Abstract

Modern advances in material science and surface chemistry lead to creation of composite materials with enhanced mechanical, thermal, and other properties. It is now widely accepted that the enhancements are achieved due to drastic reduction in sizes of some phases of composite structures. This leads to increase in surface to volume ratios, which makes surface- or interface-related effects to be more significant. For better understanding of these phenomena, the investigators turned their attention to various theories of material surfaces. This paper is a review of two most prominent theories of that kind, the Gurtin–Murdoch and Steigmann–Ogden theories. Here, we provide comprehensive review of relevant literature, summarize the current state of knowledge, and present several new results.

References

1.
Cammarata
,
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin Films
,”
Progr. Surf. Sci.
,
46
(
1
), pp.
1
38
.10.1016/0079-6816(94)90005-1
2.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
2004
, “
Scaling, Dimensional Analysis, and Indentation Measurements
,”
Mater. Sci. Eng.
,
44
(
4–5
), pp.
91
149
.10.1016/j.mser.2004.05.001
3.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
.10.1016/j.jmps.2011.06.007
4.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2012
, “
Erratum to: Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
60
(
6
), pp.
1241
1242
.10.1016/j.jmps.2012.01.004
5.
Diao
,
J.
,
Gall
,
K.
, and
Dunn
,
M. L.
,
2003
, “
Surface-Stress-Induced Phase Transformation in Metal Nanowires
,”
Nat. Mater.
,
2
(
10
), pp.
656
660
.10.1038/nmat977
6.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.10.1016/0022-5096(93)90072-N
7.
Gao
,
X.-L.
,
2006
, “
An Expanding Cavity Model Incorporating Strain-Hardening and Indentation Size Effects
,”
Int. J. Solids Struct
,
43
(
21
), pp.
6615
6629
.10.1016/j.ijsolstr.2006.01.008
8.
Gao
,
X.-L.
,
2006
, “
A New Expanding Cavity Model for Indentation Hardness Including Strain-Hardening and Indentation Size Effects
,”
J. Mater. Res.
,
21
(
5
), pp.
1317
1326
.10.1557/jmr.2006.0158
9.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.10.1021/nl0733233
10.
Hong
,
S.
, and
Weil
,
R.
,
1996
, “
Low Cycle Fatigue of Thin Copper Foils
,”
Thin Solid Films
,
283
(
1–2
), pp.
175
181
.10.1016/0040-6090(95)08225-5
11.
Judelewicz
,
M.
,
Künzi
,
H. U.
,
Merk
,
N.
, and
Ilschner
,
B.
,
1994
, “
Microstructural Development During Fatigue of Copper Foils 20–100 μm Thick
,”
Mater. Sci. Eng. A
,
186
(
1–2
), pp.
135
142
.10.1016/0921-5093(94)90312-3
12.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
.10.1557/JMR.1995.0853
13.
Miller
,
R.
, and
Shenoy
,
V. B.
,
2000
, “
Size Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.10.1088/0957-4484/11/3/301
14.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
15.
Qu
,
S.
,
Huang
,
Y.
,
Nix
,
W. D.
,
Jiang
,
H.
,
Zhang
,
F.
, and
Hwang
,
K. C.
,
2004
, “
Indenter Tip Radius Effect on the Nix-Gao Relation in Micro- and Nanoindentation Hardness Experiments
,”
J. Mater. Res.
,
19
(
11
), pp.
3423
3434
.10.1557/JMR.2004.0441
16.
Read
,
D. T.
,
1998
, “
Tension-Tension Fatigue of Copper Films
,”
Int. J. Fatigue
,
20
(
3
), pp.
203
209
.10.1016/S0142-1123(97)00080-7
17.
Yvonnet
,
J.
,
Mitrushchenkov
,
A.
,
Chambaud
,
G.
, and
He
,
Q. C.
,
2011
, “
Finite Element Model of Ionic Nanowires With Size-Dependent Mechanical Properties Determined by Ab Initio Calculations
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
5–8
), pp.
614
625
.10.1016/j.cma.2010.09.007
18.
Gibbs
,
J. W.
,
1906
,
Scientific Papers of J. Willard Gibbs: Thermodynamics
, Vol.
1
,
Longmans, Green and Company
, London, New York, and Bombay.
19.
Orowan
,
E.
,
1970
, “
Surface Energy and Surface Tension in Solids and Liquids
,”
Proc. R. Soc. London Ser. A
,
316
(
1527
), pp.
473
491
.10.1098/rspa.1970.0091
20.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal
,
57
(
4
), pp.
291
323
.10.1007/BF00261375
21.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.10.1016/0020-7683(78)90008-2
22.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plane Deformations of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. London Ser. A
,
453
(
1959
), pp.
