Abstract

Interphase regions that form in heterogeneous materials through various underlying mechanisms such as poor mechanical or chemical adherence, roughness, and coating, play a crucial role in the response of the medium. A well-established strategy to capture a finite thickness interphase behavior is to replace it with a zero-thickness interface model characterized by its own displacement and/or traction jumps, resulting in different interface models. The contributions to date dealing with interfaces commonly assume that the interface is located in the middle of its corresponding interphase. This paper revisits this assumption and introduces an extended general interface model, wherein a unifying approach to the homogenization of heterogeneous materials embedding interfaces between their constituents is developed within the framework of linear elasticity. Through utilizing a weighted average operator, we demonstrate that the assumption of enforcing the interface to coincide with the midlayer is not required and thereby develop a new class of interfaces where the interface is allowed to take any arbitrary position between its bulk neighbors. The proposed novel interface model can recover any of the classical interface models. Next, via incorporating this extended general interface model into homogenization, we develop bounds and estimates for the overall moduli of fiber-reinforced and particle-reinforced composites as functions of the interface position and properties. Finally, we carry out a comprehensive numerical study to highlight the influence of interface position, stiffness ratio, and interface parameters on the overall properties of composites. The developed interface-enhanced homogenization framework also successfully captures size effects, which are immediately relevant to emerging applications of nanocomposites due to their pronounced interface effects at small scales.

References

1.
Voigt
,
W.
,
1889
, “
Ueber Die Beziehung Zwischen Den Beiden Elasticitätsconstanten Isotroper Körper
,”
Ann. Phys.
,
274
(
12
), pp.
573
578
.10.1002/andp.18892741206
2.
Reuss
,
V. A.
,
1929
, “
Berechnung Der Fliehgrenze Von Mischkristallen Auf Grund Der Plastizittitsbedingung Fiir Einkristalle
,”
Z. Angew. Math. Mech
,
9
(
1
), pp.
49
58
.10.1002/zamm.19290090104
3.
Hill
,
R.
,
1952
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proc. Phys. Soc. A
,
65
(
5
), pp.
349
354
.10.1088/0370-1298/65/5/307
4.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.10.1016/0022-5096(63)90036-X
5.
Hill
,
R.
,
1964
, “
Theory of Mechanical Properties of Fiber-Strengthened Matertials: I. Elastic Behavior
,”
J. Mech. Phys. Solids
,
12
(
4
), pp.
199
202
.10.1016/0022-5096(64)90019-5
6.
Hill
,
R.
,
1964
, “
Theory of Mechanical Properties of Fiber-Strengthened Materials: II. Inelastic Behaviour
,”
J. Mech. Phys. Solids
,
12
(
4
), pp.
213
218
.10.1016/0022-5096(64)90020-1
7.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.10.1016/0022-5096(65)90010-4
8.
Hill
,
R.
,
1965
, “
Theory of Mechanical Properties of Fiber-Strengthened Materials—III. Self-Consistent Model
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
189
198
.10.1016/0022-5096(65)90008-6
9.
Hill
,
R.
, “
On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London A
,
326
(
1972
), pp.
131
147
.10.1098/rspa.1972.0001
10.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, pp.
307
324
.
11.
Sachs
,
G.
,
1929
, “
Zur Ableitung Einer Fließbedingung
,”
Mitteilungen Der Deutschen Materialprüfungsanstalten
, Vol.
72
,
Springer
, Berlin, pp.
94
96
.
12.
Bishop
,
J. F. W.
, and
Hill
,
R.
,
1951
, “
A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
Philosophical Magazine
,
42
(
327
), pp.
414
427
.10.1080/14786445108561065
13.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
,
10
(
4
), pp.
335
342
.10.1016/0022-5096(62)90004-2
14.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Elastic Behaviour of Polycrystals
,”
J. Mech. Phys. Solids
,
10
(
4
), pp.
343
352
.10.1016/0022-5096(62)90005-4
15.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.10.1016/0022-5096(63)90060-7
16.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
.10.1063/1.1728579
17.
Hashin
,
Z.
,
1965
, “
On Elastic Behaviour of Fibre Reinforced Materials of Arbitrary Transverse Phase Geometry
,”
J. Mech. Phys. Solids
,
13
(
3
), pp.
119
134
.10.1016/0022-5096(65)90015-3
18.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
143
150
.10.1115/1.3636446
19.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials—A Survey
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
481
505
.10.1115/1.3167081
20.
Beran
,
M.
, and
Molyneux
,
J.
,
1966
, “
Use of Classical Variational Principles to Determine Bounds for the Effective Bulk Modulus in Heterogeneous Media
,”
Q. Appl. Math.
,
24
(
2
), pp.
107
118
.10.1090/qam/99925
21.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-I
,”
J. Mech. Phys. Solids
,
14
(
3
), pp.
151
162
.10.1016/0022-5096(66)90035-4
22.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-II
,”
J. Mech. Phys. Solids
,
14
(
5
), pp.
289
301
.10.1016/0022-5096(66)90025-1
23.
Walpole
,
L. J.
,
1969
, “
On the Overall Elastic Moduli of Composite Materials
,”
J. Mech. Phys. Solids
,
17
(
4
), pp.
235
251
.10.1016/0022-5096(69)90014-3
24.
Fan
,
Z.
,
Tsakiropoulos
,
P.
, and
Miodownik
,
A. P.
,
1992
, “
Prediction of Young's Modulus of Particulate Two Phase Composites
,”
Mater. Sci. Technol.
,
8
(
10
), pp.
922
929
.10.1179/mst.1992.8.10.922
25.
Zimmerman
,
R. W.
,
1992
, “
Hashin-Shtrikman Bounds on the Poisson Ratio of a Composite Material
,”
Mech. Res. Commun.
