonamy
,
C.
,
Linares
,
M. C.
, and
Augier
,
P.
,
2018
, “
FluidSim: Modular, Object-Oriented Python Package for High-Performance CFD Simulations
,” preprint
arXiv:1807.01769
.10.48550/arXiv.1807.01769
149.
Burns
,
K. J.
,
Vasil
,
G. M.
,
Oishi
,
J. S.
,
Lecoanet
,
D.
, and
Brown
,
B. P.
,
2020
, “
Dedalus: A Flexible Framework for Numerical Simulations With Spectral Methods
,”
Phys. Rev. Res.
,
2
(
2
), p.
023068
.10.1103/PhysRevResearch.2.023068
150.
Miquel
,
B.
,
2021
, “
Coral: A Parallel Spectral Solver for Fluid Dynamics and Partial Differential Equations
,”
J. Open Source Software
,
6
(
65
), p.
2978
.10.21105/joss.02978
151.
Poulain
,
A.
,
Content
,
C.
,
Sipp
,
D.
,
Rigas
,
G.
, and
Garnier
,
E.
,
2022
, “
BROADCAST: A High-Order Compressible CFD Toolbox for Stability and Sensitivity Using Algorithmic Differentiation
,” preprint
arXiv:2206.05493
.10.48550/arXiv.2206.05493
152.
Tuckerman
,
L.
, and
Barkley
,
D.
,
2000
, “
Bifurcation Analysis for Timesteppers
,”
Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems
(The IMA Volumes in Mathematics and its Applications), Vol.
119
,
E.
Doedel
and
L. S.
Tuckerman
eds.,
Springer
,
New York
, pp.
453
466
.https://homepages.warwick.ac.uk/~masax/Research/Papers/TB00.pdf
153.
Kerswell
,
R.
,
Pringle
,
C. C.
, and
Willis
,
A.
,
2014
, “
An Optimization Approach for Analysing Nonlinear Stability With Transition to Turbulence in Fluids as an Exemplar
,”
Rep. Prog. Phys.
,
77
(
8
), p.
085901
.10.1088/0034-4885/77/8/085901
154.
Guevel
,
Y.
,
Allain
,
T.
,
Girault
,
G.
, and
Cadou
,
J.-M.
,
2018
, “
Numerical Bifurcation Analysis for 3-Dimensional Sudden Expansion Fluid Dynamic Problem
,”
Int. J. Numer. Methods Fluids
,
87
(
1
), pp.
1
26
.10.1002/fld.4478
155.
Duguet
,
Y.
,
Willis
,
A. P.
, and
Kerswell
,
R. R.
,
2008
, “
Transition in Pipe Flow: The Saddle Structure on the Boundary of Turbulence
,”
J. Fluid Mech.
,
613
, pp.
255
274
.10.1017/S0022112008003248
156.
Kawahara
,
G.
,
Uhlmann
,
M.
, and
Van Veen
,
L.
,
2012
, “
The Significance of Simple Invariant Solutions in Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
203
225
.10.1146/annurev-fluid-120710-101228
157.
Ding
,
X.
,
Chaté
,
H.
,
Cvitanović
,
P.
,
Siminos
,
E.
, and
Takeuchi
,
K.
,
2016
, “
Estimating the Dimension of an Inertial Manifold From Unstable Periodic Orbits
,”
Phys. Rev. Lett.
,
117
(
2
), p.
024101
.10.1103/PhysRevLett.117.024101
158.
Cvitanović
,
P.
,
2013
, “
Recurrent Flows: The Clockwork Behind Turbulence
,”
J. Fluid Mech.
,
726
, pp.
1
4
.10.1017/jfm.2013.198
159.
Chandler
,
G. J.
, and
Kerswell
,
R. R.
,
2013
, “
Invariant Recurrent Solutions Embedded in a Turbulent Two-Dimensional Kolmogorov Flow
,”
J. Fluid Mech.
,
722
, pp.
554
595
.10.1017/jfm.2013.122
160.
Lucas
,
D.
, and
Kerswell
,
R. R.
,
2015
, “
Recurrent Flow Analysis in Spatiotemporally Chaotic 2-Dimensional Kolmogorov Flow
,”
Phys. Fluids
,
27
(
4
), p.
045106
.10.1063/1.4917279
161.
Page
,
J.
, and
Kerswell
,
R. R.
,
2020
, “
Searching Turbulence for Periodic Orbits With Dynamic Mode Decomposition
,”
J. Fluid Mech.
,
886
.10.1017/jfm.2019.1074
162.