853
877
.10.1098/rspa.1997.0047
23.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. London Ser. A
,
455
(
1982
), pp.
437
474
.10.1098/rspa.1999.0320
24.
Eremeyev
,
V. A.
,
2016
, “
On Effective Properties of Materials at the Nano-and Microscales Considering Surface Effects
,”
Acta Mech.
,
227
(
1
), pp.
29
42
.10.1007/s00707-015-1427-y
25.
Firooz
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2021
, “
Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling
,”
ASME. Appl. Mech. Rev.
, 73(4), p. 040802.10.1115/1.4051481
26.
Javili
,
A.
,
dell'Isola
,
F.
, and
Steinmann
,
P.
,
2013
, “
Geometrically Nonlinear Higher-Gradient Elasticity With Energetic Boundaries
,”
J. Mech. Phys. Solids
,
61
(
12
), pp.
2381
2401
.10.1016/j.jmps.2013.06.005
27.
Javili
,
A.
,
McBride
,
A.
, and
Steinmann
,
P.
,
2013
, “
Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review
,”
Appl. Mech. Rev
,
65
(
1
), p. 010802. 10.1115/1.4023012
28.
Javili
,
A.
,
McBride
,
A.
,
Steinmann
,
P.
, and
Reddy
,
B. D.
,
2014
, “
A Unified Computational Framework for Bulk and Surface Elasticity Theory: A Curvilinear-Coordinate-Based Finite Element Methodology
,”
Comp. Mech.
,
54
(
3
), pp.
745
762
.10.1007/s00466-014-1030-4
29.
Javili
,
A.
,
Ottosen
,
N. S.
,
Ristinmaa
,
M.
, and
Mosler
,
J.
,
2018
, “
Aspects of Interface Elasticity Theory
,”
Math. Mech. Solids
,
23
(
7
), pp.
1004
1024
.10.1177/1081286517699041
30.
Saeb
,
S.
,
Firooz
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2021
, “
Generalized Interfaces Via Weighted Averages for Application to Graded Interphases at Large Deformations
,”
J. Mech. Phys. Solids
,
149
, p.
104234
.10.1016/j.jmps.2020.104234
31.
Wang
,
J.
,
Huang
,
Z.
,
Duan
,
H.
,
Yu
,
S.
,
Feng
,
X.
,
Wang
,
G.
,
Zhang
,
W.
, and
Wang
,
T.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sin.
,
24
(
1
), pp.
52
82
.10.1016/S0894-9166(11)60009-8
32.
Baranova
,
S.
,
Mogilevskaya
,
S. G.
,
Mantic
,
V.
, and
Jimenez-Alfaro
,
S.
,
2020
, “
Analysis of the Antiplane Problem With an Embedded Zero Thickness Layer Described by the Gurtin-Murdoch Model
,”
J. Elasticity
,
140
(
2
), pp.
171
195
.10.1007/s10659-020-09764-x
33.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
.10.1016/j.jmps.2008.01.001
34.
Ru
,
C. Q.
,
2010
, “
Simple Geometrical Explanation of Gurtin-Murdoch Model of Surface Elasticity With Clarification of Its Related Versions
,”
Sci. China
,
53
(
3
), pp.
536
544
.10.1007/s11433-010-0144-8
35.
Xu
,
Z.
, and
Zheng
,
Q.
,
2018
, “
Micro-and Nano-Mechanics in China: A Brief Review of Recent Progress and Perspectives
,”
Sci. China
,
61
(
7
), p.
74601
.10.1007/s11433-018-9204-6
36.
Zhu
,
Y.
,
Wei
,
Y.
, and
Guo
,
X.
,
2017
, “
Gurtin-Murdoch Surface Elasticity Theory Revisit: An Orbital-Free Density Functional Theory Perspective
,”
J. Mech. Phys. Solids
,
109
, pp.
178
197
.10.1016/j.jmps.2017.08.009
37.
Eremeyev
,
V. A.
,
2020
, “
Strongly Anisotropic Surface Elasticity and Antiplane Surface Waves
,”
Phil. Trans. R. Soc. A.
,
378
(
2162
), p.
20190100
.10.1098/rsta.2019.0100
38.
Ojaghnezhad
,
F.
, and
Shodja
,
H. M.
,
2016
, “
Surface Elasticity Revisited in the Context of Second Strain Gradient Theory
,”
Mech. Mater
,
93
, pp.
220
237
.10.1016/j.mechmat.2015.11.003
39.
Gorbushin
,
N.
,
Eremeyev
,
V. A.
, and
Mishuris
,
G.