,
19
(
6
), pp.
563
569
.10.1016/0093-6413(92)90085-O
26.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
223
232
.10.1115/1.3629590
27.
Rosen
,
B. W.
, and
Hashin
,
Z.
,
1970
, “
Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials
,”
Int. J. Eng. Sci.
,
8
(
2
), pp.
157
173
.10.1016/0020-7225(70)90066-2
28.
Milton
,
G. W.
,
1982
, “
New Bounds on Effective Elastic Moduli of Two-Component Materials
,”
Proc. R. Soc. A
,
380
, pp.
305
331
.10.1098/rspa.1982.0044
29.
Bornert
,
M.
,
Stolz
,
C.
, and
Zaoui
,
A.
,
1996
, “
Morphologically Representative Pattern-Based Bounding in Elasticity
,”
J. Mech. Phys. Solids
,
44
(
3
), pp.
307
331
.10.1016/0022-5096(95)00083-6
30.
Nemat-Nasser
,
S.
,
Yu
,
N.
, and
Hori
,
M.
,
1993
, “
Bounds and Estimates of Overall Moduli of Composites With Periodic Microstructure
,”
Mech. Mater.
,
15
(
3
), pp.
163
181
.10.1016/0167-6636(93)90016-K
31.
Aboudi
,
J.
,
1983
, “
The Effective Moduli of Short-Fiber Composites
,”
Int. J. Solids Struct.
,
19
(
8
), pp.
693
707
.10.1016/0020-7683(83)90065-3
32.
Torquato
,
S.
,
1991
, “
Random Heterogeneous Media: Hicrosttucture and Improwed Bounds on Effective Properties
,”
ASME Appl. Mech. Rev.
,
44
(
2
), pp.
37
76
.10.1115/1.3119494
33.
Milton
,
G. W.
, and
Kohn
,
R. V.
,
1988
, “
Variational Bounds of the Effective Moduli of Piezoelectric Composites
,”
J. Mech. Phys. Solids
,
36
(
6
), pp.
597
629
.10.1016/0022-5096(88)90001-4
34.
Bisegna
,
P.
, and
Luciano
,
R.
,
1996
, “
Variational Bounds for the Overall Properties of Piezoelectric Composites
,”
J. Mech. Phys. Solids
,
44
(
4
), pp.
583
602
.10.1016/0022-5096(95)00084-4
35.
Bisegna
,
P.
, and
Luciano
,
R.
,
1997
, “
On Methods for Bounding the Overall Properties of Periodic Piezoelectric Fibrous Composites
,”
J. Mech. Phys. Solids
,
45
(
8
), pp.
1329
1356
.10.1016/S0022-5096(96)00116-0
36.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1998
, “
Universal Bounds for Effective Piezoelectric Moduli
,”
Mech. Mater.
,
30
(
1
), pp.
1
19
.10.1016/S0167-6636(98)00029-5
37.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1993
, “
Double-Inclusion Model and Overall Moduli of Multi-Phase Composites
,”
Mech. Mater.
,
14
(
3
), pp.
189
206
.10.1016/0167-6636(93)90066-Z
38.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
, Amsterdam, The Netherlands.
39.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
2001
, “
Variational Bounds for the Effective Moduli of Heterogeneous Piezoelectric Solids
,”
Philos. Mag. A
,
81
(
4
), pp.
903
926
.10.1080/01418610108214327
40.
Gibiansky
,
L. V.
, and
Torquato
,
S.
,
1997
, “
Thermal Expansion of Isotropic Multiphase Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
45
(
7
), pp.
1223
1252
.10.1016/S0022-5096(96)00129-9
41.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London. Ser. A
,
241
, pp.
376
396
.10.1098/rspa.1957.0133
42.
Rodin
,
J. G.
,
1996
, “
Eshelby's Inclusion Problem for Polygons and Polyhedra
,”
J. Mech. Phys. Solids
,
44
(
12
), pp.
1977
1995
.10.1016/S0022-5096(96)00066-X
43.
Markenscoff
,
X.
,
1997
, “
On the Shape of the Eshelby Inclusions
,”
J. Elasticity
,
49
(
2
), pp.
163
166
.10.1023/A:1007474108433
44.
Mura
,
T.
,
1997
, “
The Determination of the Elastic Field of a Polygonal Star Shaped Inclusion
,”
Mech. Res. Commun.
,
24
(
5
), pp.
473
482
.10.1016/S0093-6413(97)00052-9
45.
Lubarda
,
V. A.
, and
Markenscoff
,
X.
,
1998
, “
On the Absence of Eshelby Property for Non-Ellipsoidal Inclusions
,”
Int. J. Solids Struct.
,
35
(
25
), pp.
3405
3411
.10.1016/S0020-7683(98)00025-0
46.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
2001
, “
Computational Micro-Macro Material Testing
,”
Arch. Comput. Methods Eng.
,
8
(
2
), pp.
131
228
.10.1007/BF02897871
47.
Hershey
,
A.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
(
3
), pp.
236
240
.10.1115/1.4010899
48.
Kröner
,
E.
,
1958
, “
Berechnung Der Elastischen Konstanten Des Vielkristalls Aus Den Konstanten Des Einkristalls
,”
Z. Für Phys.
,
151
, pp.
504
518
.10.1007/BF01337948
49.
Budiansky
,
B.
,
1965
, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
223
227
.10.1016/0022-5096(65)90011-6
50.
Laws
,
N.
,
1973
, “
On the Thermostatics of Composite Materials
,”
J. Mech. Phys. Solids
,
21
(
1
), pp.
9
17
.10.1016/0022-5096(73)90027-6
51.