Rössler
,
O. E.
,
1976
, “
An Equation for Continuous Chaos
,”
Phys. Lett. A
,
57
(
5
), pp.
397
398
.10.1016/0375-9601(76)90101-8
163.
Schmid
,
P. J.
,
2007
, “
Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
129
162
.10.1146/annurev.fluid.38.050304.092139
164.
Mathias
,
M. S.
, and
de Medeiros
,
M. A. F.
,
2022
, “
Optimal Computational Parameters for Maximum Accuracy and Minimum Cost of Arnoldi-Based Time-Stepping Methods for Flow Global Stability Analysis
,”
Theor. Comput. Fluid Dyn.
,
36
(
6
), pp.
1013
1036
.10.1007/s00162-022-00634-x
165.
Wiggins
,
S.
,
2006
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(Texts in Applied Mathematics), Vol.
2
,
Springer
,
New York
.
166.
Sipp
,
D.
, and
Lebedev
,
A.
,
2007
, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
,
593
, pp.
333
358
.10.1017/S0022112007008907
167.
Manneville
,
P.
,
2010
,
Instabilities, Chaos and Turbulence
, Vol.
1
,
Imperial College Press, London, UK
.
168.
Carini
,
M.
,
Auteri
,
F.
, and
Giannetti
,
F.
,
2015
, “
Centre-Manifold Reduction of Bifurcating Flows
,”
J. Fluid Mech.
,
767
, pp.
109
145
.10.1017/jfm.2015.3
169.
Trefethen
,
L. N.
, and
Bau
,
D.
, III
,
1997
,
Numerical Linear Algebra
, Vol.
50
,
SIAM, Philadelphia, PA
.
170.
Hill
,
D.
,
1995
, “
Adjoint Systems and Their Role in the Receptivity Problem for Boundary Layers
,”
J. Fluid Mech.
,
292
, pp.
183
204
.10.1017/S0022112095001480
171.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
493
517
.10.1146/annurev-fluid-010313-141253
172.
Trefethen
,
L. N.
,
Trefethen
,
A. E.
,
Reddy
,
S. C.
, and
Driscoll
,
T. A.
,
1993
, “
Hydrodynamic Stability Without Eigenvalues
,”
Science
,
261
(
5121
), pp.
578
584
.10.1126/science.261.5121.578
173.
Brandt
,
L.
,
Cossu
,
C.
,
Chomaz
,
J.-M.
,
Huerre
,
P.
, and
Henningson
,
D. S.
,
2003
, “
On the Convectively Unstable Nature of Optimal Streaks in Boundary Layers
,”
J. Fluid Mech.
,
485
, pp.
221
242
.10.1017/S0022112003004427
174.
Brandt
,
L.
,
2007
, “
Numerical Studies of the Instability and Breakdown of a Boundary-Layer Low-Speed Streak
,”
Eur. J. Mech. B. Fluids
,
26
(
1
), pp.
64
82
.10.1016/j.euromechflu.2006.04.008
175.
Brandt
,
L.
,
2014
, “
The Lift-Up Effect: The Linear Mechanism Behind Transition and Turbulence in Shear Flows
,”
Eur. J. Mech. B
,
47
, pp.
80
96
.10.1016/j.euromechflu.2014.03.005
176.
Barkley
,
D.
,
Blackburn
,
H. M.
, and
Sherwin
,
S. J.
,
2008
, “
Direct Optimal Growth Analysis for Timesteppers
,”
Int. J. Numer. Methods Fluids
,
57
(
9
), pp.
1435
1458
.10.1002/fld.1824
177.
Cantwell
,
C.
,
Barkley
,
D.
, and
Blackburn
,
H.
,
2010
, “
Transient Growth Analysis of Flow Through a Sudden Expansion in a Circular Pipe
,”
Phys. Fluids
,
22
(
3
), p.
034101
.10.1063/1.3313931
178.
Manneville
,
P.
,
2016
, “
Transition to Turbulence in Wall-Bounded Flows: Where Do we Stand?
,”
Mech. Eng. Rev.
,
3
(
2
), pp.
15
00684
15-00684
.10.1299/mer.15-00684
179.
Drikakis
,
D.
,
1997
, “
Bifurcation Phenomena in Incompressible Sudden Expansion Flows
,”
Phys. Fluids
,
9
(
1
), pp.