,
2020
, “
On Stress Singularity Near the Tip of a Crack With Surface Stresses
,”
Int. J. Eng. Sci.
,
146
, p.
103183
.10.1016/j.ijengsci.2019.103183
40.
Grekov
,
M. A.
,
2021
, “
General Approach to the Modified Kirsch Problem Incorporating Surface Energy Effects
,”
Continuum Mech. Thermodyn., Pages
,
33
(
4
), pp.
1675
1615
.10.1007/s00161-021-01005-3
41.
Grekov
,
M. A.
, and
Kostyrko
,
S. A.
,
2016
, “
Surface Effects in an Elastic Solid With Nanosized Surface Asperities
,”
Int. J. Solids Struct.
,
96
, pp.
153
161
.10.1016/j.ijsolstr.2016.06.013
42.
Intarit
,
P.
,
Senjuntichai
,
T.
,
Rungamornrat
,
J.
, and
Rajapakse
,
R. K. N. D.
,
2017
, “
Penny-Shaped Crack in Elastic Medium With Surface Energy Effects
,”
Acta Mech.
,
228
(
2
), pp.
617
630
.10.1007/s00707-016-1728-9
43.
Kim
,
C. I.
,
Schiavone
,
P.
, and
Ru
,
C.-Q.
,
2010
, “
The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution
,”
ASME J. Appl. Mech.
,
77
, p.
021011
.10.1115/1.3177000
44.
Kim
,
C. I.
,
Schiavone
,
P.
, and
Ru
,
C.-Q.
,
2011
, “
Analysis of Plane-Strain Crack Problems (Mode-I and Mode-II) in the Presence of Surface Elasticity
,”
J. Elast
,
104
(
1–2
), pp.
397
420
.10.1007/s10659-010-9287-0
45.
Kim
,
C. I.
,
Schiavone
,
P.
, and
Ru
,
C.-Q.
,
2011
, “
Effect of Surface Elasticity on an Interface Crack in Plane Deformations
,”
Proc. R. Soc. London Ser. A
,
467
(
2136
), pp.
3530
3549
.10.1098/rspa.2011.0311
46.
Kostyrko
,
S.
,
Grekov
,
M.
, and
Altenbach
,
H.
,
2021
, “
Coupled Effect of Curved Surface and Interface on Stress State of Wrinkled Thin Film Coating at the Nanoscale
,”
ZAMM
, p.
e202000202
.10.1002/zamm.202000202
47.
Li
,
X.
, and
Mi
,
C.
,
2019
, “
Nanoindentation Hardness of a Steigmann-Ogden Surface Bounding an Elastic Half-Space
,”
Math. Mech. Solids
,
24
(
9
), pp.
2754
2766
.10.1177/1081286518799795
48.
Li
,
X.
, and
Mi
,
C.
,
2021
, “
Nanoindentation of a Half-Space Due to a Rigid Cylindrical Roller Based on Steigmann–Ogden Surface Mechanical Model
,”
Int. J. Mech. Mater. Des.
,
17
(
1
), pp.
25
40
.10.1007/s10999-020-09507-9
49.
Li
,
X.
,
Jiang
,
L.
, and
Mi
,
C.
,
2020
, “
Flamant Solution of a Half-Plane With Surface Flexural Resistibility and Its Applications to Nanocontact Mechanics
,”
Math. Mech. Solids
,
25
(
3
), pp.
664
681
.10.1177/1081286519887205
50.
Mikhasev
,
G. I.
,
Botogova
,
M. G.
, and
Eremeyev
,
V. A.
,
2021
, “
On the Influence of a Surface Roughness on Propagation of Anti-Plane Short-Length Localized Waves in a Medium With Surface Coating
,”
Int. J. Eng. Sci.
,
158
, p.
103428
.10.1016/j.ijengsci.2020.103428
51.
Mogilevskaya
,
S. G.
,
Pyatigorets
,
A. V.
, and
Crouch
,
S. L.
,
2011
, “
Green Function for the Problem of a Plane Containing a Circular Hole With Surface Effects
,”
ASME J. Appl. Mech.
,
78
(
2
), p. 021008.10.1115/1.4002579
52.
Mogilevskaya
,
S. G.
,
Zemlyanova
,
A. Y.
, and
Mantič
,
V.
,
2021
, “
The Use of the Gurtin-Murdoch Theory for Modeling Mechanical Processes in Composites With Two-Dimensional Reinforcements
,”
Comp. Sci. Tech
,
210
, p.
108751
.10.1016/j.compscitech.2021.108751
53.
Piccolroaz
,
A.
,
Peck
,
D.
,
Wrobel
,
M.
, and
Mishuris
,
G.