Kerner
,
E. H.
,
1956
, “
The Elastic and Thermo-Elastic Properties of Composite Media
,”
Proc. Phys. Soc. B
,
69
(
8
), pp.
808
813
.10.1088/0370-1301/69/8/305
52.
Christensen
,
R. M.
, and
Lo
,
K. N.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
315
330
.10.1016/0022-5096(79)90032-2
53.
Huang
,
Y.
,
Hu
,
K. X.
,
Wei
,
X.
, and
Chandra
,
A.
,
1994
, “
A Generalized Self-Consistent Mechanics Method for Composite Materials With Multiphase Inclusions
,”
J. Mech. Phys. Solids
,
42
(
3
), pp.
491
504
.10.1016/0022-5096(94)90028-0
54.
Huang
,
Y.
, and
Hu
,
K. X.
,
1995
, “
A Generalized Self-Consistent Mechanics Method for Solids Containing Elliptical Inclusions
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
566
572
.10.1115/1.2895982
55.
Benveniste
,
Y.
, and
Berdichevsky
,
O.
,
2010
, “
On Two Models of Arbitrarily Curved Three-Dimensional Thin Interphases in Elasticity
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1899
1915
.10.1016/j.ijsolstr.2010.03.033
56.
Benveniste
,
Y.
, and
Milton
,
G. W.
,
2010
, “
The Effective Medium and the Average Field Approximations Vis-Vis the HashinShtrikman Bounds—I: The Self-Consistent Scheme in Matrix-Based Composites
,”
J. Mech. Phys. Solids
,
58
(
7
), pp.
1026
1038
.10.1016/j.jmps.2010.04.014
57.
Chatzigeorgiou
,
G.
,
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2012
, “
Effective Mechanical Properties of “Fuzzy Fiber” Composites
,”
Compos. Part B
,
43
(
6
), pp.
2577
2593
.10.1016/j.compositesb.2012.03.001
58.
Boucher
,
S.
,
1976
, “
Modulus Effectifs de Materiaux Quasi Homogenes et Quasi Isotropes, Constitues D'une Matrice Elastique et D'inclusions Elastiques
,”
Rev. Metall.
,
22
, pp.
31
36
.
59.
McLaughlin
,
R.
,
1977
, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
,
15
(
4
), pp.
237
244
.10.1016/0020-7225(77)90058-1
60.
Norris
,
A. N.
,
1985
, “
A Differential Scheme for the Effective Moduli of Composites
,”
Mech. Mater.
,
4
(
1
), pp.
1
16
.10.1016/0167-6636(85)90002-X
61.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
62.
Pierard
,
O.
,
Friebel
,
C.
, and
Doghri
,
I.
,
2004
, “
Mean-Field Homogenization of Multi-Phase Thermo-Elastic Composites : A General Framework and Its Validation
,”
Compos. Sci. Technol.
,
64
(
10–11
), pp.
1587
1603
.10.1016/j.compscitech.2003.11.009
63.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka's Theory in Composite Materials
,”
Mech. Mater.
,
6
(
2
), pp.
147
157
.10.1016/0167-6636(87)90005-6
64.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1987
, “
On Eshelby's Inclusion Problem in a Three-Phase Spherically Concentric Solid, and a Modification of Mori-Tanaka's Method
,”
Mech. Mater.
,
6
(
4
), pp.
347
361
.10.1016/0167-6636(87)90032-9
65.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1989
, “
On Eshelby's S-Tensor in a Three-Phase Cylindrically Concentric Solid, and the Elastic Moduli of Fiber-Reinforced Composites
,”
Mech. Mater.
,
8
(
2–3
), pp.
77
88
.10.1016/0167-6636(89)90008-2
66.
Weng
,
G. J.
,
1990
, “
The Theoretical Connection Between Mori-Tanaka's Theory and the Hashin-Shtrikman-Walpole Bounds
,”
Int. J. Eng. Sci.
,
28
(
11
), pp.
1111
1120
.10.1016/0020-7225(90)90111-U
67.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1990
, “
On the Application of Mori-Tanaka's Theory Involving Transversely Isotropic Spheroidal Inclusions
,”
Int. J. Eng. Sci.
,
28
(
11
), pp.
1121
1137
.10.1016/0020-7225(90)90112-V
68.
Tandon
,
G. P.
, and
Weng
,
G. J.
,
1984
, “
The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites
,”
Polym. Compos.
,
5
(
4
), pp.
327
333
.10.1002/pc.750050413
69.
Hu
,
G. K.
, and
Weng
,
G. J.
,
2000
, “
The Connections Between the Double-Inclusion Model and the Ponte Castaneda-Willis, Mori-Tanaka, and Kuster-Toksoz Models
,”
Mech. Mater.
,
32
(
8
), pp.
495
503
.10.1016/S0167-6636(00)00015-6
70.
Aboutajeddine
,
A.
, and
Neale
,
K. W.
,
2005
, “
The Double-Inclusion Model: A New Formulation and New Estimates
,”
Mech. Mater.
,
37
(
2–3
), pp.
331
341
.10.1016/j.mechmat.2003.08.016
71.
Riccardi
,
A.
, and
Montheillet
,
F.
,
1999
, “
A Generalized Self-Consistent Method for Solids Containing Randomly Oriented Spheroidal Inclusions
,”
Acta Mech.
,
133
(
1–4
), pp.
39
56
.10.1007/BF01179009
72.
Ogden
,
R. W.
,
1974
, “
On the Overall Moduli of Non-Linear Elastic Composite Materials
,”
J. Mech. Phys. Solids
,
22
(
6
), pp.
541
553
.10.1016/0022-5096(74)90033-7
73.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1985
, “
Variational Principles for Inhomogeneous Non-Linear Media
,”
IMA J. Appl. Math.
