Abstract

Origami-inspired systems are attractive for creating structures and devices with tunable properties, multiple functionalities, high-ratio packaging capabilities, easy fabrication, and many other advantageous properties. Over the past decades, the community has developed a variety of simulation techniques to analyze the kinematic motions, mechanical properties, and multiphysics characteristics of origami systems. These various simulation techniques are formulated with different assumptions and are often tailored to specific origami designs. Thus, it is valuable to systematically review the state-of-the-art in origami simulation techniques. This review presents the formulations of different origami simulations, discusses their strengths and weaknesses, and identifies the potential application scenarios of different simulation techniques. The material presented in this work aims to help origami researchers better appreciate the formulations and underlying assumptions within different origami simulation techniques, and thereby enable the selection and development of appropriate origami simulations. Finally, we look ahead at future challenges in the field of origami simulation.

References

1.
Wootton
,
R. J.
,
1981
, “
Support and Deformability in Insect Wings
,”
J. Zool.
,
193
(
4
), pp.
447
468
.10.1111/j.1469-7998.1981.tb01497.x
2.
Dobson
,
C. M.
,
2003
, “
Protein Folding and Misfolding
,”
Nature
,
426
(
6968
), pp.
884
890
.10.1038/nature02261
3.
Fang
,
H.
,
Li
,
S.
, and
Wang
,
K.
,
2016
, “
Self-Locking Degree-4 Vertex Origami Structures
,”
Proc. R. Soc. A
,
472
(
2195
), p.
20160682
.10.1098/rspa.2016.0682
4.
Fang
,
H.
,
Chu
,
S.-C. A.
,
Xia
,
Y.
, and
Wang
,
K.-W.
,
2018
, “
Programmable Self-Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
.10.1002/adma.201706311
5.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.10.1073/pnas.1217998110
6.
Wang
,
H.
,
Zhao
,
D.
,
Jin
,
Y.
,
Wang
,
M.
,
Mukhopadhyay
,
T.
, and
You
,
Z.
,
2020
, “
Modulation of Multi-Directional Auxeticity in Hybrid Origami Metamaterials
,”
Appl. Mater. Today
,
20
, p.
100715
.10.1016/j.apmt.2020.100715
7.
Overvelde
,
J. T.
,
de Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
(
1
), p.
10929
.10.1038/ncomms10929
8.
Cheung
,
K. C.
,
Tachi
,
T.
,
Calisch
,
S.
, and
Miura
,
K.
,
2014
, “
Origami Interleaved Tube Cellular Materials
,”
Smart Mater. Struct.
,
23
(
9
), p.
094012
.10.1088/0964-1726/23/9/094012
9.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), p.
1700360
.10.1002/adma.201700360
10.
Lv
,
C.
,
Krishnaraju
,
D.
,
Konjevod
,
G.
,
Yu
,
H.
, and
Jiang
,
H.
,
2015
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
,
4
(
1
), p.
5979
.10.1038/srep05979
11.
An
,
B.
,
Benbernou
,
N.
,
Demain
,
E. D.
, and
Rus
,
D.
,
2011
, “
Planning to Fold Multiple Objects From a Single Self-Folding Sheet
,”
Robotica
,
29
(
1
), pp.
87
102
.10.1017/S0263574710000731
12.
An
,
B.
, and
Rus
,
D.
,
2014
, “
Designing and Programming Self-Folding Sheets
,”
Rob. Auton. Syst.
,
62
(
7
), pp.
976
1001
.10.1016/j.robot.2013.06.015
13.
An
,
B.
,
Miyashita
,
S.
,
Ong
,
A.
,
Tolley
,
M. T.
,
Demaine
,
M. L.
,
Demaine
,
E. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2018
, “
An End-to-End Approach to Self-Folding Origami Structures
,”
IEEE Trans. Rob.
,
34
(
6
), pp.
1409
1424
.10.1109/TRO.2018.2862882
14.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.10.1126/science.1252610
15.
Li
,
S.
,
Vogt
,
D. M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2017
, “
Fluid-Driven Origami-Inspired Artificial Muscles
,”
Proc. Natl. Acad. Sci.
,
114
(
50
), pp.
13132
13137
.10.1073/pnas.1713450114
16.
Onal
,
C. D.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2015
, “
Origami-Inspired Printed Robots
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2214
2221
.10.1109/TMECH.2014.2369854
17.
Miyashita
,
S.
,
Guitron
,
S.
,
Ludersdorfer
,
M.
,
Sung
,
C. R.
, and
Rus
,
D.
,
2015
, “
An Untethered Miniature Origami Robot That Self-Folds, Walks, Swims, and Degrades
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1490
1496
.10.1109/ICRA.2015.7139386
18.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
19.
Na
,
J.-H.
,
Evans
,
A. A.
,
Bae
,
J.
,
Chiappelli
,
M. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hull
,
T. C.
, and
Hayward
,
R. C.
,
2015
, “
Programming Reversibly Self-Folding Origami With Micropatterned Photo-Crosslinkable Polymer Trilayers
,”
Adv. Mater.
,
27
(
1
), pp.
79
85
.10.1002/adma.201403510
20.
Kang
,
J.-H.
,
Kim
,
H.
,
Santangelo
,
C. D.
, and
Hayward
,
R. C.
,
2019
, “
Enabling Robust Self-Folding Origami by Pre-Biasing Buckling Direction
,”
Adv. Mater.
,
31
(
39
), p.
0193006
.10.1002/adma.201903006
21.
Zhu
,
Y.
,
Mayur
,
B.
,
Oldham
,
K. R.
, and
Filipov
,
E. T.
,
2020
, “
Elastically and Plastically Foldable Electro-Thermal Micro-Origami for Controllable and Rapid Shape Morphing
,”
Adv. Funct. Mater.
,
30
(
40
), p.
2003741
.10.1002/adfm.202003741
22.
Liu
,
Q.
,
Wang
,
W.
,
Reynolds
,
M. F.
,
Cao
,
M. C.
,
Miskin
,
M. Z.
,
Arias
,
T. A.
,
Muller
,
D. A.
,
McEuen
,
P. L.
, and
Cohen
,
I.
,
2021
, “
Micrometer-Sized Electrically Programmable Shape-Memory Actuators for Low-Power Microrobotics
,”
Sci. Rob.
,
6
(
52
), p.
eabe6663
.10.1126/scirobotics.abe6663
23.
Breger
,
J. C.
,
Yoon
,
C.
,
Xiao
,
R.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2015
, “
Self-Folding Thermo-Magnetically Responsive Soft Microgrippers
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3398
3405
.10.1021/am508621s
24.
Yoon
,
C.
,
Xiao
,
R.
,
Park
,
J.
,
Cha
,
J.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2014
, “
Functional Stimuli Responsive Hydrogel Devices by Self-Folding
,”
Smart Mater. Struct.
,
23
(
9
), p.
094008
.10.1088/0964-1726/23/9/094008
25.
Bassik
,
N.
,
Stern
,
G. M.
, and
Gracias
,
D. H.
,
2009
, “
Microassembly Based on Hands Free Origami With Bidirectional Curvature
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091901
.10.1063/1.3212896
26.
Leong
,
T. G.
,
Randall
,
C. L.
,
Benson
,
B. R.
,
Bassik
,
N.
,
Stern
,
G. M.
, and
Gracias
,
D. H.
,
2009
, “
Tetherless Thermaobiochemically Actuated Microgrippers
,”
Proc. Natl. Acad. Sci.
,
106
(
3
), pp.
703
708
.10.1073/pnas.0807698106
27.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng.: A
,
419
(
1–2
), pp.