76
87
.10.1063/1.869174
180.
Loiseau
,
J.-C.
,
2020
, “
Data-Driven Modeling of the Chaotic Thermal Convection in an Annular Thermosyphon
,”
Theor. Comput. Fluid Dyn.
,
34
(
4
), pp.
339
365
.10.1007/s00162-020-00536-w
181.
Noack
,
B. R.
, and
Eckelmann
,
H.
,
1994
, “
A Global Stability Analysis of the Steady and Periodic Cylinder Wake
,”
J. Fluid Mech.
,
270
(-
1
), pp.
297
330
.10.1017/S0022112094004283
182.
Zhang
,
H.-Q.
,
Fey
,
U.
,
Noack
,
B. R.
,
König
,
M.
, and
Eckelmann
,
H.
,
1995
, “
On the Transition of the Cylinder Wake
,”
Phys. Fluids
,
7
(
4
), pp.
779
794
.10.1063/1.868601
183.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.10.1146/annurev.fl.28.010196.002401
184.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzyński
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
,
2003
, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
, pp.
335
363
.10.1017/S0022112003006694
185.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett.
,
75
(
5
), pp.
750
756
.10.1209/epl/i2006-10168-7
186.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.10.1017/S0022112007005654
187.
Bagheri
,
S.
,
2013
, “
Koopman-Mode Decomposition of the Cylinder Wake
,”
J. Fluid Mech.
,
726
, pp.
596
623
.10.1017/jfm.2013.249
188.
Mantič-Lugo
,
V.
,
Arratia
,
V.
, and
Gallaire
,
F.
,
2014
, “
Self-Consistent Mean Flow Description of the Nonlinear Saturation of the Vortex Shedding in the Cylinder Wake
,”
Phys. Rev. Lett.
,
113
(
8
).10.1103/PhysRevLett.113.084501
189.
Meliga
,
P.
,
Boujo
,
E.
, and
Gallaire
,
F.
,
2016
, “
A Self-Consistent Formulation for the Sensitivity Analysis of Finite-Amplitude Vortex Shedding in the Cylinder Wake
,”
J. Fluid Mech.
,
800
, pp.
327
357
.10.1017/jfm.2016.390
190.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Basu
,
A. J.
,
2002
, “
On Self-Sustained Oscillations in Two-Dimensional Compressible Flow Over Rectangular Cavities
,”
J. Fluid Mech.
,
455
, pp.
315
346
.10.1017/S0022112001007534
191.
Barbagallo
,
A.
,
Sipp
,
D.
, and
Schmid
,
P. J.
,
2009
, “
Closed-Loop Control of an Open Cavity Flow Using Reduced-Order Models
,”
J. Fluid Mech.
,
641
, pp.
1
50
.10.1017/S0022112009991418
192.
Meliga
,
P.
,
2017
, “
Harmonics Generation and the Mechanics of Saturation in Flow Over an Open Cavity: A Second-Order Self-Consistent Description
,”
J. Fluid Mech.
,
826
, pp.
503
521
.10.1017/jfm.2017.439
193.
Callaham
,
J. L.
,
Brunton
,
S. L.
, and
Loiseau
,
J.-C.
,
2022
, “
On the Role of Nonlinear Correlations in Reduced-Order Modeling
,”
J. Fluid Mech.
,
938
, pp. A1-1–A1-34.10.1017/jfm.2021.994
194.
Chauvat
,
G.
,
Peplinski
,
A.
,
Henningson
,
D. S.
, and
Hanifi
,
A.
,
2020
, “
Global Linear Analysis of a Jet in Cross-Flow at Low Velocity Ratios
,”
J. Fluid Mech.
,
889
.10.1017/jfm.2020.85
195.
Barkley
,
D.
,
Tuckerman
,
L. S.
, and
Golubitsky
,
M.
,
2000
, “
Bifurcation Theory for Three-Dimensional Flow in the Wake of a Circular Cylinder
,”
Phys. Rev. E
,
61
(
5
), pp.
5247
5252
.10.1103/PhysRevE.61.5247
196.
Libchaber
,
A.
,
Laroche
,
C.
, and
Fauve
,
S.
,
1982
, “
Period Doubling Cascade in Mercury, a Quantitative Measurement
,”
J. Phys. Lett.
,
43
(
7
), pp.
211
216
.10.1051/jphyslet:01982004307021100
197.
Buzug
,
T.