,
35
(
1
), pp.
39
54
.10.1093/imamat/35.1.39
74.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1987
, “
Bounds and Self-Consistent Estimates for the Overall Properties of Nonlinear Composites
,”
IMA J. Appl. Math.
,
39
(
3
), pp.
215
240
.10.1093/imamat/39.3.215
75.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1992
, “
Some Simple Explicit Bounds for the Overall Behaviour of Nonlinear Composites
,”
Int. J. Solids Struct.
,
29
(
14–15
), pp.
1981
1987
.10.1016/0020-7683(92)90188-Y
76.
Willis
,
J. R.
,
1977
, “
Bounds and Self-Consistent Estimates for the Overall Properties of Anisotropic Composites
,”
J. Mech. Phys. Solids
,
25
(
3
), pp.
185
202
.10.1016/0022-5096(77)90022-9
77.
Willis
,
J. R.
,
1983
, “
The Overall Elastic Response of Composite Materials
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
1202
1209
.10.1115/1.3167202
78.
Willis
,
J. R.
,
1991
, “
On Methods for Bounding the Overall Properties of Nonlinear Composites
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
73
86
.10.1016/0022-5096(91)90031-I
79.
Ponte Castañeda
,
P.
,
DeBotton
,
G.
, and
Li
,
G.
,
1992
, “
Effective Properties of Nonlinear Inhomogeneous Dielectrics
,”
Phys. Rev. B
,
46
(
8
), pp.
4387
4394
.10.1103/PhysRevB.46.4387
80.
Castañeda
,
P. P.
, and
Willis
,
J. R.
, “
On the Overall Properties of Nonlinearly Viscous Composites
,”
Proc. R. Soc. London A
,
416
(
1988
), pp.
217
244
.
81.
Suquet
,
P. M.
,
1993
, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
981
1002
.10.1016/0022-5096(93)90051-G
82.
DeBotton
,
G.
, and
Ponte Castañeda
,
P.
,
1993
, “
Elastoplastic Constitutive Relations for Fiber-Reinforced Solids
,”
Int. J. Solids Struct.
,
30
(
14
), pp.
1865
1890
.10.1016/0020-7683(93)90222-S
83.
Olson
,
T.
,
1994
, “
Improvements on Taylor's Upper Bound for Rigid-Plastic Composites
,”
Mater. Sci. Eng. A
,
175
(
1–2
), pp.
15
20
.10.1016/0921-5093(94)91039-1
84.
Ponte Castañeda
,
P.
, “
The Overall Constitutive Behaviour of Nonlinearly Elastic Composites
,”
Proc. R. Soc. A
,
422
(
1989
), pp.
147
171
.10.1098/rspa.1989.0023
85.
Ponte Castañeda
,
P.
,
1996
, “
Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
827
862
.10.1016/0022-5096(96)00015-4
86.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: I—Theory
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
737
757
.10.1016/S0022-5096(01)00099-0
87.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: II—Applications
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
759
782
.10.1016/S0022-5096(01)00098-9
88.
Ponte Castañeda
,
P.
,
1992
, “
New Variational Principles in Plasticity and Their Application to Composite Materials
,”
J. Mech. Phys. Solids
,
40
(
8
), pp.
1757
1788
.10.1016/0022-5096(92)90050-C
89.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
45
71
.10.1016/0022-5096(91)90030-R
90.
Castañeda
,
P. P.
, and
Suquet
,
P.
,
1997
,
Nonlinear Composites
, Vol.
34
,
Elsevier, Amsterdam, The Netherlands.
10.1016/S0065-2156(08)70321-1
91.
Leroy
,
Y.
, and
Ponte Castañeda
,
P.
,
2001
, “
Bounds on the Self-Consistent Approximation for Nonlinear Media and Implications for the Second-Order Method
,”
C. R. L'Académie Des Sci.
,
329
(
8
), pp.
571
577
.
92.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
,
2003
, “
Second-Order Estimates for the Large-Deformation Response of Particle-Reinforced Rubbers
,”
C. R. Mec.
,
331
(
1
), pp.
1
8
.10.1016/S1631-0721(03)00021-4
93.
Mura
,
T.
,
1988
, “
Inclusion Problems
,”
ASME Appl. Mech. Rev.
,
41
(
1
), pp.
15
20
.10.1115/1.3151875
94.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030803
10.1115/1.4001911.
95.
Firooz
,
S.
,
Saeb
,
S.
,
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2019
, “
Systematic Study of Homogenization and the Utility of Circular Simplified Representative Volume Element
,”
Math. Mech. Solids
,
24
(
9
), pp.
2961
2985
.10.1177/1081286518823834
96.
Mandel
,
J.
,
1966
,
Contribution Theorique a L'etude de L'ecrouissage et Des Lois de L'ecoulement Plastique
,
Springer, Berlin
.
97.
Tvergaard
,
V.
,
1990
, “
Analysis of Tensile Properties for a Whisker-Reinforced Metal-Matrix Composite
,”
Acta Metall. Et Mater.
,
38
(
2
), pp.
185
194
.10.1016/0956-7151(90)90048-L
98.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
1998
, “
Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
155
(
1–2
), pp.
181
192
.10.1016/S0045-7825(97)00139-4
99.
Bao
,
Y.
,
Hutchinson
,
W.
, and
McMeeking
,
R. M.
,
1991
, “
Plastic Reinforcement of Ductile Materials Against Plastic Flow and Creep
,”
Acta Metall. Mater.
,
39
(
8
), pp.
1871
1882
.10.1016/0956-7151(91)90156-U
100.
Sluis
,
OV. D.