,
2021
, “
Energy Release Rate, the Crack Closure Integral and Admissible Singular Fields in Fracture Mechanics
,”
Int. J. Eng. Sci.
,
164
, p.
103487
.10.1016/j.ijengsci.2021.103487
54.
Pinyochotiwong
,
Y.
,
Rungamornrat
,
J.
, and
Senjuntichai
,
T.
,
2011
, “
Analysis of Rigid Frictionless Indentation on Half–Space With Surface Elasticity
,”
Proc. Eng.
,
14
, pp.
2403
2410
.10.1016/j.proeng.2011.07.302
55.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stress on Contact Problems at Nanoscale
,”
J. Appl. Phys
,
101
(
1
), p.
013510
.10.1063/1.2405127
56.
Zemlyanova
,
A. Y.
,
2017
, “
A Straight Mixed Mode Fracture With the Steigmann-Ogden Boundary Condition
,”
Quart. J. Mech. Appl. Math
,
70
(
1
), pp.
65
86
.10.1093/qjmam/hbw016
57.
Zemlyanova
,
A. Y.
,
2018
, “
Frictionless Contact of a Rigid Stamp With a Semi-Plane in the Presence of Surface Elasticity in the Steigmann-Ogden Form
,”
Math. Mech. Solids
,
23
(
8
), pp.
1140
1155
.10.1177/1081286517710691
58.
Zemlyanova
,
A. Y.
,
2019
, “
An Adhesive Contact Problem for a Semi-Plane With a Surface Elasticity in the Steigmann-Ogden Form
,”
J. Elasticity
,
136
(
1
), pp.
103
121
.10.1007/s10659-018-9694-1
59.
Zemlyanova
,
A. Y.
,
2020
, “
Interaction of Multiple Straight Fractures in the Presence of the Steigmann-Ogden Surface Energy
,”
SIAM J. Appl. Math.
,
80
(
5
), pp.
2098
2119
.10.1137/19M1305173
60.
Zemlyanova
,
A. Y.
,
2021
, “
An Axisymmetric Problem for a Penny-Shaped Crack Under Influence of the Steigmann-Ogden Surface Energy
,”
Proc. R. Soc. London Ser. A
,
477
(
2248
), p.
20200998
.10.1098/rspa.2020.0998
61.
Zemlyanova
,
A. Y.
, and
Machina
,
A.
,
2020
, “
A New B-Spline Collocation Method for Singular Integro-Differential Equations of Higher Orders
,”
J. Comp. Appl. Math.
,
380
, p.
112949
.10.1016/j.cam.2020.112949
62.
Zhou
,
S.
, and
Gao
,
X.-L.
,
2013
, “
Solutions of Half-Space and Half-Plane Contact Problems Based on Surface Elasticity
,”
Z. Angew. Math. Phys.
,
64
(
1
), pp.
145
166
.10.1007/s00033-012-0205-0
63.
Eremeyev
,
V.
, and
Lebedev
,
L.
,
2016
, “
Mathematical Study of Boundary-Value Problems Within the Framework of Steigmann-Ogden Model of Surface Elasticity
,”
Continuum Mech. Thermodyn.
,
28
(
1–2
), pp.
407
422
.10.1007/s00161-015-0439-0
64.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018a
, “
Circular Inhomogeneity With Steigmann-Ogden Interface: Local Fields and Maxwell's Type Approximation Formula
,”
Int. J. Solids Struct
,
135
, pp.
85
98
.10.1016/j.ijsolstr.2017.11.012
65.
Eremeyev
,
V.
,
2019
, “
On Dynamic Boundary Conditions Within the Linear Steigmann-Ogden Model of Surface Elasticity and Strain Gradient Elasticity
,”
Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials
, Vol.
103
,
H.
Altenbach
,
A.
Belyaev
,
V.
Eremeyev
,
A.
Krivtsov
, and
A.
Porubov
, eds.,
Springer
,
Cham
, pp.
195
207
.10.1007/978-3-030-11665-1_10
66.
Torquato
,
S.
, and
Rintoul
,
M. D.
,
1995
, “
Effect of the Interface on the Properties of Composite Media
,”
Phys. Rev. Lett.
,
75
(
22
), pp.
4067
4070
.10.1103/PhysRevLett.75.4067
67.
Baranova
,
S.
,
Mogilevskaya
,
S. G.
,
Nguyen
,
T. H.
, and
Schillinger
,
D.
,
2020
, “
Higher-Order Imperfect Interface Modeling Via Complex Variables Based Asymptotic Analysis
,”
Int. J. Eng. Sci.
,
157
, p.
103399
.10.1016/j.ijengsci.2020.103399
68.