,
von Stamm
,
J.
, and
Pfister
,
G.
,
1993
, “
Characterization of Period-Doubling Scenarios in Taylor-Couette Flow
,”
Phys. Rev. E
,
47
(
2
), pp.
1054
1065
.10.1103/PhysRevE.47.1054
198.
Kreilos
,
T.
, and
Eckhardt
,
B.
,
2012
, “
Periodic Orbits Near Onset of Chaos in Plane Couette Flow
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
22
(
4
), p.
047505
.10.1063/1.4757227
199.
Lustro
,
J. R. T.
,
Kawahara
,
G.
,
van Veen
,
L.
,
Shimizu
,
M.
, and
Kokubu
,
H.
,
2019
, “
The Onset of Transient Turbulence in Minimal Plane Couette Flow
,”
J. Fluid Mech.
,
862
.10.1017/jfm.2018.971
200.
Daly
,
C.
,
Schneider
,
T. M.
,
Schlatter
,
P.
, and
Peake
,
N.
,
2014
, “
Secondary Instability and Tertiary States in Rotating Plane Couette Flow
,”
J. Fluid Mech.
,
761
, pp.
27
61
.10.1017/jfm.2014.609
201.
Neimark
,
J.
,
1959
, “
On Some Cases of Periodic Motions Depending on Parameters
,”
Dokl. Akad. Nauk SSSR
,
129
(
4
), pp.
736
739
.
202.
Sacker
,
R. J.
,
1964
,
On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations
,
New York University
, New York.
203.
Arnold
,
V. I.
,
2012
,
Geometrical Methods in the Theory of Ordinary Differential Equations
, Vol.
250
,
Springer Science & Business Media
, Berlin.
204.
Pikovsky
,
A.
,
Rosenblum
,
M.
, and
Kurths
,
J.
,
2001
, “
A Universal Concept in Nonlinear Sciences
,”
Self
,
2
, p.
3
.https://www.cambridge.org/in/academic/subjects/physics/nonlinear-science-and-fluiddynamics/synchronization-universal-concept-nonlinear-sciences?format=PB&isbn=9780521533522
205.
Berge
,
P.
,
Pomeau
,
Y.
, and
Vidal
,
C.
,
1987
,
Order Within Chaos
,
Wiley
, Hoboken, NJ.
206.
Leclercq
,
C.
,
Demourant
,
F.
,
Poussot-Vassal
,
C.
, and
Sipp
,
D.
,
2019
, “
Linear Iterative Method for Closed-Loop Control of Quasiperiodic Flows
,”
J. Fluid Mech.
,
868
, pp.
26
65
.10.1017/jfm.2019.112
207.
Gollub
,
J.
, and
Benson
,
S.
,
1980
, “
Many Routes to Turbulent Convection
,”
J. Fluid Mech.
,
100
(
3
), pp.
449
470
.10.1017/S0022112080001243
208.
Swinney
,
H. L.
,
1983
, “
Observations of Order and Chaos in Nonlinear Systems
,”
Phys. D: Nonlinear Phenom.
,
7
(
1–3
), pp.
3
15
.10.1016/0167-2789(83)90111-2
209.
Argyris
,
J.
,
Faust
,
G.
, and
Haase
,
M.
,
1993
, “
Routes to Chaos and Turbulence. A Computational Introduction
,”
Philos. Trans. R. Soc. London. Ser. A
,
344
(
1671
), pp.
207
234
.10.1098/rsta.1993.0088
210.
Eckmann
,
J.-P.
,
1981
, “
Roads to Turbulence in Dissipative Dynamical Systems
,”
Rev. Mod. Phys.
,
53
(
4
), pp.
643
654
.10.1103/RevModPhys.53.643
211.
Broomhead
,
D. S.
, and
King
,
G. P.
,
1986
, “
Extracting Qualitative Dynamics From Experimental Data
,”
Phys. D
,
20
(
2–3
), pp.
217
236
.10.1016/0167-2789(86)90031-X
212.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence
,”
Lecture Notes in Mathematics
,
Springer Berlin, Heidelberg
, pp.
366
381
.
213.
Grassberger
,
P.
, and
Procaccia
,
I.
,
2004
, “
Measuring the Strangeness of Strange Attractors
,”
The Theory of Chaotic Attractors
,
Springer
, Berlin, pp.
170
189
.
214.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
.10.1016/j.physrep.2006.11.001
215.
Ruelle
,
D.