131
137
.10.1016/j.msea.2005.12.016
28.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci.
,
40
(
112
), pp.
12321
12326
.10.1073/pnas.1509465112
29.
Melancon
,
D.
,
Gorissen
,
B.
,
Garcia-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.10.1038/s41586-021-03407-4
30.
Liu
,
X.
,
Gattas
,
J. M.
, and
Chen
,
Y.
,
2016
, “
One-DOF Superimposed Rigid Origami With Multiple States
,”
Sci. Rep.
,
6
(
1
), p.
36883
.10.1038/srep36883
31.
Babilio
,
E.
,
Miranda
,
R.
, and
Fraternali
,
F.
,
2019
, “
On the Kinematics and Actuation of Dynamic Sunscreens With Tensegrity Architecture
,”
Front. Mater.
,
6
, p.
7
.10.3389/fmats.2019.00007
32.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
.10.1115/1.4032102
33.
Kaddour
,
A.-S.
,
Velez
,
C. A.
,
Hamza
,
M.
,
Brown
,
N.
,
Ynchausti
,
C.
,
Magleby
,
S. P.
,
Howell
,
L.
, and
Georgakopoulos
,
S. V.
,
2020
, “
A Foldable and Reconfigurable Monolithic Reflect Array for Space Application
,”
IEEE Access
,
8
, pp.
219355
219366
.10.1109/ACCESS.2020.3042949
34.
Wilson
,
L.
,
Pellegrino
,
S.
, and
Danner
,
R.
,
2013
, “
Origami Sunshield Concepts for Space Telescopes
,”
Structures, Structural Dynamics, and Materials and Co-Located Conferences
, Boston, MA, April 8–11, p. 12.10.2514/6.2013-1594
35.
Seymour
,
K.
,
Burrow
,
D.
,
Avila
,
A.
,
Bateman
,
T.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Origami Based Deployable Ballistic Barrier
,”
Origami 7
, Tarquin, St Albans, UK, pp.
763
778
.https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3923&context=facpub
36.
Tolman
,
K.
,
Crampton
,
E.
,
Stucki
,
C.
,
Maynes
,
D.
, and
Howell
,
L. L.
,
2018
, “
Design of an Origami-Inspired Deployable Aerodynamic Locomotive Fairing
,”
Origami 7
, Tarquin, St Albans, UK, pp.
669
684
.https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3922&context=facpub
37.
DeFigueiredo
,
B. P.
,
Pehrson
,
N. A.
,
Tolman
,
K. A.
,
Crampton
,
E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Origami-Based Design of Conceal-and-Reveal Systems
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020904
.10.1115/1.4042427
38.
Nauroze
,
S. A.
, and
Tentzeris
,
M. M.
,
2019
, “
A Thermally Actuated Fully Inkjet-Printed Origami Inspired Multilayer Frequency Selective Surface With Continuous-Range Tunability Using Polyester-Based Substrates
,”
IEEE Trans. Microwave Theory Tech.
,
67
(
12
), pp.
4944
4954
.10.1109/TMTT.2019.2946074
39.
Nauroze
,
S. A.
,
Novelino
,
L. S.
,
Tentzeris
,
M. M.
, and
Paulino
,
G. H.
,
2018
, “
Continuous-Range Tunable Multilayer Frequency-Selective Surfaces Using Origami and Inkjet Printing
,”
Proc. Natl. Acad. Sci.
,
115
(
52
), pp.
13210
13215
.10.1073/pnas.1812486115
40.
Babaee
,
S.
,
Overvelde
,
J. T. B.
,
Chen
,
E. R.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2016
, “
Reconfigurable Origami-Inspired Acoustic Wave Guides
,”
Sci. Adv.
,
2
(
11
), p.
e1601019
.10.1126/sciadv.1601019
41.
Balkcom
,
D. J.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Ochsendorf
,
J. A.
, and
You
,
Z.
,
2009
, “
Folding Paper Shopping Bags
,”
Origami 4
, A K Peters, Natick, MA, pp.
315
334
.
42.
Liu
,
C.
, and
Felton
,
S. M.
,
2018
, “
Transformation Dynamics in Origami
,”
Phys. Rev. Lett.
,
121
(
25
), p.
254101
.10.1103/PhysRevLett.121.254101
43.
Li
,
S.
, and
Wang
,
K. W.
,
2015
, “
Fluidic Origami: A Plant-Inspired Adaptive Structure With Shape Morphing and Stiffness Tuning
,”
Smart Mater. Struct.
,
24
(
10
), p.
105031
.10.1088/0964-1726/24/10/105031
44.
Rogers
,
J.
,
Huang
,
Y.
,
Schmidt
,
O. G.
, and
Gracias
,
D. H.
,
2016
, “
Origami MEMS and NEMS
,”
MRS Bull.
,
41
(
2
), pp.
123
129
.10.1557/mrs.2016.2
45.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K.-W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.10.1002/adma.201805282
46.
Quinones
,
V. A. B.
,
Zhu
,
H.
,
Solovev
,
A. A.
,
Mei
,
Y.
, and
Gracias
,
D. H.
,
2018
, “
Origami Biosystems: 3D Assembly Methods for Biomedical Applications
,”
Adv. Biosyst.
,
2
(
12
), p.
1800230
.10.1002/adbi.201800230
47.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.10.1038/s41578-018-0009-8
48.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Lee
,
D. S.-H.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.10.1002/advs.202000636
49.
Lebee
,
A.
,
2015
, “
From Folds to Structures, A Review
,”
Int. J. Space Struct.
,
30
(
2
), pp.
55
74
.10.1260/0266-3511.30.2.55
50.
Lang
,
R.
,
2018
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
, Boca Raton, FL.
51.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.10.1109/TC.1976.1674542
52.
Resch
,
R.
, and
Christiansen
,
H. N.
,
1970
, “
Kinematic Folded Plate System
,”
Proceedings of IASS Symposium on Folded Plates and Prismatic Structures
, Vienna, Austria, Sept./Oct.
53.
Kawasaki
,
T.
, and
Yoshida
,
M.
,
1988
, “
Crystallographic Flat Origamis
,”
Mem. Fac. Sci., Kyushu Univ.
,
42
(
2
), pp.
153
157
.10.2206/kyushumfs.42.153
54.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
Proceedings of First International Meeting Origami of Science and Technology
, Universita di Padova, Italy, Dec. 6–7, pp.
153
157
.
55.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
1–3
), pp.
273
282
.10.1016/S0024-3795(01)00608-5
56.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami 4
,
CRC Press/Caltech
,
Pasadena, CA
, pp.
175
187
.10.1201/b10653-20
57.
Mitani
,
J.
,
2008
, “
The Folded Shape Restoration and the Rendering Method of Origami From the Crease Pattern
,”
13th International Conference on Geometry and Graphics
, Dresden, Germany, Aug. 4–10, p.
7
.https://www.semanticscholar.org/paper/THE-FOLDEDSHAPE-RESTORATION-AND-THE-RENDERING-OF-Mitani/c13b3aecbc4ab63472e90409f2111519c93e5526
58.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
.10.1115/1.2901554
59.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
.10.1115/1.2787212
60.
Yang
,
N.
, and
Silverberg
,
J. L.
,
2017
, “
Decoupling Local Mechanics From Large-Scale Structure in Modular Metamaterials
,”
Proc. Natl. Acad. Sci.
,
114
(
14
), pp.
3590
3595
.10.1073/pnas.1620714114
61.
Schenk
,
M.
, and
Guest
,
S. D.
,
2010
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5
,
CRC Press
,
Singapore
, pp.