,
Vosbeek
,
P. H. J.
,
Schreurs
,
P. J. G.
, and
Jer
,
H. E. H. M.
,
1999
, “
Homogenization of Heterogeneous Polymers
,”
Int. J. Solids Struct.
,
36
(
21
), pp.
3193
3214
.10.1016/S0020-7683(98)00144-9
101.
van der Sluis
,
O.
,
Schreurs
,
P. J. G.
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
2000
, “
Overall Behaviour of Heterogeneous Elastoviscoplastic Materials: Effect of Microstructural Modelling
,”
Mech. Mater.
,
32
(
8
), pp.
449
462
.10.1016/S0167-6636(00)00019-3
102.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1995
, “
Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids
,”
ASME J. Eng. Mater. Technol.
,
117
(
4
), pp.
412
432
.10.1115/1.2804735
103.
Miehe
,
C.
,
2002
, “
Strain-Driven Homogenization of Inelastic Microstructures and Composites Based on an Incremental Variational Formulation
,”
Int. J. Numer. Methods Eng.
,
55
(
11
), pp.
1285
1322
.10.1002/nme.515
104.
Kaczmarczyk
,
Ł. C.
,
Pearce
,
J.
, and
Bićanić
,
N.
,
2008
, “
Scale Transition and Enforcement of RVE Boundary Conditions in Second-Order Computational Homogenization
,”
Int. J. Numer. Methods Eng.
,
74
(
3
), pp.
506
522
.10.1002/nme.2188
105.
Terada
,
K.
,
Hori
,
M.
,
Kyoya
,
T.
, and
Kikuchi
,
N.
,
2000
, “
Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches
,”
Int. J. Solids Struct.
,
37
(
16
), pp.
2285
2311
.10.1016/S0020-7683(98)00341-2
106.
Drago
,
A.
, and
Pindera
,
M. J.
,
2007
, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous Vs Periodic Microstructures
,”
Compos. Sci. Technol.
,
67
(
6
), pp.
1243
1263
.10.1016/j.compscitech.2006.02.031
107.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes: IV—The Equations of Hydrodynamics
,”
J. Chem. Phys.
,
18
(
6
), pp.
817
829
.10.1063/1.1747782
108.
Mercer
,
B. S.
,
Mandadapu
,
K. K.
, and
Papadopoulos
,
P.
,
2015
, “
Novel Formulations of Microscopic Boundary-Value Problems in Continuous Multiscale Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
268
292
.10.1016/j.cma.2014.12.021
109.
Fritzen
,
F.
, and
Böhlke
,
T.
,
2010
, “
Influence of the Type of Boundary Conditions on the Numerical Properties of Unit Cell Problems
,”
Tech. Mech.
,
30
(
4
), pp.
354
363
.https://www.researchgate.net/publication/288033928_Influence_of_the_type_of_boundary_conditions_on_the_numerical_properties_of_unit_cell_problems
110.
Yuan
,
X.
, and
Tomita
,
Y.
,
2001
, “
Effective Properties of Cosserat Composites With Periodic Microstructure
,”
Mech. Res. Commun.
,
28
(
3
), pp.
265
270
.10.1016/S0093-6413(01)00172-0
111.
Jiang
,
C. P.
, and
Cheung
,
Y. K.
,
2001
, “
An Exact Solution for the Three-Phase Piezoelectric Cylinder Model Under Antiplane Shear and Its Applications to Piezoelectric Composites
,”
Int. J. Solids Struct.
,
38
(
28–29
), pp.
4777
4796
.10.1016/S0020-7683(00)00324-3
112.
Inglis
,
H. M.
,
Geubelle
,
P. H.
, and
Matouš
,
K.
,
2008
, “
Boundary Condition Effects on Multiscale Analysis of Damage Localization
,”
Philos. Mag.
,
88
(
16
), pp.
2373
2397
.10.1080/14786430802345645
113.
Larsson
,
F.
,
Runesson
,
K.
,
Saroukhani
,
S.
, and
Vafadari
,
R.
,
2011
, “
Computational Homogenization Based on a Weak Format of Micro-Periodicity for RVE-Problems
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
11
26
.10.1016/j.cma.2010.06.023
114.
Glüge
,
R.
,
2013
, “
Generalized Boundary Conditions on Representative Volume Elements and Their Use in Determining the Effective Material Properties
,”
Comput. Mater. Sci.
,
79
, pp.
408
416
.10.1016/j.commatsci.2013.06.038
115.
Saroukhani
,
S.
,
Vafadari
,
R.
,
Andersson
,
R.
,
Larsson
,
F.
, and
Runesson
,
K.
,
2015
, “
On Statistical Strain and Stress Energy Bounds From Homogenization and Virtual Testing
,”
Eur. J. Mech., A/Solids
,
51
, pp.
77
95
.10.1016/j.euromechsol.2014.11.003
116.
Nguyen
,
V. D.
,
Wu
,
L.
, and
Noels
,
L.
,
2017
, “
Unified Treatment of Microscopic Boundary Conditions and Efficient Algorithms for Estimating Tangent Operators of the Homogenized Behavior in the Computational Homogenization Method
,”
Comput. Mech.
,
59
(
3
), pp.
483
505
.10.1007/s00466-016-1358-z
117.
Drugan
,
W. J.
, and
Willis
,
J. R.
,
1996
, “
A Micromechanics-Based Nonlocal Constitutive Equation and Estimates of Representative Volume Element Size for Elastic Composites
,”
J. Mech. Phys. Solids
,
44
(
4
), pp.
497
524
.10.1016/0022-5096(96)00007-5
118.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3647
3679
.10.1016/S0020-7683(03)00143-4
119.
Gitman
,
I. M.
,
Askes
,
H.
, and
Aifantis
,
E. C.
,
2005
, “
The Representative Volume Size in Static and Dynamic Micro-Macro Transitions
,”
Int. J. Fract.