, and
Takens
,
F.
,
1971
, “
On the Nature of Turbulence
,”
Commun. Math. Phys.
,
20
(
3
), pp.
167
192
.10.1007/BF01646553
216.
Newhouse
,
S.
,
Ruelle
,
D.
, and
Takens
,
F.
,
1978
, “
Occurrence of Strange AxiomA Attractors Near Quasi Periodic Flows on
T m , m 3,”
Commun. Math. Phys.
,
64
(
1
), pp.
35
40
.10.1007/BF01940759
217.
Kaneko
,
K.
,
1984
, “
Fates of Three-Torus. I: Double Devil's Staircase in Lockings
,”
Prog. Theor. Phys.
,
71
(
2
), pp.
282
294
.10.1143/PTP.71.282
218.
Guzman
,
A.
, and
Amon
,
C.
,
1994
, “
Transition to Chaos in Converging–Diverging Channel Flows: Ruelle–Takens–Newhouse Scenario
,”
Phys. Fluids
,
6
(
6
), pp.
1994
2002
.10.1063/1.868206
219.
Coles
,
D.
,
1965
, “
Transition in Circular Couette Flow
,”
J. Fluid Mech.
,
21
(
3
), pp.
385
425
.10.1017/S0022112065000241
220.
Canton
,
J.
,
Schlatter
,
P.
, and
Örlü
,
R.
,
2016
, “
Modal Instability of the Flow in a Toroidal Pipe
,”
J. Fluid Mech.
,
792
, pp.
894
909
.10.1017/jfm.2016.104
221.
Oteski
,
L.
,
Duguet
,
Y.
,
Pastur
,
L.
, and
Le Quéré
,
P.
,
2015
, “
Quasiperiodic Routes to Chaos in Confined Two-Dimensional Differential Convection
,”
Phys. Rev. E
,
92
(
4
), p.
043020
.10.1103/PhysRevE.92.043020
222.
Pomeau
,
Y.
, and
Manneville
,
P.
,
1980
, “
Intermittent Transition to Turbulence in Dissipative Dynamical Systems
,”
Commun. Math. Phys.
,
74
(
2
), pp.
189
197
.10.1007/BF01197757
223.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
224.
Doedel
,
E.
,
1986
, “
Software for Continuation and Bifurcation Problems in Ordinary Differential Equations
,”
Applied Mathematics Report
,
California Institute of Technology
, Pasadena, CA, Report.
225.
Doedel
,
E. J.
,
1981
, “
Auto: A Program for the Automatic Bifurcation Analysis of Autonomous Systems
,”
Congr. Numer
,
30
(
265–284
), pp.
25
93
.
226.
Uecker
,
H.
,
2019
, “
Hopf Bifurcation and Time Periodic Orbits With pde2path–Algorithms and Applications
,”
Commun. Comput. Phys.
,
25
(
3
), pp.
812
852
.10.4208/cicp.OA-2017-0181
227.
Uecker
,
H.
,
2021
,
Numerical Continuation and Bifurcation in Nonlinear PDEs
,
SIAM, Philadelphia, PA
.
228.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y. A.
,
2003
, “
MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Software (TOMS
),
29
(
2
), pp.
141
164
.10.1145/779359.779362
229.
Clewley
,
R. H.
,
Sherwood
,
W.
,
LaMar
,
M.
,
Guckenheimer
,
J.
,
2007
, “
PyDSTool, a Software Environment for Dynamical Systems Modeling
,” accessed Feb. 6, 2023, http://pydstool.sourceforge.net
230.
Veltz
,
R.
,
2020
, “
BifurcationKit.jl
,” HAL, accessed Feb. 6, 2023, https://hal.archives-ouvertes.fr/hal-02902346
231.
Stewart
,
G. W.
,
2002
, “
A Krylov-Schur Algorithm for Large Eigenproblems
,”
SIAM J. Matrix Anal. Appl.
,
23
(
3
), pp.
601
614
.10.1137/S0895479800371529
232.
Loiseau
,
J.-C.
,
Bucci
,
M. A.
,
Cherubini
,
S.
, and
Robinet
,
J.-C.
,
2018
, “
Time-Stepping and Krylov Methods for Large-Scale Instability Problems
,”
Computational Modelling of Bifurcations and Instailities in Fluid Dynamics
(Computational Methods in Applied Sciences),
A.
Gelfgat
, ed.,
Springer International Publishing
,
Cham
, pp.