293
305
.http://www.markschenk.com/research/files/schenk2010-5OSME.pdf
62.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.10.1103/PhysRevLett.110.215501
63.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A
,
473
(
2206
), p.
20170348
.10.1098/rspa.2017.0348
64.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2021
, “
Rapid Multi-Physics Simulation for Electro-Thermal Origami Systems
,”
Int. J. Mech. Sci.
,
202–203
, p.
106537
.10.1016/j.ijmecsci.2021.106537
65.
Hathcock
,
M.
,
Popa
,
B.-I.
, and
Wang
,
K. W.
,
2021
, “
Origami Inspired Phononic Structure With Metamaterial Inclusions for Tunable Angular Wave Steering
,”
J. Appl. Phys.
,
129
(
14
), p.
145103
.10.1063/5.0041503
66.
Dias
,
M. A.
,
Dudte
,
L. H.
,
Mahadevan
,
L.
, and
Santangelo
,
C. D.
,
2012
, “
Geometric Mechanics of Curved Crease Origami
,”
Phys. Rev. Lett.
,
109
(
11
), p.
114301
.10.1103/PhysRevLett.109.114301
67.
Butler
,
J.
,
Pehrson
,
N.
, and
Magleby
,
S.
,
2020
, “
Folding of Thick Origami Through Regionally Sandwiched Compliant Sheets
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011019
.10.1115/1.4045248
68.
Mitani
,
J.
,
2012
, “
ORIPA
,” University of Tsukuba, Tsukuba, Japan, accessed Dec. 2021, https://mitani.cs.tsukuba.ac.jp/oripa/
69.
Lang
,
R. J.
, and
Howell
,
L. L.
,
2018
, “
Rigidly Foldable Quadrilateral Meshes From Angle Arrays
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021004
.10.1115/1.4038972
70.
Evans
,
A. A.
,
Silverberg
,
J. L.
, and
Santangelo
,
C. D.
,
2015
, “
Lattice Mechanics of Origami Tessellations
,”
Phys. Rev. E
,
92
(
1
), p.
013205
.10.1103/PhysRevE.92.013205
71.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.10.1098/rsos.150067
72.
Evans
,
T. A.
,
Lang
,
R. J.
, and
Magleby
,
S. P.
,
2015
, “
Rigidly Foldable Origami Twists
,”
Origami 6
,
American Mathematical Society
, Providence, RI, pp.
119
130
.https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2616&context=facpub
73.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
, pp.
173
179
.https://www.ingentaconnect.com/content/iass/jiass/2009/00000050/00000003/art00009
74.
Hull
,
T.
,
2013
,
Project Origami
,
CRC Press
, Boca Raton, FL.
75.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stankovic
,
T.
,
2020
, “
Conditions for Rigid and Flat Foldability of Degree-n Vertices in Origami
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011020
.10.1115/1.4045249
76.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B. G.
, and
van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
, p.
055503
.10.1103/PhysRevLett.114.055503
77.
Kamrava
,
S.
,
Mousanezhad
,
D.
,
Ebrahimi
,
H.
,
Ghosh
,
R.
, and
Vaziri
,
A.
,
2017
, “
Origami-Based Cellular Metamaterial With Auxetic, Bistable and Self-Locking Properties
,”
Sci. Rep.
,
7
(
1
), p. 46046.10.1038/srep46046
78.
Kamrava
,
S.
,
Mousanezhad
,
D.
,
Felton
,
S. M.
, and
Vaziri
,
A.
,
2018
, “
Programmable Origami Strings
,”
Adv. Mater. Technol.
,
3
(
3
), p.
1700276
.10.1002/admt.201700276
79.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.10.1088/0964-1726/23/9/094009
80.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.10.1126/science.1252876
81.
Yasuda
,
H.
,
Yein
,
T.
,
Tachi
,
T.
,
Miura
,
K.
, and
Taya
,
M.
,
2013
, “
Folding Behaviour of Tachi-Miura Polyhedron Bellows
,”
Proc. R. Soc. A
,
469
(
2159
), p.
20130351
.10.1098/rspa.2013.0351
82.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
.10.1103/PhysRevLett.114.185502
83.
Wu
,
W.
, and
You
,
Z.
,
2011
, “
A Solution for Folding Rigid Tall Shopping Bags
,”
Proc. R. Soc. A
,
467
(
2133
), pp.
2561
2574
.10.1098/rspa.2011.0120
84.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,” Proceedings of the International Association for Shell and Spatial Structures (
IASS
) Symposium, Shanghai, China, Nov. 8–12,
International Association for Shell and Spatial Structures
, p.
12
.https://www.researchgate.net/publication/266354122_Geometric_Considerations_for_the_Design_of_Rigid_Origami_Structures
85.
Hu
,
Y.
, and
Liang
,
H.
,
2020
, “
Folding Simulation of Rigid Origami With Lagrange Multiplier Method
,”
Int. J. Solids Struct.
,
202
, pp.
552
561
.10.1016/j.ijsolstr.2020.06.016
86.
Xi
,
Z.
, and
Lien
,
J.-M.
,
2015
, “
Folding and Unfolding Origami Tessellation by Reusing Folding Path
,” IEEE International Conference on Robotics and Automation (
ICRA
),
Seattle, WA
, May 26–30, pp.
4155
4160
.10.1109/ICRA.2015.7139771
87.
Feng
,
F.
,
Dang
,
X.
,
James
,
R. D.
, and
Plucinsky
,
P.
,
2020
, “
The Designs and Deformations of Rigidly and Flat-Foldable Quadrilateral Mesh Origami
,”
J. Mech. Phys. Solids
,
142
, p.
104018
.10.1016/j.jmps.2020.104018
88.
Peng
,
R.
,
Ma
,
J.
, and
Chen
,
Y.
,
2017
, “
Rigid Foldability of Triangle Twist Origami Pattern and Its Derived 6R Linkage
,”
ASME
Paper No. DETC2017-68063.10.1115/DETC2017-68063
89.
Bowen
,
L. A.
,
Baxter
,
W. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
A Position Analysis of Coupled Spherical Mechanisms Found in Action Origami
,”
Mech. Mach. Theory
,
77
, pp.
13
24
.10.1016/j.mechmachtheory.2014.02.006
90.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.10.1115/1.4025821
91.
Tachi
,
T.
,
2010
, “
Freeform Variations of Origami
,”
J. Geometry Graph.
,
14
(
2
), pp.
203
215
.https://tsg.ne.jp/TT/cg/TachiFreeformOrigami2010.pdf
92.
Demaine
,
E. D.
, and
Tachi
,
T.
,
2017
, “
Origamizer: A Practical Algorithm for Folding Any Polyhedron
,” 33rd International Symposium on Computational Geometry (
SoCG 2017
),
B.
Aronov
, and
M. J.
Katz
, eds.,
Schloss Dagstuhl–Leibniz-Zentrum Fuer Informatik
, Dagstuhl Oublishing, Germany, pp.
34:1
34:16
.https://drops.dagstuhl.de/opus/volltexte/2017/7231/pdf/LIPIcs-SoCG-2017-34.pdf
93.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Visualization Comput. Graph.
,
16
(
2
), pp.
298
311
.10.1109/TVCG.2009.67
94.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111006
.10.1115/1.4025389
95.
Feng
,
F.
,
Plucinsky
,
P.
, and
James
,
R. D.
,
2020
, “
Helical Miura Origami
,”
Phys. Rev. E
,
101
(
3
), p.
033002
.10.1103/PhysRevE.101.033002
96.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.10.1038/nmat4232
97.
Tachi
,
T.
,
2020
, “
Freeform Origami
,” The University of Tokyo, Tokyo, Japan, accessed Dec. 2021, https://tsg.ne.jp/TT/software/index.html
98.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
.10.1098/rspa.2009.0625
99.