,
135
(
1–4
), pp.
L3
9
.10.1007/s10704-005-4389-6
120.
Khisaeva
,
Z. F.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
On the Size of RVE in Finite Elasticity of Random Composites
,”
J. Elasticity
,
85
(
2
), pp.
153
173
.10.1007/s10659-006-9076-y
121.
Temizer
,
I.
, and
Zohdi
,
T. I.
,
2007
, “
A Numerical Method for Homogenization in Non-Linear Elasticity
,”
Comput. Mech.
,
40
(
2
), pp.
281
298
.10.1007/s00466-006-0097-y
122.
Thomas
,
M.
,
Boyard
,
N.
,
Perez
,
L.
,
Jarny
,
Y.
, and
Delaunay
,
D.
,
2008
, “
Representative Volume Element of Anisotropic Unidirectional Carbon-Epoxy Composite With High-Fibre Volume Fraction
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3184
3192
.10.1016/j.compscitech.2008.07.015
123.
Temizer
,
I.
,
Wu
,
T.
, and
Wriggers
,
P.
,
2013
, “
On the Optimality of the Window Method in Computational Homogenization
,”
Int. J. Eng. Sci.
,
64
, pp.
66
73
.10.1016/j.ijengsci.2012.12.007
124.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2014
, “
Towards Gigantic RVE Sizes for 3D Stochastic Fibrous Networks
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
359
376
.10.1016/j.ijsolstr.2013.10.011
125.
Dai
,
M.
,
Schiavone
,
P.
, and
Gao
,
C. F.
,
2017
, “
A New Method for the Evaluation of the Effective Properties of Composites Containing Unidirectional Periodic Nanofibers
,”
Arch. Appl. Mech.
,
87
(
4
), pp.
647
665
.10.1007/s00419-016-1215-8
126.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Prob. Eng. Mech.
,
21
(
2
), pp.
112
132
.10.1016/j.probengmech.2005.07.007
127.
Ghosh
,
S.
,
Lee
,
K.
, and
Moorthy
,
S.
,
1995
, “
Multiple Scale Analysis of Heterogeneous Elastic Structures Using Homogenization Theory and Voronoi Cell Finite Element Method
,”
Int. J. Solids Struct.
,
32
(
1
), pp.
27
62
.10.1016/0020-7683(94)00097-G
128.
Ghosh
,
S.
, and
Moorthy
,
S.
,
1995
, “
Elastic-Plastic Analysis of Arbitrary Heterogeneous Materials With the Voronoi Cell Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
121
(
1–4
), pp.
373
409
.10.1016/0045-7825(94)00687-I
129.
Moorthy
,
S.
, and
Ghosh
,
S.
,
1996
, “
A Model for Analysis of Arbitrary Composite and Porous Microstructures With Voronoi Cell Finite Elements
,”
Int. J. Numer. Methods Eng.
,
39
(
14
), pp.
2363
2398
.10.1002/(SICI)1097-0207(19960730)39:14<2363::AID-NME958>3.0.CO;2-D
130.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
69
94
.10.1016/S0045-7825(97)00218-1
131.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
1999
, “
Effective Properties of Composite Materials With Periodic Microstructure: A Computational Approach
,”
Comput. Methods Appl. Mech. Eng.
,
172
(
1–4
), pp.
109
143
.10.1016/S0045-7825(98)00227-8
132.
Vinogradov
,
V.
, and
Milton
,
G. W.
,
2008
, “
An Accelerated FFT Algorithm for Thermoelastic and Non-Linear Composites
,”
Int. J. Numer. Methods Eng.
,
76
(
11
), pp.
1678
1695
.10.1002/nme.2375
133.
Lee
,
S. B.
,
Lebensohn
,
R. A.
, and
Rollett
,
A. D.
,
2011
, “
Modeling the Viscoplastic Micromechanical Response of Two-Phase Materials Using Fast Fourier Transforms
,”
Int. J. Plasticity
,
27
(
5
), pp.
707
727
.10.1016/j.ijplas.2010.09.002
134.
Monchiet
,
V.
, and
Bonnet
,
G.
,
2012
, “
A Polarization-Based FFT Iterative Scheme for Computing the Effective Properties of Elastic Composites With Arbitrary Contrast
,”
Int. J. Numer. Methods Eng.
,
89
(
11
), pp.
1419
1436
.10.1002/nme.3295
135.
Moulinec
,
H.
, and
Silva
,
F.
,
2014
, “
Comparison of Three Accelerated FFT-Based Schemes for Computing the Mechanical Response of Composite Materials
,”
Int. J. Numer. Methods Eng.
,
97
(
13
), pp.
960
985
.10.1002/nme.4614
136.
Kabel
,
M.
,
Merkert
,
D.
, and
Schneider
,
M.
,
2015
, “
Use of Composite Voxels in FFT-Based Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
168
188
.10.1016/j.cma.2015.06.003
137.
Kamiński
,
M.
,
1999
, “
Boundary Element Method Homogenization of the Periodic Linear Elastic Fiber Composites
,”
Eng. Anal. Bound. Elem.
,
23
(
10
), pp.
815
823
.10.1016/S0955-7997(99)00029-6
138.
Okada
,
H.
,
Fukui
,
Y.
, and
Kumazawa
,
N.
,
2001
, “
Homogenization Method for Heterogeneous Material Based on Boundary Element Method
,”
Comput. Struct.
,
79
(
20–21
), pp.
1987
2007
.10.1016/S0045-7949(01)00121-3
139.
Procházka
,
P.
,
2001
, “
Homogenization of Linear and of Debonding Composites Using the BEM
,”
Eng. Anal. Bound. Elem.