Muskhelishvili
,
N. I.
,
1959
,
Some Basic Problems of the Mathematical Theory of Elasticity; Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending
,
Noordhoff International Publishing
,
Groningen, The Netherlands
.
69.
Luo
,
J.
, and
Wang
,
X.
,
2009
, “
On the Anti-Plane Shear of an Elliptic Nano Inhomogeneity
,”
Eur. J. Mech. A-Solids
,
28
(
5
), pp.
926
934
.10.1016/j.euromechsol.2009.04.001
70.
Kushch
,
V. I.
,
Chernobai
,
V. S.
, and
Mishuris
,
G. S.
,
2014
, “
Longitudinal Shear of a Composite With Elliptic Nanofibers: Local Stresses and Effective Stiffness
,”
Int. J. Eng. Sci.
,
84
, pp.
79
94
.10.1016/j.ijengsci.2014.06.013
71.
Kushch
,
V. I.
,
Shmegera
,
S. V.
, and
Mykhas'kiv
,
V. V.
,
2018
, “
Multiple Spheroidal Cavities With Surface Stress as a Model of Nanoporous Solid
,”
Int. J. Solids Struct
,
152–153
, pp.
261
271
.10.1016/j.ijsolstr.2018.07.001
72.
Kushch
,
V. I.
,
2018
, “
Stress Field and Effective Elastic Moduli of Periodic Spheroidal Particle Composite With Gurtin-Murdoch Interface
,”
Int. J. Eng. Sci.
,
132
, pp.
79
96
.10.1016/j.ijengsci.2018.08.001
73.
Sneddon
,
I. N.
, and
Berry
,
D. S.
,
1958
, “
The Classical Theory of Elasticity
,”
Elasticity and Plasticity/Elastizität Und Plastizität, Pages
,
Springer
, Berlin, Heidelberg, pp.
1
126
.
74.
Hobson
,
E. W.
,
1931
,
The Theory of Spherical and Ellipsoidal Harmonics
,
Cambridge University Press
, Cambridge, UK.
75.
Kushch
,
V. I.
,
2020
,
Micromechanics of Composites. Multipole Expansion Approach
, 2nd ed.,
Elsevier
, Amsterdam, The Netherlands.
76.
Mi
,
C.
,
2018
, “
Elastic Behavior of a Half-Space With a Steigmann-Ogden Boundary Under Nanoscale Frictionless Patch Loads
,”
Int. J. Eng. Sci.
,
129
, pp.
129
144
.10.1016/j.ijengsci.2018.04.009
77.
Benveniste
,
Y.
,
2014
, “
Exact Results for the Local Fields and the Effective Moduli of Fibrous Composites With Thickly Coated Fibers
,”
J. Mech. Phys. Solids
,
71
, pp.
219
238
.10.1016/j.jmps.2014.07.005
78.
Duan
,
H. L.
, and
Karihaloo
,
B. L.
,
2007
, “
Thermo-Elastic Properties of Heterogeneous Materials With Imperfect Interfaces: Generalized Levin's Formula and Hill's Connections
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
1036
1052
.10.1016/j.jmps.2006.10.006
79.
Han
,
Z.
,
Mogilevskaya
,
S. G.
, and
Schillinger
,
D.
,
2018
, “
Local Fields and Overall Transverse Properties of Unidirectional Composite Materials With Multiple Nanofibers and Steigmann-Ogden Interfaces
,”
Int. J. Solids Struct.
,
147
, pp.
166
182
.10.1016/j.ijsolstr.2018.05.019
80.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2001
, “
Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,”
Mech. Mater
,
33
(
6
), pp.
309
323
.10.1016/S0167-6636(01)00055-2
81.
Bessoud
,
A.-L.
,
Krasucki
,
F.
, and
Serpilli
,
M.
,
2011
, “
Asymptotic Analysis of Shell-Like Inclusions With High Rigidity
,”
J. Elasticity
,
103
(
2
), pp.
153
172
.10.1007/s10659-010-9278-1
82.
Caillerie
,
D.
, and
Nedelec
,
J. C.
,
1980
, “
The Effect of a Thin Inclusion of High Rigidity in an Elastic Body
,”
Math. Meth. Appl. Sci.
,
2
(
3
), pp.
251
270
.10.1002/mma.1670020302
83.
Kanaun
,
S. K.
,
1984
, “
On Singular Models of a Thin Inclusion in a Homogeneous Elastic Medium
,”
J. Appl. Math. Mech
,
48
(
1
), pp.
50
58
.10.1016/0021-8928(84)90106-0
84.