33
73
.
233.
Stewart
,
G.
,
2000
, “
The Decompositional Approach to Matrix Computation
,”
Comput Sci Eng
,
2
(
1
), pp.
50
59
.10.1109/5992.814658
234.
Arnoldi
,
W. E.
,
1951
, “
The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem
,”
Q. Appl. Math.
,
9
(
1
), pp.
17
29
.10.1090/qam/42792
235.
Krylov
,
A.
,
1931
, “
On the Numerical Solution of Equation by Which Are Determined in Technical Problems the Frequencies of Small Vibrations of Material Systems
,”
News Acad. Sci. USSR
,
7
, pp.
491
539
.
236.
Paige
,
C. C.
, and
Saunders
,
M. A.
,
1975
, “
Solution of Sparse Indefinite Systems of Linear Equations
,”
SIAM J. Numer. Anal.
,
12
(
4
), pp.
617
629
.10.1137/0712047
237.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
856
869
.10.1137/0907058
238.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, Vol.
82
,
SIAM
, Philadelphia, PA.
239.
Balay
,
S.
,
Gropp
,
W. D.
,
McInnes
,
L. C.
, and
Smith
,
B. F.
,
1997
, “
Efficient Management of Parallelism in Object Oriented Numerical Software Libraries
,”
Modern Software Tools in Scientific Computing
,
E.
Arge
,
A. M.
Bruaset
, and
H. P.
Langtangen
, eds.,
Birkhäuser Press
, Switzerland, pp.
163
202
.
240.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M. F.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Dalcin
,
L.
, et al.,
2021
, “
PETSc Users Manual
,”
Argonne National Laboratory
, Report No. ANL-95/11 - Revision 3.15.
241.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M. F.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Dalcin
,
L.
, et al.,
2021
, “
PETSc Web Page
,” accessed Feb. 6, 2023, https://www.mcs.anl.gov/petsc
242.
Trilinos Project Team, T.
, “
The Trilinos Project Website
”.
243.
Kelley
,
C. T.
,
Kevrekidis
,
I.
, and
Qiao
,
L.
,
2004
, “
Newton-Krylov Solvers for Time-Steppers
,” preprint
math/0404374
.10.48550/arXiv.math/0404374
244.
Gibson
,
J. F.
,
Halcrow
,
J.
, and
Cvitanović
,
P.
,
2008
, “
Visualizing the Geometry of State Space in Plane Couette Flow
,”
J. Fluid Mech.
,
611
, pp.
107
130
.10.1017/S002211200800267X
245.
Citro
,
V.
,
Luchini
,
P.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2017
, “
Efficient Stabilization and Acceleration of Numerical Simulation of Fluid Flows by Residual Recombination
,”
J. Comput. Phys.
,
344
, pp.
234
246
.10.1016/j.jcp.2017.04.081
246.
Van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.10.1137/0913035
247.
Sonneveld
,
P.
, and
Van Gijzen
,
M. B.
,
2009
, “
IDR (s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations
,”
SIAM J. Sci. Comput
,
31
(
2
), pp.
1035
1062
.10.1137/070685804
248.
Tuckerman
,
L. S.
,
Langham
,
J.
, and
Willis
,
A.
,
2019
, “
Order-of-Magnitude Speedup for Steady States and Traveling Waves Via Stokes Preconditioning in Channelflow and Openpipeflow
,”
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics
,
Springer
, Berlin, pp.
3
31
.
249.
Sánchez
,
J.
, and
Net
,
M.
,
2010
, “
On the Multiple Shooting Continuation of Periodic Orbits by Newton–Krylov Methods
,”
Int. J. Bifurcat. Chaos
,
20
(
1
), pp.
43
61
.10.1142/S0218127410025399
250.
Shaabani-Ardali
,
L.
,
Sipp
,
D.
, and
Lesshafft
,
L.
,
2017
, “
Time-Delayed Feedback Technique for Suppressing Instabilities in Time-Periodic Flow
,”
Phys. Rev. Fluids
,
2
(
11
), p.
113904
.10.1103/PhysRevFluids.2.113904
251.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2009
,
High-Order Methods for Incompressible Fluid Flow (Cambridge Monographs on Applied and Computational Mathematics)
,
Cambridge University Press, Cambridge, UK
.
252.
Casacuberta
,
J.
,
Groot
,
K. J.
,
Tol
,
H. J.
, and
Hickel
,
S.