Broyles
,
Z.
,
Talbot
,
S.
,
Johnson
,
J.
,
Halverson
,
D. M.
, and
Howell
,
L. L.
,
2020
, “
Unpacking the Mathematics of Modeling Origami Folding Transformations With Quaternions
,” Proceedings for the
USCToMM Symposium on Mechanical Systems and Robotics
, Vol. 83, Springer, Cham, pp.
225
241
.10.1007/978-3-030-43929-3_21
100.
Cai
,
J.
,
Zhang
,
Y.
,
Xu
,
Y.
,
Zhou
,
Y.
, and
Feng
,
J.
,
2016
, “
The Foldability of Cylindrical Foldable Structures Based on Rigid Origami
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031401
.10.1115/1.4032194
101.
Cai
,
J.
,
Liu
,
Y.
,
Ma
,
R.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2017
, “
Nonrigidly Foldability Analysis of Kresling Cylindrical Origami
,”
ASME J. Mech. Rob.
,
9
, p.
041018
.10.1115/1.4036738
102.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
j.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric-Graph-Theoretical Approach to Representing Origami Structures and Their Corresponding Truss Framework
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091402
.10.1115/1.4042791
103.
Hernandez
,
E. P.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2016
, “
Kinematics of Origami Structures With Smooth Folds
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061019
.10.1115/1.4034299
104.
Hernandez
,
E. P.
,
Hartl
,
D. J.
,
Akleman
,
E.
, and
Lagoudas
,
D. C.
,
2016
, “
Modeling and Analysis of Origami Structures With Smooth Folds
,”
Comput.-Aided Des.
,
78
, pp.
93
106
.10.1016/j.cad.2016.05.010
105.
Hernandez
,
E. P.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2017
, “
Analysis and Design of an Active Self-Folding Antenna
,”
ASME
Paper No. DETC2017-67855.10.1115/DETC2017-67855
106.
Hernandez
,
E. A. P.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2017
, “
Design and Simulation of Origami Structures With Smooth Folds
,”
Proc. R. Soc. A
,
473
(
2200
), p.
20160716
.10.1098/rspa.2016.0716
107.
Hur
,
D. Y.
,
Hernandez
,
E. P.
,
Galvan
,
E.
,
Hartl
,
D.
, and
Malak
,
R.
,
2017
, “
Design Optimization of Folding Solar Powered Autonomous Underwater Vehicles Using Origami Architecture
,”
ASME
Paper No. DETC2017-67848.10.1115/DETC2017-67848
108.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.10.1126/science.aab2870
109.
Chen
,
Y.
, and
You
,
Z.
,
2012
, “
Spatial Overconstrained Linkages—The Lost Jade
,”
Explorations in the History of Machines and Mechanisms
, Vol.
15
,
Springer
, Dordrecht, The Netherlands, pp.
535
550
.
110.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.10.1115/1.4035686
111.
Cai
,
J.
,
Qian
,
Z.
,
Jiang
,
C.
,
Feng
,
J.
, and
Xu
,
Y.
,
2016
, “
Kinematic Analysis of Foldable Plate Structures With Rolling Joints
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064502
.10.1115/1.4034578
112.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021106
.10.1115/1.4045940
113.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithm
,
Cambridge University Press
, Cambridge, UK.
114.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2019
, “
Deployable Sandwich Surfaces With High Out-of-Plane Stiffness
,”
J. Struct. Eng.
,
145
(
2
), p.
04018244
.10.1061/(ASCE)ST.1943-541X.0002240
115.
Justin
,
J.
,
1989
, “
Mathematical Aspects of Paper Folding
,”
Proceedings of the First International Meeting of Origami Science and Technology
, Universita di Padova, Italy, Dec. 6–9, pp.
263
277
.
116.
Kasahara
,
K.
, and
Takahama
,
T.
,
1987
,
Origami for the Connoisseur
,
Japan Publications
, JP.
117.
Bern
,
M.
, and
Hayes
,
B.
,
1996
, “
The Complexity of Flat Origami
,” Annual ACM-SIAM Symposium on Discrete Algorithms (
SODA
), Atlanta, GA, Jan. 28–30, pp.
175
183
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.1892&rep=rep1&type=pdf
118.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congr. Numer.
,
100
, pp.
215
224
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.2679&rep=rep1&type=pdf
119.
Mitani
,
J.
, and
Igarashi
,
T.
,
2011
, “
Interactive Design of Planar Curved Folding by Reflection
,”
Pacific Graphics Short Papers
,
B.-Y.
Chen
,
J.
Kautz
,
T.-Y.
Lee
, and
M. C.
Lin
, eds.,
The Eurographics Association
.10.2312/PE/PG/PG2011short/077-081
120.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150846
.10.1098/rspa.2015.0846
121.
Zhao
,
Y.
,
Endo
,
Y.
,
Kanamori
,
Y.
, and
Mitani
,
J.
,
2018
, “
Approximating 3D Surfaces Using Generalized Waterbomb Tessellations
,”
J. Comput. Des. Eng.
,
5
(
4
), pp.
442
448
.10.1016/j.jcde.2018.01.002
122.
Wang
,
Z. J.
,
Zhou
,
H.
,
Khaliulin
,
V. I.
, and
Shabalov
,
A. V.
,
2018
, “
Six-Ray Folded Configurations as the Geometric Basis of Thin-Walled Element in Engineering Structures
,”
Thin-Walled Struct.
,
130
, pp.
435
448
.10.1016/j.tws.2018.05.022
123.
Velvaluri
,
P.
,
Soor
,
A.
,
Plucinsky
,
P.
,
de Miranda
,
R. L.
,
James
,
R. D.
, and
Quandt
,
E.
,
2021
, “
Origami-Inspired Thin-Film Shape Memory Alloy Devices
,”
Sci. Rep.
,
11
(
1
), p.
10988
.10.1038/s41598-021-90217-3
124.
Saito
,
K.
,
Tsukahara
,
A.
, and
Okabe
,
Y.
,
2016
, “
Designing of Self-Deploying Origami Structures Using Geometrically Misaligned Crease Patterns
,”
Proc. R. Soc. A
,
472
(
2185
), p.
20150235
.10.1098/rspa.2015.0235
125.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness Accommodation Techniques in Origami-Inspired Engineering
,”
Appl. Mech. Rev.
,
70
(
1
), p.
010805
.10.1115/1.4039314
126.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami 5
, CRC Press, Boca Raton, FL, pp.
253
264
.
127.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidly Foldable Origami
,”
ASME
Paper No. DETC2014-35606.10.1115/DETC2014-35606
128.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Morgan
,
M. R.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Thick Rigidly Foldable Structures Realized by an Offset Panel Technique
,”
Origami 6
, Vol.
1
,
American Mathematical Society
, Providence, RI, pp.
149
161
.https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2615&context=facpub
129.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Folding Flat Crease Patterns With Thick Materials
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031003
.10.1115/1.4031954
130.
Hoberman
,
C.
,
1991
, “
Reversibly Expandable Structure
,” U.S. Patent No. 4,981,732.
131.
Hoberman
,
C.
,
1988
, “
Reversibly Expandable Three Dimensional Structure
,” U.S. Patent No. 4,780,344.
132.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.10.1115/1.4029325
133.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2011
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Mater.
,
8
(
6
), pp.
513
0273
.10.1039/C1SM06564E
134.
Mao
,
Y.
,
Yu
,
K.
,
Isakov
,
M. S.
,
Wu
,
J.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2015
, “
Sequential Self-Folding Structures by 3D Printed Shape Memory Polymers
,”
Sci. Rep.