Vil'chevskaya
,
Y. N.
, and
Kanaun
,
S. K.
,
1992
, “
Integral Equations for a Thin Inclusion in a Homogeneous Elastic Medium
,”
J. Appl. Math. Mech.
,
56
(
2
), pp.
235
243
.10.1016/0021-8928(92)90078-M
85.
Simonenko
,
I. B.
,
1974
, “
Problems of Electrostatics in an Inhomogeneous Medium. the Case of a Thin Dielectric With a Large Dielectric Constant
,”
Differ. Eq.
,
10
(
2
), pp.
301
309
.
86.
Eremeyev
,
V. A.
,
Rosi
,
G.
, and
Naili
,
S.
,
2019
, “
Comparison of Anti-Plane Surface Waves in Strain-Gradient Materials and Materials With Surface Stresses
,”
Math. Mech. Solids
,
24
(
8
), pp.
2526
2535
.10.1177/1081286518769960
87.
Eremeyev
,
V. A.
, and
Wiczenbach
,
T.
,
2020
, “
On Effective Bending Stiffness of a Laminate Nanoplate Considering Steigmann-Ogden Surface Elasticity
,”
Appl. Sci.
,
10
(
21
), p.
7402
.10.3390/app10217402
88.
Eremeyev
,
V. A.
, and
Sharma
,
B. L.
,
2019
, “
Anti-Plane Surface Waves in Media With Surface Structure: Discrete Vs. Continuum Model
,”
Int. J. Eng. Sci.
,
143
, pp.
33
38
.10.1016/j.ijengsci.2019.06.007
89.
Sharma
,
B. L.
, and
Eremeyev
,
V. A.
,
2019
, “
Wave Transmission Across Surface Interfaces in Lattice Structures
,”
Int. J. Eng. Sci.
,
145
, p.
103173
.10.1016/j.ijengsci.2019.103173
90.
Eremeyev
,
V. A.
,
Rosi
,
G.
, and
Naili
,
S.
,
2020
, “
Transverse Surface Waves on a Cylindrical Surface With Coating
,”
Int. J. Eng. Sci.
,
147
, p.
103188
.10.1016/j.ijengsci.2019.103188
91.
Steinmann
,
P.
, and
Javili
,
A.
,
2013
, “
Computational Thermomechanics With Boundary Structures
,”
IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures,
A. Cocks, and J. Wang, eds., Vol. 31,
Springer
, Dordrecht, The Netherlands, pp.
179
191
.10.1007/978-94-007-4911-5_16
92.
Cahn
,
J. W.
, and
Larche
,
F.
,
1982
, “
Surface Stress and the Chemical Equilibrium of Small Crystals—II. Solid Particles Embedded in a Solid Matrix
,”
Acta Metall.
,
30
(
1
), pp.
51
56
.10.1016/0001-6160(82)90043-8
93.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Yu
,
C. C.
,
2007
, “
Size-Dependent Elastic Properties of Unidirectional Nano-Composites With Interface Stresses
,”
Acta Mech.
,
188
(
1–2
), pp.
39
54
.10.1007/s00707-006-0371-2
94.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Eshelby Formalism for Nano-Inhomogeneities
,”
Proc. R. Soc. London Ser. A
,
461
(
2062
), pp.
3335
3353
.10.1098/rspa.2005.1520
95.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Surface Stress
,”
J. Mech. Phys.
,
53
(
7
), pp.
1574
1596
.10.1016/j.jmps.2005.02.009
96.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Luo
,
Z. Y.
,
2005
, “
Stress Concentration Tensors of Inhomogeneities With Interface Effects
,”
Mech. Mater.
,
37
(
7
), pp.
723
736
.10.1016/j.mechmat.2004.07.004
97.
Duan
,
H. L.
,
Wang
,
J.
,
Karihaloo
,
B. L.
, and
Huang
,
Z. P.
,
2006
, “
Nano-Porous Materials Can Be Made Stiffer Than Non-Porous Counterparts by Surface Modification
,”
Acta Mater.
,
54
(
11
), pp.
2983
2990
.10.1016/j.actamat.2006.02.035
98.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A United Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects. Part I: Theoretical Framework
,”
Mech. Mater.
,
39
(
1
), pp.
81
93
.10.1016/j.mechmat.2006.02.009
99.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
663
671
.10.1115/1.1781177
100.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.10.1063/1.1539929
101.
Christensen
,
R. M.
, and
Lo
,
K.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
315
330
.10.1016/0022-5096(79)90032-2
102.
He
,
L. H.
, and
Li
,
Z. R.
,
2006
, “
Impact of Surface Stress on Stress Concentration
,”
Int. J. Solids Struct
,
43
(
20
), pp.