,
2018
, “
Effectivity and Efficiency of Selective Frequency Damping for the Computation of Unstable Steady-State Solutions
,”
J. Comput. Phys.
,
375
, pp.
481
497
.10.1016/j.jcp.2018.08.056
253.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.10.1016/0375-9601(92)90745-8
254.
Kumar
,
B.
, and
Mittal
,
S.
,
2006
, “
Effect of Blockage on Critical Parameters for Flow Past a Circular Cylinder
,”
Int. J. Numer Methods Fluids
,
50
(
8
), pp.
987
1001
.10.1002/fld.1098
255.
Pier
,
B.
,
2013
, “
Periodic and Quasiperiodic Vortex Shedding in the Wake of a Rotating Sphere
,”
J. Fluids Struct.
,
41
, pp.
43
50
.10.1016/j.jfluidstructs.2012.09.002
256.
Bottaro
,
A.
,
Corbett
,
P.
, and
Luchini
,
P.
,
2003
, “
The Effect of Base Flow Variation on Flow Stability
,”
J. Fluid Mech.
,
476
, pp.
293
302
.10.1017/S002211200200318X
257.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
,
1990
, “
On the Formation and Suppression of Vortex “Shedding'at Low Reynolds Numbers
,”
J. Fluid Mech.
,
218
(
-1
), pp.
71
107
.10.1017/S0022112090000933
258.
Giannetti
,
F.
,
Camarri
,
S.
, and
Citro
,
V.
,
2019
, “
Sensitivity Analysis and Passive Control of the Secondary Instability in the Wake of a Cylinder
,”
J. Fluid Mech.
,
864
, pp.
45
72
.10.1017/jfm.2019.17
259.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
, Hoboken, NJ.
260.
Giannetti
,
F.
,
Camarri
,
S.
, and
Luchini
,
P.
,
2010
, “
Structural Sensitivity of the Secondary Instability in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
651
, pp.
319
337
.10.1017/S0022112009993946
261.
Barkley
,
D.
,
2005
, “
Confined Three-Dimensional Stability Analysis of the Cylinder Wake
,”
Phys. Rev. E
,
71
(
1
), p.
017301
.10.1103/PhysRevE.71.017301
262.
Canton
,
J.
,
Chauvat
,
G.
,
Fabbiane
,
N.
,
Mohanan
,
A. V.
,
2020
, “
Pymech: Python Package for Nek5000 and Simson
,” accessed Feb. 6, 2023, https://github.com/eX-Mech/pymech
263.
Barkley
,
D.
, and
Tuckerman
,
L. S.
,
1997
, “
Stokes Preconditioning for the Inverse Power Method
,”
Fifteenth International Conference on Numerical Methods in Fluid Dynamics
, Vol.
490
,
Springer
,
Berlin Heidelberg
, pp.
75
76
.
264.
Tuckerman
,
L.
,
Bertagnolio
,
F.
,
Daube
,
O.
,
Quéré
,
P. L.
,
Barkley
,
D.
,
Henry
,
D.
, and
Bergeon
,
A.
,
2000
, “
Stokes Preconditioning for the Inverse Arnoldi Method
,”
Notes Numer. Fluid Mech.
,
74
, pp.
241
256
.https://blog.espci.fr/laurette/files/2018/01/aussois.pdf
265.
Brynjell-Rahkola
,
M.
,
Tuckerman
,
L. S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2017
, “
Computing Optimal Forcing Using Laplace Preconditioning
,”
Commun. Comput. Phys.
,
22
(
5
), pp.
1508
1532
.10.4208/cicp.OA-2016-0070
266.
Gelfgat
,
A.
,
2019
, “
On Acceleration of Krylov-Subspace-Based Newton and Arnoldi Iterations for Incompressible CFD: Replacing Time Steppers and Generation of Initial Guess
,”
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics (
Computational Methods in Applied Sciences),
A.
Gelfgat
, ed.,
Springer International Publishing
,
Cham
, pp.
147
167
.
267.
Brynjell-Rahkola
,
M.
,
2017
, “
Studies on Instability and Optimal Forcing of Incompressible Flows
,”
Ph.D. thesis
,
KTH Royal Institute of Technology, Stockholm, Sweden
.http://www.divaportal.org/smash/get/diva2:1159852/FULLTEXT02.pdf
268.
Alizard
,
F.