,
5
(
1
), p.
13616
.10.1038/srep13616
135.
Zhu
,
Y.
, and
Filipov
,
E.
,
2019
, “
Simulating Compliant Crease Origami With a Bar and Hinge Model
,”
ASME
Paper No. DETC2019-97119.10.1115/DETC2019-97119
136.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model for Simulating Bistability in Origami Structures With Compliant Creases
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021110
.10.1115/1.4045955
137.
Chopra
,
A. K.
,
2014
,
Dynamics of Structures
, 4th ed.,
Pearson
, London, UK.
138.
Clough
,
R. W.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
, 2nd ed.,
McGraw-Hill College
, New York.
139.
Ma
,
J.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
.10.1016/j.ijmecsci.2017.12.026
140.
Leon
,
S. E.
,
Paulino
,
G. H.
,
Pereira
,
A.
,
Menezes
,
I. F. M.
, and
Lages
,
E. N.
,
2011
, “
A Unified Library of Nonlinear Solution Schemes
,”
ASME. Appl. Mech. Rev.
,
64
(4), p.
040803
.10.1115/1.4006992
141.
Zhang
,
T.
,
Kawaguchi
,
K.
, and
Wu
,
M.
,
2018
, “
A Folding Analysis Method for Origami Based on the Frame With Kinematic Indeterminacy
,”
Int. J. Mech. Sci.
,
146–147
, pp.
234
248
.10.1016/j.ijmecsci.2018.07.036
142.
Zhang
,
T.
, and
Kawaguchi
,
K.
,
2021
, “
Folding Analysis for Thick Origami With Kinematic Frame Models Concerning Gravity
,”
Autom. Constr.
,
127
, p.
103691
.10.1016/j.autcon.2021.103691
143.
Hayakawa
,
K.
, and
Ohsaki
,
M.
,
2021
, “
Form Generation of Rigid Origami for Approximation of a Curved Surface Based on Mechanical Property of Partially Rigid Frames
,”
Int. J. Solids Struct.
,
216
, pp.
182
199
.10.1016/j.ijsolstr.2020.12.007
144.
Hayakawa
,
K.
, and
Ohsaki
,
M.
,
2019
, “
Optimization Approach to Form Generation of Rigid-Foldable Origami for Deployable Roof Structure
,”
The World Congress of Structural and Multidisciplinary Optimization
, Beijing, China, May 20–24, p.
6
.http://www.se-lab.archi.kyoto-u.ac.jp/ohsaki/pdf/c1901.pdf
145.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
(
1
), pp.
26
45
.10.1016/j.ijsolstr.2017.05.028
146.
Filipov
,
E. T.
, and
Redoutey
,
M.
,
2018
, “
Mechanical Characteristics of the Bistable Origami Hypar
,”
Extreme Mech. Lett.
,
25
, pp.
16
26
.10.1016/j.eml.2018.10.001
147.
Liu
,
K.
,
Novelino
,
L. S.
,
Gardoni
,
P.
, and
Paulino
,
G. H.
,
2020
, “
Big Influence of Small Random Imperfections in Origami-Based Metamaterials
,”
Proc. R. Soc. A
,
476
(
2241
), p.
20200236
.10.1098/rspa.2020.0236
148.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2019
, “
Invariant and Smooth Limit of Discrete Geometry Folded From Bistable Origami Leading to Multistable Metasurfaces
,”
Nat. Commun.
,
10
(
1
), p.
4238
.10.1038/s41467-019-11935-x
149.
Gillman
,
A.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2018
, “
Truss-Based Nonlinear Mechanical Analysis for Origami Structures Exhibiting Bifurcation and Limit Point Instabilities
,”
Int. J. Solids Struct.
,
147
, pp.
80
93
.10.1016/j.ijsolstr.2018.05.011
150.
Gillman
,
A. S.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2019
, “
Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041401
.10.1115/1.4041782
151.
Kaufmann
,
J.
,
Bhovad
,
P.
, and
Li
,
S.
,
2022
, “
Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms
,”
Soft Rob.
,
9
(
2
), pp.
212
223
.10.1089/soro.2020.0075
152.
Mukhopadhyay
,
T.
,
Ma
,
J.
,
Feng
,
H.
,
Hou
,
D.
,
Gattas
,
J. M.
,
Chen
,
Y.
, and
You
,
Z.
,
2020
, “
Programmable Stiffness and Shape Modulation in Origami Materials: Emergence of a Distant Actuation Feature
,”
Appl. Mater. Today
,
19
, p.
100537
.10.1016/j.apmt.2019.100537
153.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.10.1088/1361-665X/aa721e
154.
Cai
,
J.
,
Deng
,
X.
,
Zhang
,
Y.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2016
, “
Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern
,”
ASME J. Mech. Rob.
,
8
, p.
031004
.10.1115/1.4032098
155.
Greco
,
M.
,
Gesualdo
,
F. A. R.
,
Venturini
,
W. S.
, and
Coda
,
H. B.
,
2006
, “
Nonlinear Positional Formulation for Space Truss Analysis
,”
Finite Elem. Anal. Des.
,
42
(
12
), pp.
1079
1086
.10.1016/j.finel.2006.04.007
156.
Kidambi
,
N.
, and
Wang
,
K. W.
,
2020
, “
Dynamics of Kresling Origami Deployment
,”
Phys. Rev. E
,
101
(
6
), p.
063003
.10.1103/PhysRevE.101.063003
157.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
.10.1115/1.4030876
158.
Zhu
,
Y.
, and
Filipov
,
E.
,
2019
, “
An Efficient Numerical Approach for Simulating Contact in Origami Assemblages
,”
Proc. R. Soc. A
,
475
(
2230
), p.
20190366
.10.1098/rspa.2019.0366
159.
Xia
,
Y.
,
Filipov
,
E.
, and
Wang
,
K. W.
,
2021
, “
The Deployment Dynamics and Multistability of Tubular Fluidic Origami
,”
Active and Passive Smart Structures and Integrated Systems XV
,
J.-H.
Han
,
G.
Wang
, and
S.
Shahab
, eds., Vol.
11588
, Online, Mar. 22,
International Society for Optics and Photonics
, pp.
98
108
.10.1117/12.2583500
160.
Xia
,
Y.
,
Kidambi
,
N.
,
Filipov
,
E. T.
, and
Wang
,
K. W.
,
2022
, “
Deployment Dynamics of Miura Origami Sheets
,”
ASME J. Comput. Nonlinear Dyn.
, 17(7), p.
071005
.10.1115/1.4054109
161.
Yu
,
Y.
,
Chen
,
Y.
, and
Paulino
,
G. H.
,
2019
, “
On the Unfolding Process of Triangular Resch Patterns: A Finite Particle Method Investigation
,”
ASME
Paper No. DETC2019-98121.10.1115/DETC2019-98121
162.
Xia
,
Y.
, and
Wang
,
K.-W.
,
2019
, “
Dynamics Analysis of the Deployment of Miura-Origami Sheets
,”
ASME
Paper No. DETC2019-97136.10.1115/DETC2019-97136
163.
Dong
,
S.
,
Zhao
,
X.
, and
Yu
,
Y.
,
2021
, “
Dynamic Unfolding Process of Origami Tessellations
,”
Int. J. Solids Struct.
,
226–227
, p.
111075
.10.1016/j.ijsolstr.2021.111075
164.
Dong
,
S.
, and
Yu
,
Y.
,
2021
, “
Numerical and Experimental Studies on Capturing Behaviors of the Inflatable Manipulator Inspired by Fluidic Origami Structures
,”
Eng. Struct.