6208
6219
.10.1016/j.ijsolstr.2005.05.041
103.
Mi
,
C.
, and
Kouris
,
D. A.
,
2006
, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
,
1
(
4
), pp.
763
791
.10.2140/jomms.2006.1.763
104.
Mi
,
C.
, and
Kouris
,
D.
,
2014
, “
On the Significance of Coherent Interface Effects for Embedded Nanoparticles
,”
Math. Mech. Solids
,
19
(
4
), pp.
350
368
.10.1177/1081286512465426
105.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
,
2006
, “
Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5055
5065
.10.1016/j.ijsolstr.2005.08.007
106.
Jammes
,
M.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2009
, “
Multiple Circular Nano-Inhomogeneities and/or Nano-Pores in One of Two Joined Isotropic Elastic Half-Planes
,”
Eng. Anal. Bound. Elem.
,
33
(
2
), pp.
233
248
.10.1016/j.enganabound.2008.03.010
107.
Kushch
,
V. I.
,
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2011
, “
Elastic Interaction of Spherical Nanoinhomogeneities With Gurtin-Murdoch Type Interfaces
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1702
1716
.10.1016/j.jmps.2011.06.004
108.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018
, “
On Spherical Inhomogeneity With Steigmann-Ogden Interface
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121009
.10.1115/1.4041499
109.
Mogilevskaya
,
S. G.
,
Kushch
,
V. I.
, and
Zemlyanova
,
A. Y.
,
2019
, “
Displacement Representations for the Problems With Sperical and Circular Material Surfaces
,”
Quart. J. Mech. Appl. Math.
,
72
(
4
), pp.
449
471
.10.1093/qjmam/hbz013
110.
Ban
,
Y.
, and
Mi
,
C.
,
2020
, “
Analytical Solutions of a Spherical Nanoinhomogeneity Under Far-Field Unidirectional Loading Based on Steigmann–Ogden Surface Model
,”
Math. Mech. Solids
,
25
(
10
), pp.
1904
1923
.10.1177/1081286520915259
111.
Ban
,
Y.
, and
Mi
,
C.
,
2021
, “
On Spherical Inhomogeneity Embedded in a Half-Space Analyzed With Steigmann-Ogden Surface and Interface Models
,”
Int. J. Solids Struct.
,
216
, pp.
123
135
.10.1016/j.ijsolstr.2020.11.034
112.
Wang
,
J.
,
Yan
,
P.
,
Dong
,
L.
, and
Atluri
,
S. N.
,
2020
, “
Spherical Nano-Inhomogeneity With the Steigmann-Ogden Interface Model Under General Uniform Far-Field Stress Loading
,”
Int. J. Solids Struct
,
185
, pp.
311
323
.10.1016/j.ijsolstr.2019.08.018
113.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
,
2007
, “
Elastic Field of an Isotropic Matrix With a Nanoscale Elliptical Inhomogeneity
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7988
8005
.10.1016/j.ijsolstr.2007.05.019
114.
Dai
,
M.
,
Yang
,
H.-B.
, and
Schiavone
,
P.
,
2019
, “
Stress Concentration Around an Elliptical Hole With Surface Tension Based on the Original Gurtin-Murdoch Model
,”
Mech. Mater.
,
135
, pp.
144
148
.10.1016/j.mechmat.2019.05.009
115.
Yang
,
H.-B.
,
Wang
,
S.
, and
Yu
,
C.
,
2019
, “
Effective in-Plane Stiffness of Unidirectional Periodic Nanoporous Materials With Surface Elasticity
,”
Z. Angew. Math. Phys
,
70
(
4
), pp.
1
11
.10.1007/s00033-019-1174-3
116.
Kushch
,
V. I.
,
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2013
, “
Elastic Fields and Effective Moduli of Particulate Nanocomposites With the Gurtin-Murdoch Model of Interfaces
,”
Int. J. Solids Struct.
,
50
(
7–8
), pp.
1141
1153
.10.1016/j.ijsolstr.2012.12.016
117.
Gao
,
W.
,
Shouwen
,
Y. U.
, and
Huang
,
G.
,
2006
, “
Finite Element Characterization of the Size-Dependent Mechanical Behaviour in Nanosystems
,”
Nanotechnology
,
17
(
4
), pp.
1118
1122
.10.1088/0957-4484/17/4/045
118.
Han
,
Z.
,
Stoter
,
S.
,
Wu
,
C.-T.
,
Cheng
,
C.
,
Mantzaflaris
,
A.
,
Mogilevskaya
,
S. G.
, and
Schillinger
,
D.