,
25
(
9
), pp.
753
769
.10.1016/S0955-7997(01)00066-2
140.
Renard
,
J.
, and
Marmonier
,
M. F.
,
1987
, “
Etude de L'initiation de L'endommagement Dans la Matrice D'un Matériau Composite Par Une Méthode D'homogénéisation
,”
La Recherche Aérospatiale
,
6
, pp.
43
51
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7761287
141.
Takano
,
N.
,
Ohnishi
,
Y.
,
Zako
,
M.
, and
Nishiyabu
,
K.
,
2000
, “
The Formulation of Homogenization Method Applied to Large Deformation Problem for Composite Materials
,”
Int. J. Solids Struct.
,
37
(
44
), pp.
6517
6535
.10.1016/S0020-7683(99)00284-X
142.
Feyel
,
F.
, and
Chaboche
,
J. L.
,
2000
, “
FE2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre SiC/Ti Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
), pp.
309
330
.10.1016/S0045-7825(99)00224-8
143.
Terada
,
K.
, and
Kikuchi
,
N.
,
2001
, “
A Class of General Algorithms for Multi-Scale Analyses of Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
40–41
), pp.
5427
5464
.10.1016/S0045-7825(01)00179-7
144.
Miehe
,
C.
, and
Koch
,
A.
,
2002
, “
Computational Micro-to-Macro Transitions of Discretized Microstructures Undergoing Small Strains
,”
Arch. Appl. Mech.
,
72
(
4–5
), pp.
300
317
.10.1007/s00419-002-0212-2
145.
Segurado
,
J.
, and
Llorca
,
J.
,
2002
, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
,
50
(
10
), pp.
2107
2121
.10.1016/S0022-5096(02)00021-2
146.
Segurado
,
J.
, and
LLorca
,
J.
,
2006
, “
Computational Micromechanics of Composites: The Effect of Particle Spatial Distribution
,”
Mech. Mater.
,
38
(
8–10
), pp.
873
883
.10.1016/j.mechmat.2005.06.026
147.
Miehe
,
C.
,
Schröder
,
J.
, and
Bayreuther
,
C.
,
2002
, “
On the Homogenization Analysis of Composite Materials Based on Discretized Fluctuations on the Micro-Structure
,”
Acta Mech.
,
155
(
1–2
), pp.
1
16
.10.1007/BF01170836
148.
Feyel
,
F.
,
2003
, “
A Multilevel Finite Element Method (FE2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
28–30
), pp.
3233
3244
.10.1016/S0045-7825(03)00348-7
149.
Terada
,
K.
,
Saiki
,
I.
,
Matsui
,
K.
, and
Yamakawa
,
Y.
,
2003
, “
Two-Scale Kinematics and Linearization for Simultaneous Two-Scale Analysis of Periodic Heterogeneous Solids at Finite Strain
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
31–32
), pp.
3531
3563
.10.1016/S0045-7825(03)00365-7
150.
Klinge
,
S.
, and
Hackl
,
K.
,
2012
, “
Application of the Multiscale Fem to the Modeling of Nonlinear Composites With a Random Microstructure
,”
Int. J. Multiscale Comput. Eng.
,
10
(
3
), pp.
213
227
.10.1615/IntJMultCompEng.2012002059
151.
Moës
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
(
7
), pp.
813
833
.10.1016/S0013-7944(01)00128-X
152.
Spieler
,
C.
,
Kästner
,
M.
,
Goldmann
,
J.
,
Brummund
,
J.
, and
Ulbricht
,
V.
,
2013
, “
XFEM Modeling and Homogenization of Magnetoactive Composites
,”
Acta Mech.
,
224
(
11
), pp.
2453
2469
.10.1007/s00707-013-0948-5
153.
Savvas
,
D.
,
Stefanou
,
G.
,
Papadrakakis
,
M.
, and
Deodatis
,
G.
,
2014
, “
Homogenization of Random Heterogeneous Media With Inclusions of Arbitrary Shape Modeled by XFEM
,”
Comput. Mech.
,
54
(
5
), pp.
1221
1235
.10.1007/s00466-014-1053-x
154.
Patil
,
R. U.
,
Mishra
,
B. K.
, and
Singh
,
I. V.
,
2017
, “
A New Multiscale XFEM for the Elastic Properties Evaluation of Heterogeneous Materials
,”
Int. J. Mech. Sci.
,
122
, pp.
277
287
.10.1016/j.ijmecsci.2017.01.028
155.
Lee
,
B. J.
, and
Mear
,
M. E.
,
1991
, “
Effect of Inclusion Shape on Stiffness of Isotropic and Transversely Isotropic Two-Phase Composites
,”
J. Mech. Phys. Solids
,
39
(
5
), pp.
627
649
.10.1016/0022-5096(91)90044-O
156.
Wang
,
Y. M.
, and
Weng
,
G. J.
,
1992
, “
The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
510
518
.10.1115/1.2893753
157.
Monette
,
L.
,
Anderson
,
M. P.
, and
Grest
,
G. S.
,
1994
, “
Effect of Volume Fraction and Morphology of Reinforcing Phases in Composites
,”
J. Appl. Phys.
,
75
(
2
), pp.
1155
1170
.10.1063/1.356501
158.
BöHm
,
H. J.
,
Rammerstorfer
,
F. G.
,
Fischer
,
F. D.
, and
Siegmund
,
T.
,
1994
, “
Microscale Arrangement Effects on the Thermomechanical Behavior of Advanced Two-Phase Materials
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
268
273
.10.1115/1.2904285
159.
Ghosh
,
S.
,
Nowak
,
Z.
, and
Lee
,
K.
,
1997
, “
Quantitative Characterization and Modeling of Composite Microstructures by Voronoi Cells
,”
Acta Mater.