,
245
, p.
112840
.10.1016/j.engstruct.2021.112840
165.
Bhovad
,
P.
, and
Li
,
S.
,
2021
, “
Physical Reservoir Computing With Origami and Its Application to Robotic Crawling
,”
Sci. Rep.
,
11
(
1
), p.
13002
.10.1038/s41598-021-92257-1
166.
Zhang
,
H.
,
2021
, “
Mechanics Analysis of Functional Origamis Applicable in Biomedical Robots
,”
IEEE/ASME Trans. Mechtronics
, pp.
1
11
.10.1109/TMECH.2021.3113030
167.
Zhang
,
H.
,
Feng
,
H.
,
Huang
,
J.-L.
, and
Paik
,
J.
,
2021
, “
Generalized Modeling of Origami Folding Joints
,”
Extreme Mech. Lett.
,
45
, p.
101213
.10.1016/j.eml.2021.101213
168.
Hu
,
Y. C.
,
Zhou
,
Y. X.
,
Kwok
,
K. W.
, and
Sze
,
K. Y.
,
2021
, “
Simulating Flexible Origami Structures by Finite Element Method
,”
Int. J. Mech. Mater. Des.
,
17
(
4
), pp.
801
829
.10.1007/s10999-021-09538-w
169.
Soleimani
,
H.
,
Goudarzi
,
T.
, and
Aghdam
,
M. M.
,
2021
, “
Advanced Structural Modeling of a Fold in Origami/Kirgami Inspired Structures
,”
Thin-Walled Struct.
,
161
, p.
107406
.10.1016/j.tws.2020.107406
170.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A
,
472
(
2185
), p.
20150607
.10.1098/rspa.2015.0607
171.
Grey
,
S. W.
,
Scarpa
,
F.
, and
Schenk
,
M.
,
2019
, “
Strain Reversal in Actuated Origami Structures
,”
Phys. Rev. Lett.
,
123
(
2
), p.
025501
.10.1103/PhysRevLett.123.025501
172.
Cai
,
J.
,
Ren
,
Z.
,
Ding
,
Y.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2017
, “
Deployment Simulation of Foldable Origami Membrane Structures
,”
Aerosp. Sci. Technol.
,
67
, pp.
343
353
.10.1016/j.ast.2017.04.002
173.
Liu
,
S.
,
Lu
,
G.
,
Chen
,
Y.
, and
Leong
,
Y. W.
,
2015
, “
Deformation of the Miura-Ori Patterned Sheet
,”
Int. J. Mech. Sci.
,
99
, pp.
130
142
.10.1016/j.ijmecsci.2015.05.009
174.
Ma
,
J.
,
Hou
,
D.
,
Chen
,
Y.
, and
You
,
Z.
,
2018
, “
Peak Stress Relief of Cross Folding Origami
,”
Thin-Walled Struct.
,
123
, pp.
155
161
.10.1016/j.tws.2017.11.025
175.
Thai
,
P. T.
,
Savchenko
,
M.
, and
Hagiwara
,
I.
,
2018
, “
Finite Element Simulation of Robotic Origami Folding
,”
Simul. Modell. Pract. Theory
,
84
, pp.
251
–2
71
.10.1016/j.simpat.2018.03.004
176.
Yuan
,
L.
,
Dai
,
H.
,
Song
,
J.
,
Ma
,
J.
, and
Chen
,
Y.
,
2020
, “
The Behavior of a Functionally Graded Origami Structure Subjected to Quasi-Static Compression
,”
Mater. Des.
,
189
, p.
108494
.10.1016/j.matdes.2020.108494
177.
Karagiozova
,
D.
,
Zhang
,
J.
,
Lu
,
G.
, and
You
,
Z.
,
2019
, “
Dynamic Inplane Compression of Miura-Ori Patterned Metamaterials
,”
Int. J. Impact Eng.
,
129
, pp.
80
100
.10.1016/j.ijimpeng.2019.02.012
178.
Zhang
,
J.
,
Karagiozova
,
D.
,
You
,
Z.
,
Chen
,
Y.
, and
Lu
,
G.
,
2019
, “
Quasi-Static Large Deformation Compressive Behaviour of Origami-Based Metamaterials
,”
Int. J. Mech. Sci.
,
153–154
, pp.
194
207
.10.1016/j.ijmecsci.2019.01.044
179.
Schenk
,
M.
,
Guest
,
S. D.
, and
McShane
,
G. J.
,
2014
, “
Novel Stacked Folded Cores for Blast-Resistant Sandwich Beams
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4196
5214
.10.1016/j.ijsolstr.2014.07.027
180.
Heimbs
,
S.
,
Middendorf
,
P.
,
Kilchert
,
S.
,
Johnson
,
A. F.
, and
Maier
,
M.
,
2007
, “
Experimental and Numerical Analysis of Composite Folded Sandwich Core Structures Under Compression
,”
Appl. Compos. Mater.
,
14
(
5–6
), pp.
363
377
.10.1007/s10443-008-9051-9
181.
Heimbs
,
S.
,
Cichosz
,
J.
,
Klaus
,
M.
,
Kilchert
,
S.
, and
Johnson
,
A. F.
,
2010
, “
Sandwich Structures With Textile-Reinforced Composite Foldcores Under Impact Loads
,”
Compos. Struct.
,
92
(
6
), pp.
1485
1497
.10.1016/j.compstruct.2009.11.001
182.
Xiang
,
X.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Energy Absorption of Origami Inspired Structures and Materials
,”
Thin-Walled Struct.
,
157
, p.
107130
.10.1016/j.tws.2020.107130
183.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part 1: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.10.1115/1.4024405
184.
Wang
,
B.
, and
Zhou
,
C.
,
2017
, “
The Imperfection-Sensitivity of Origami Crash Boxes
,”
Int. J. Mech. Sci.
,
121
, pp.
58
66
.10.1016/j.ijmecsci.2016.11.027
185.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.10.1016/j.tws.2012.02.007
186.
Yang
,
K.
,
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2016
, “
Energy Absorption of Thin-Walled Tubes With Pre Folded Origami Patterns: Numerical Simulation and Experimental Verification
,”
Thin-Walled Struct.
,
103
, pp.
33
44
.10.1016/j.tws.2016.02.007
187.
Zaghloul
,
A.
, and
Bone
,
G. M.
,
2020
, “
3D Shrinking for Rapid Fabrication of Origami-Inspired Semi-Soft Pneumatic Actuators
,”
IEEE Access
,
8
, pp.
191330
191340
.10.1109/ACCESS.2020.3032131
188.
Xiang
,
X.
,
You
,
Z.
, and
Lu
,
G.
,
2018
, “
Rectangular Sandwich Plates With Miura-Ori Folded Core Under Quasi-Static Loadings
,”
Compos. Struct.
,
195
, pp.
359
374
.10.1016/j.compstruct.2018.04.084
189.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
,
R. J.
,
Akleman
,
E.
,
Gonen
,
O.
, and
Kung
,
H.-W.
,
2016
, “
Design Tools for Patterned Self-Folding Reconfigurable Structures Based on Programmable Active Laminates
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031015
.10.1115/1.4031955
190.
Kwok
,
T.-H.
,
2021
, “
Geometry-Based Thick Origami Simulation
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061701
.10.1115/1.4048744
191.
McGuire
,
W.
,
Gallagher
,
R. H.
, and
Ziemian
,
R. D.
,
2000
,
Matrix Structural Analysis
, 2nd ed.,
Createspace Independent Publishing Platform
, Scotts Valley, CA.
192.
Liu
,
K.
, and
Paulino
,
G.