,
2007
, “
Etude de stabilité linéaire globale d'écoulement fortement décollé de couche limite de plaque plane
,” Ph.D. thesis,
École Nationale Supérieure d'Arts et Métiers (ENSAM)
,
Paris, France
.
269.
Cherubini
,
S.
,
2010
, “
Linear and Non-Linear Global Instability of Attached and Separated Boundary-Layer Flows Over a Flat Plate
,”
Ph.D. thesis
, École Nationale Supérieure d'Arts et Métiers (ENSAM),
Paris, France
.https://www.researchgate.net/publication/48907339_Linear_and_nonlinear_global_instability_of_attached_and_separated_boundary-layer_flows_over_a_flat_plate
270.
Loiseau
,
J.-C.
,
2014
, “
Dynamics and Global Stability Analysis of Three-Dimensional Flows
,”
Ph.D. thesis
,
École Nationale Supérieure d'Arts et Métiers
(ENSAM),
Paris, France
.https://pastel.archives-ouvertes.fr/tel-01177042/document
271.
Bucci
,
M.
,
2017
, “
Subcritical and Supercritical Dynamics of Incompressible Flow Over Miniaturized Roughness Elements
,”
Ph.D. thesis
,
École Nationale Supérieure d'Arts et Métiers
(ENSAM),
Paris, France
.https://www.semanticscholar.org/paper/Subcriticaland-supercritical-dynamics-of-flow-over-Bucci/87cb674ae64ae1a7ede74d8b08d83740b332ba87
272.
Farano
,
M.
,
2017
, “
Using Nonlinear Optimization to Understand Coherent Structures in Turbulence and Transition
,”
Ph.D. thesis
,
École Nationale Supérieure d'Arts et Métiers
(ENSAM),
Paris, France
.https://www.researchgate.net/publication/327929327_Using_nonlinear_optimization_to_understand_coherent_structures_in_turbulence_and_transition
273.
Picella
,
F.
,
2019
, “
Retarder la transition vers la turbulence en imitant les feuilles de lotus
,” Ph.D. thesis,
École Nationale Supérieure d'Arts et Métiers (ENSAM)
,
Paris, France
.
274.
Frantz
,
R.
,
2022
, “
Instabilities and Transition to Turbulence in Periodic Flows
,”
Ph.D. thesis
,
École Nationale Supérieure d'Arts et Métiers
(ENSAM),
Paris, France
.https://www.researchgate.net/publication/362536309_Instabilities_and_transition_to_turbulence_in_periodic_flows
275.
Queguineur
,
M.
,
Gicquel
,
L.
,
Dupuy
,
F.
,
Misdariis
,
A.
, and
Staffelbach
,
G.
,
2019
, “
Dynamic Mode Tracking and Control With a Relaxation Method
,”
Phys. Fluids
,
31
(
3
), p.
034101
.10.1063/1.5085474
276.
Foures
,
D. P.
,
Caulfield
,
C. P.
, and
Schmid
,
P. J.
,
2014
, “
Optimal Mixing in Two-Dimensional Plane Poiseuille Flow at Finite Péclet Number
,”
J. Fluid Mech.
,
748
, pp.
241
277
.10.1017/jfm.2014.182
277.
Farano
,
M.
,
Cherubini
,
S.
,
Robinet
,
J.-C.
, and
De Palma
,
P.
,
2017
, “
Optimal Bursts in Turbulent Channel Flow
,” Cambridge University Press, Cambridge, UK.10.1017/jfm.2017.107
278.
Farano
,
M.
,
Cherubini
,
S.
,
De Palma
,
P.
, and
Robinet
,
J.-C.
,
2018
, “
Nonlinear Optimal Large-Scale Structures in Turbulent Channel Flow
,”
Eur. J. Mech. B
,
72
, pp.
74
86
.10.1016/j.euromechflu.2018.04.016
279.
Benettin
,
G.
,
Galgani
,
L.
,
Giorgilli
,
A.
, and
Strelcyn
,
J.-M.
,
1980
, “
Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; a Method for Computing All of Them. Part 1: Theory
,”
Meccanica
,
15
(
1
), pp.
9
20
.10.1007/BF02128236
280.
Geist
,
K.
,
Parlitz
,
U.
, and
Lauterborn
,
W.
,
1990
, “
Comparison of Different Methods for Computing Lyapunov Exponents
,”
Prog. Theor. Phys.
,
83
(
5
), pp.
875
893
.10.1143/PTP.83.875
You do not currently have access to this content.