,
2019
, “
Consistent Discretization of Higher-Order Interface Models for Thin Layers and Elastic Material Surfaces, Enabled by Isogeometric Cut-Cell Methods
,”
Comput. Methods Appl. Mech. Eng.
,
350
, pp.
245
267
.10.1016/j.cma.2019.03.010
119.
Dong
,
C. Y.
, and
Pan
,
E.
,
2011
, “
Boundary Element Analysis of Nanoinhomogeneities of Arbitrary Shapes With Surface and Interface Effects
,”
Eng. Anal. Bound. Elem.
,
35
(
8
), pp.
996
1002
.10.1016/j.enganabound.2011.03.004
120.
Xu
,
J. Y.
, and
Dong
,
C. Y.
,
2016
, “
Surface and Interface Stress Effects on the Interaction of Nano-Inclusions and Nano-Cracks in an Infinite Domain Under Anti-Plane Shear
,”
Int. J. Mech. Sci.
,
111
, pp.
12
23
.10.1016/j.ijmecsci.2016.03.018
121.
Han
,
Z.
,
Mogilevskaya
,
S. G.
,
Liang
,
Y.
,
Cheng
,
C.
, and
Niu
,
Z.
,
2021
, “
Numerical Study of the Gurtin-Murdoch Model for Curved Interfaces: Benchmark Solutions and Analysis of Curvature-Related Effects
,”
J. Mech. Mater. Struct.
,
16
(
1
), pp.
23
48
.10.2140/jomms.2021.16.23
122.
Dong
,
C. Y.
,
2012
, “
An Integral Equation Formulation of Two-and Three-Dimensional Nanoscale Inhomogeneities
,”
Comp. Mech.
,
49
(
3
), pp.
309
318
.10.1007/s00466-011-0640-3
123.
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2012
, “
On Maxwell's Concept of Equivalent Inhomogeneity: When Do the Interactions Matter?
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
391
417
.10.1016/j.jmps.2011.12.008
124.
Sevostianov
,
I.
,
Mogilevskaya
,
S. G.
, and
Kushch
,
V. I.
,
2019
, “
Maxwell's Methodology of Estimating Effective Properties: Alive and Well
,”
Int. J. Eng. Sci.
,
140
, pp.
35
88
.10.1016/j.ijengsci.2019.05.001
125.
Firooz
,
S.
,
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
, and
Javili
,
A.
,
2019
, “
Homogenization Accounting for Size Effects in Particulate Composites Due to General Interfaces
,”
Mech. Mater.
,
139
, p.
103204
.10.1016/j.mechmat.2019.103204
126.
Mogilevskaya
,
S. G.
,
Zemlyanova
,
A. Y.
, and
Zammarchi
,
M.
,
2018
, “
On the Elastic Far-Field Response of a Two-Dimensional Coated Circular Inhomogeneity: Analysis and Applications
,”
Int. J. Solids Struct.
,
130–131
, pp.
199
210
.10.1016/j.ijsolstr.2017.09.032
127.
Nazarenko
,
L.
,
Bargmann
,
S.
, and
Stolarski
,
H.
,
2017
, “
Closed-Form Formulas for the Effective Properties of Random Particulate Nanocomposites With Complete Gurtin-Murdoch Model of Material Surfaces
,”
Continuum Mech. Thermodyn.
,
29
(
1
), pp.
77
96
.10.1007/s00161-016-0521-2
128.
Nazarenko
,
L.
,
Stolarski
,
H.
, and
Altenbach
,
H.
,
2021
, “
Effective Properties of Particulate Nano-Composites Including Steigmann-Ogden Model of Material Surface
,”
Comp. Mech.
, pp.
1
15
.10.1007/s00466-021-01985-8
129.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
La Grotta
,
A.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Transverse Overall Elastic Behavior of Unidirectional Nano-Composites
,”
Compos. Sci.
,
70
(
3
), pp.
427
434
.10.1016/j.compscitech.2009.11.012
130.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Stolarski
,
H. K.
, and
Benusiglio
,
A.
,
2010
, “
Equivalent Inhomogeneity Method for Evaluating the Effective Elastic Properties of Unidirectional Multi-Phase Composites With Surface/Interface Effects
,”
Int. J. Solids Struct.
,
47
(
3–4
), pp.
407
418
.10.1016/j.ijsolstr.2009.10.007
131.
Chen
,
Q.
, and
Pindera
,
M.-J.
,
2020
, “
Homogenization and Localization of Elastic-Plastic Nanoporous Materials With Gurtin-Murdoch Interfaces: An Assessment of Computational Approaches
,”
Int. J. Plast.
,
124
, pp.
42
70
.10.1016/j.ijplas.2019.08.004
You do not currently have access to this content.