,
2016
, “
MERLIN: A MATLAB Implementation to Capture Highly Nonlinear Behavior of Non-Rigid Origami
,”
Proceedings of IASS Annual Symposium
, Tokyo, Japan, Sept. 26–30,
International Association for Shell and Spatial Structures
, pp.
1
10
.http://paulino.princeton.edu/conferences/papers/16Liu_merlin.pdf
193.
Liu
,
K.
, and
Paulino
,
G.
,
2018
, “
Highly Efficient Structural Analysis of Origami Assemblages Using the merlin2 Software
,” Origami 7, Seventh International Meeting on Origami in Science, Mathematics and Education (
7OSME
), Oxford University, Oxford, UK, Sept. 5–7
.https://www.semanticscholar.org/paper/Highly-efficientnonlinear-structural-analysis-of-Liu-Paulino/d40ea8f8e55aaf88446030c2d55cbb10702fa4b5
194.
Redoutey
,
M.
,
Roy
,
A.
, and
Filipov
,
E. T.
,
2021
, “
Pop-Up Kirigami for Stiff, Dome-Like Structures
,”
Int. J. Solids Struct.
,
229
, p.
111140
.10.1016/j.ijsolstr.2021.111140
195.
Ghassaei
,
A.
,
Demaine
,
E. D.
, and
Gershenfeld
,
N.
,
2018
, “
Fast, Interactive Origami Simulation Using GPU Computation
,”
Proceedings of the Seventh International Meeting on Origami in Science, Mathematics and Education
, Fast, Interactive Origami Simulation Using GPU Computation Vol.
4
, Oxford, UK, Sept. 5–7, pp.
1151
1166
.
196.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2019
, “
Equilibria and Bifurcations of a Foldable Paper-Based Spring Inspired by Kresling-Pattern Origami
,”
Phys. Rev. E
,
100
(
6
), p.
063001
.10.1103/PhysRevE.100.063001
197.
Pratapa
,
P. P.
,
Liu
,
K.
,
Vasudevan
,
S. P.
, and
Paulino
,
G. H.
,
2021
, “
Reprogrammable Kinematic Branches in Tessellated Origami Structures
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031102
.10.1115/1.4049949
198.
Yu
,
Y.
,
Paulino
,
G. H.
, and
Luo
,
Y.
,
2011
, “
Finite Particle Method for Progressive Failure Simulation of Truss Structures
,”
J. Struct. Eng.
,
137
(
10
), pp.
1168
1181
.10.1061/(ASCE)ST.1943-541X.0000321
199.
Fonseca
,
L. M.
,
Rodrigues
,
G. V.
,
Savi
,
M. A.
, and
Paiva
,
A.
,
2019
, “
Nonlinear Dynamics of an Origami Wheel With Shape Memory Alloy Actuators
,”
Chaos, Solitons Fractals
,
122
, pp.
245
261
.10.1016/j.chaos.2019.03.033
200.
Yasuda
,
H.
,
Yamaguchi
,
K.
,
Miyazawa
,
Y.
,
Wiebe
,
R.
,
Raney
,
J. R.
, and
Yang
,
J.
,
2020
, “
Data-Driven Prediction and Analysis of Chaotic Origami Dynamics
,”
Commun. Phys.
,
3
(
1
), p. 168.10.1038/s42005-020-00431-0
201.
Han
,
H.
,
Tang
,
L.
,
Cao
,
D.
, and
Liu
,
L.
,
2020
, “
Modeling and Analysis of Dynamic Characteristics of Multi-Stable Waterbomb Origami Base
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2339
2362
.10.1007/s11071-020-06082-8
202.
Kwok
,
T.-H.
,
Wang
,
C. C. L.
,
Deng
,
D.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2015
, “
Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures
,”
J. Mech. Des.
,
137
(
11
), p.
111413
.10.1115/1.4031023
203.
Faber
,
J.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
.10.1126/science.aap7753
204.
Liu
,
K.
, and
Paulino
,
G. H.
,
2017
, “
MERLIN
,” Princeton University, Princeton, NJ, accessed Dec. 2021, http://paulino.princeton.edu/software.html
205.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2021
, “
Sequentially Working Origami Multi-Physics Simulator (SWOMPS
),” University of Michigan, Ann Arbor, MI, accessed Dec. 2021, https://github.com/zzhuyii/OrigamiSimulator
206.
Ma
,
J.
,
Hou
,
D.
,
Chen
,
Y.
, and
You
,
Z.
,
2016
, “
Quasi-Static Axial Crushing of the Thin-Walled Tubes With a Kite-Shape Rigid Origami Pattern: Numerical Simulation
,”
Thin-Walled Struct.
,
100
, pp.
38
47
.10.1016/j.tws.2015.11.023
207.
MIT
,
2017
, “About Contact Interactions,”
MIT
, Cambridge, MA, accessed Dec. 2021, https://abaqus-docs.mit.edu/2017/English/SIMACAEITNRefMap/simaitn-c-contactoverview.htm
208.
MIT
,
2017
, “Common Difficulties Associated With Contact Modeling in Abaqus/Standard,”
MIT
, Cambridge, MA, accessed Dec. 2021, http://194.167.201.93/English/SIMACAEITNRefMap/simaitn-c-contacttrouble.htm
209.
MIT
,
2017
, “Common Difficulties Associated With Contact Modeling Using Contact Pairs in Abaqus/Explicit,”
MIT
, Cambridge, MA, accessed Dec. 2021, https://abaqus-docs.mit.edu/2017/English/SIMACAEITNRefMap/simaitn-c-expcontacttrouble.htm
210.
Swaminathan
,
R.
,
Cai
,
C. J.
,
Yuan
,
S.
, and
Ren
,
H.
,
2021
, “
Multiphysics Simulation of Magnetically Actuated Robotic Origami Worms
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
4923
4930
.10.1109/LRA.2021.3068707
211.
Leong
,
T. G.
,
Randall
,
C. L.
,
Benson
,
B. R.
,
Zarafshar
,
A. M.
, and
Gracias
,
D. H.
,
2008
, “
Self-Loading Lithographically Structured Microcontainers: 3D Patterned, Mobile Microwells
,”
Lab Chip
,
8
(
10
), pp.
1621
1624
.10.1039/b809098j
212.
Arora
,
W. J.
,
Nichol
,
A. J.
,
Smith
,
H. I.
, and
Barbastathis
,
G.
,
2006
, “
Membrane Folding to Achieve Three-Dimensional Nanostructures: Nanopatterned Silicon Nitride Folded With Stressed Chromium Hinges
,”
Appl. Phys. Lett.
,
88
(
5
), p.
053108
.10.1063/1.2168516
213.
Paik
,
J. K.
, and
Wood
,
R. J.
,
2012
, “
A Bidirectional Shape Memory Alloy Folding Actuator
,”
Smart Mater. Struct.
,
21
(
6
), p.
065013
.10.1088/0964-1726/21/6/065013
214.
Shaar
,
N. S.
,
Barbastathis
,
G.
, and
Livermore
,
C.
,
2015
, “
Integrated Folding, Alignment, and Latching for Reconfigurable Origami Microelectromechanical Systems
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
1043
1051
.10.1109/JMEMS.2014.2379432
215.
Iwase
,
E.
, and
Shimoyama
,
I.
,
2005
, “
Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures With Elastic Hinges
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1265
1271
.10.1109/JMEMS.2005.851814
216.
Xu
,
T.
,
Zhang
,
J.
,
Salehizadeh
,
M.
,
Onaizah
,
O.
, and
Diller
,
E.
,
2019
, “
Millimeter-Scale Flexible Robots With Programmable Three-Dimensional Magnetization and Motions
,”
Sci. Rob.
,
4
(
29
), p.
eaav4494
.10.1126/scirobotics.aav4494
217.
Timoshenko
,
S.
,
1925
, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
,
11
, pp.
233
255
.10.1364/JOSA.11.000233
218.
Deng
,
D.
,
Yang
,
Y.
,
Chen
,
Y.
,
Lan
,
X.
, and
Tice
,
J.
,
2017
, “
Accurately Controlled Sequential Self-Folding Structures by Polystyrene Film
,”
Smart Mater. Struct.
,
26
(
8
), p.
085040
.10.1088/1361-665X/aa7a4e
219.
Piker
,
D.
,
2017
, “
Kangaroo
,” KANGAROO PHYSICS, Barcelona, Spain, accessed Dec. 2021, https://www.food4rhino.com/en/app/kangaroo-physics
220.
Piker
,
D.
,
2013
, “
Kangaroo: Form Finding With Computational Physics
,”
Archit. Des.
,
83
(
2
), pp.
136
137
.10.1002/ad.1569
221.
Chen
,
T.
,
Bilal
,
O. R.
,
Lang
,
R.
,
Daraio
,
C.
, and
Shea
,
K.
,
2019
, “
Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064069
.10.1103/PhysRevApplied.11.064069
222.
Fuchi
,
K.
,
Tang
,
J.
,
Crowgey
,
B.
,
Diaz
,
A. R.
,
Rothwell
,
E. J.
, and
Ouedraogo
,
R. O.
,
2012
, “
Origami Tunable Frequency Selective Surfaces
,”
IEEE Antennas Wireless Propagation Lett.
,
11
, pp.
473
475
.10.1109/LAWP.2012.2196489
223.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Joo
,
J. J.
,
Reich
,
G. W.
, and
Vaia
,
R. A.
,
2016
, “
Spatial Tuning of a RF Frequency Selective Surface Through Origami
,”
Automatic Target Recognition XXVI
,
F. A.
Sadjadi
, and
A.
Mahalanobis
, eds., Vol.
9844
, Baltimore, MD, May 12,
SPIE
, pp.
234
243
.10.1117/12.2224160
224.
Cui
,
Y.
,
Nauroze
,
S. A.
, and
Tentzeris
,
M. M.
,
2019
, “
Novel 3D-Printed Reconfigurable Origami Frequency Selective Surfaces With Flexible Inkjket-Printed Conductor Traces
,”
IEEE/MTT-S International Microwave Symposium
, Vol.
11
, Boston, MA, June 2–7, pp.
1367
1370
.10.1109/MWSYM.2019.8700994
225.
Biswas
,
A.
,
Zekios
,
C. L.
, and
Georgakopoulos
,
S. V.
,
2020
, “
Transforming Single-Band Static FSS to Dual-Band Dynamic FSS Using Origami
,”
Sci. Rep.
,
10
(
1
), p.
13884
.10.1038/s41598-020-70434-y
226.
Pratapa
,
P. P.
,
Suryanarayana
,
P.
, and
Paulino
,
G. H.
,
2018
, “
Bloch Wave Framework for Structures With Nonlocal Interactions: Application to the Design of Origami Acoustic Metamaterials
,”
J. Mech. Phys. Solids
,
118
, pp.
115
132
.10.1016/j.jmps.2018.05.012
227.
Thota
,
M.
, and
Wang
,
K.
,
2018
, “
Tunable Waveguiding in Origami Phononic Structures
,”
J. Sound Vib.
,
430
, pp.
93
100
.10.1016/j.jsv.2018.05.031
228.
Zhu
,
Y.
,
Fei
,
F.
,
Fan
,
S.
,
Cao
,
L.
,
Donda
,
K.
, and
Assouar
,
B.
,
2019
, “
Reconfigurable Origami-Inspired Metamaterials for Controllable Sound Manipulation
,”
Phys. Rev. Appl.
,
12
(
3
), p. 034029.10.1103/PhysRevApplied.12.034029
229.
Demaine
,
E.
,
Ku
,
J.
, and
Lang
,
R.
,
2021
, “
Fold
,” accessed Dec. 2021, https://github.com/edemaine/fold
230.
Tachi
,
T.
,
2009
, “
Rigid Origami Simulator
,” The University of Tokyo, Tokyo, Japan, accessed Dec. 2021, https://tsg.ne.jp/TT/software/index.html
231.
Tachi
,
T.
,
2010
, “
Origamizer
,” The University of Tokyo, Tokyo, Japan, accessed Dec. 2021, https://tsg.ne.jp/TT/software/index.html
232.
Ghassaei
,
A.
,
2017
, “
Origami Simulator
,” accessed Dec. 2021, https://origamisimulator.org/
233.
Fuchi
,
K.
,
2022
, “
Origami Mechanism Topology Optimizer (OMTO
),” Air Force Research Laboratory, Dayton, OH, accessed Dec. 2021, https://www.mathworks.com/matlabcentral/fileexchange/51811-origami-mechanism-topology-optimizer-omto
234.
Gillman
,
A.
,
2018
, “
Origami Topology Optimization w/Nonlinear Truss Model
,” Air Force Research Laboratory, Dayton, OH, accessed Dec. 2021, https://www.mathworks.com/matlabcentral/fileexchange/69612-origami-topology-optimization-w-nonlinear-truss-model
235.
Suto
,
K.
, and
Tanimichi
,
K.
,
2021
, “
Crane
,” Nature Architects Inc, JP, accessed Dec. 2021, https://www.food4rhino.com/en/app/crane
236.
Novelino
,
L. S.
,
Ze
,
Q.
,
Wu
,
S.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2020
, “
Untethered Control of Functional Origami Microrobots With Distributed Actuation
,”
Proc. Natl. Acad. Sci.
,
117
(
39
), pp.
24096
24101
.10.1073/pnas.2013292117
237.
Hwang
,
H.-Y.
,
2021
, “
Effects of Perforated Crease Line Design on Mechanical Behaviors of Origami Structures
,”
Int. J. Solids Struct.
,
230–231
, p.
111158
.10.1016/j.ijsolstr.2021.111158
238.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), pp.
583
588
.10.1038/nmat4540
239.
Miyazawa
,
Y.
,
Yasuda
,
H.
,
Kim
,
H.
,
Lynch
,
J. H.
,
Tsujikawa
,
K.
,
Kunimine
,
T.
,
Raney
,
J. R.
, and
Yang
,
J.
,
2021
, “
Heterogeneous Origami-Architected Materials With Variable Stiffness
,”
Commun. Mater.
,
2
(
1
), pp. 1–7.10.1038/s43246-021-00212-4
240.
Woo
,
A. C.
,
Wang
,
H. T. G.
,
Schuh
,
M. J.
, and
Sanders
,
M. L.
,
1993
, “
EM Programmer's Notebook-Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs
,”
IEEE Antennas Propag. Mag.
,
35
(
1
), pp.
84
89
.10.1109/74.210840
241.
Pinson
,
M. B.
,
Stern
,
M.
,
Ferrero
,
A. C.
,
Witten
,
T. A.
,
Chen
,
E.
, and
Murugan
,
A.
,
2017
, “
Self-Folding Origami at Any Energy Scale
,”
Nat. Commun.
,
8
(
1
), p.
15477
.10.1038/ncomms15477
242.
Grey
,
S. W.
,
Scarpa
,
F.
, and
Schenk
,
M.
,
2020
, “
Mechanics of Paper-Folded Origami: A Cautionary Tale
,”
Mech. Res. Commun.
,
107
, p.
103540
.10.1016/j.mechrescom.2020.103540
You do not currently have access to this content.