,
45
(
6
), pp.
2215
2234
.10.1016/S1359-6454(96)00365-5
160.
Brockenbrough
,
J. R.
,
Suresh
,
S.
, and
Wienecke
,
H. A.
,
1991
, “
Deformation of Metal-Matrix Composites With Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape
,”
Acta Metall. Mater.
,
39
(
5
), pp.
735
752
.10.1016/0956-7151(91)90274-5
161.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
,
2001
, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
,
27
(
1
), pp.
37
48
.10.1007/s004660000212
162.
Chawla
,
N.
,
Sidhu
,
R. S.
, and
Ganesh
,
V. V.
,
2006
, “
Three-Dimensional Visualization and Microstructure-Based Modeling of Deformation in Particle-Reinforced Composites
,”
Acta Mater.
,
54
(
6
), pp.
1541
1548
.10.1016/j.actamat.2005.11.027
163.
Kanouté
,
P.
,
Boso
,
D. P.
,
Chaboche
,
J. L.
, and
Schrefler
,
B. A.
,
2009
, “
Multiscale Methods for Composites: A Review
,”
Arch. Comput. Methods Eng.
,
16
(
1
), pp.
31
75
.10.1007/s11831-008-9028-8
164.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Brekelmans
,
W. A. M.
,
2010
, “
Multi-Scale Computational Homogenization: Trends and Challenges
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2175
2182
.10.1016/j.cam.2009.08.077
165.
Nguyen
,
V. P.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2011
, “
Multiscale Continuous and Discontinuous Modeling of Heterogeneous Materials: A Review on Recent Developments
,”
J. Multiscale Modell.
,
03
(
04
), pp.
229
270
.10.1142/S1756973711000509
166.
Saeb
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2016
, “
Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's
,”
ASME Bound, Appl. Mech. Rev.
,
68
(
5
), p.
050801
.10.1115/1.4034024
167.
Matouš
,
K.
,
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Gillman
,
A.
,
2017
, “
A Review of Predictive Nonlinear Theories for Multiscale Modeling of Heterogeneous Materials
,”
J. Comput. Phys.
,
330
, pp.
192
220
.10.1016/j.jcp.2016.10.070
168.
Hancox
,
N. L.
, and
Wells
,
H.
,
1977
, “
The Effects of Fibre Surface Coatings on the Mechanical Properties of CFRP
,”
Fibre Sci. Technol.
,
10
(
1
), pp.
9
22
.10.1016/0015-0568(77)90025-2
169.
Williams
,
J. H.
, and
Kousiounelos
,
P. N.
,
1978
, “
Thermoplastic Fibre Coatings Enhance Composite Strength and Toughness
,”
Fibre Sci. Technol.
,
11
(
2
), pp.
83
88
.10.1016/0015-0568(78)90001-5
170.
Drzal
,
L. T.
,
Rich
,
M. J.
,
Koenig
,
M. F.
, and
Lloyd
,
P. F.
,
1983
, “
Adhesion of Graphite Fibers to Epoxy Matrices: I—The Role of Fivber Surface Treatment
,”
J. Adhes.
,
16
(
1
), pp.
1
30
.10.1080/00218468308074901
171.
Drzal
,
L. T.
,
Rich
,
M. J.
,
Koenig
,
M. F.
, and
Lloyd
,
P. F.
,
1983
, “
Adhesion of Graphite Fibers to Epoxy Matrices: II—The Effect of Fiber Finish
,”
J. Adhes.
,
16
(
2
), pp.
133
152
.10.1080/00218468308074911
172.
Subramanian
,
R. V.
, and
Crasto
,
A. S.
,
1986
, “
Electrodeposition of a Polymer Interphase in Carbon-Fiber Composites
,”
Polym. Compos.
,
7
(
4
), pp.
201
218
.10.1002/pc.750070403
173.
Adams
,
D. F.
,
1987
, “
A Micromechanics Analysis of the Influence of the Interface on the Performance of Polymer-Matrix Composites
,”
J. Reinf. Plast. Compos.
,
6
(
1
), pp.
66
88
.10.1177/073168448700600106
174.
Sinien
,
L.
,
Lin
,
Y.
,
Xiaoguang
,
Z.
, and
Zongneng
,
Q.
,
1992
, “
Microdamage and Interfacial Adhesion in Glass Bead-Filled High-Density Polyethylene
,”
J. Mater. Sci.
,
27
(
17
), pp.
4633
4638
.10.1007/BF01165998
175.
Mascia
,
L.
,
Dhillon
,
J.
, and
Harper
,
J. F.
,
1993
, “
Adhesion Enhancement of Rubbery and Ductile Polyolefin Coatings on Glass Fibers for Epoxy Composites and Effects on Failure Mechanism
,”
J. Appl. Polym. Sci.
,
47
(
3
), pp.
487
498
.10.1002/app.1993.070470309
176.
Kouris
,
D.
,
1993
, “
Stress Concentration Due to the Interaction Between Two Imperfectly Bonded Fibers in a Continuous Fiber Composite
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
203
206
.10.1115/1.2900747
177.
Torquato
,
S.
, and
Rintoul
,
M. D.
,
1995
, “
Effect of the Interface on the Properties of Composite Media
,”
Phys. Rev. Lett.
,
75
(
22
), pp.
4067
4070
.10.1103/PhysRevLett.75.4067
178.
Chamis
,
C. C.
,
1972
,
Mechanics of Load Transfer at the Fiber/Matrix Interface
,
National Aeronautics and Space Administration
, Washington, DC.
179.
Jang
,
B. Z.
,
Hwang
,
L. R.
, and
Lieu
,
Y. K.
,
1986
, “
The Assessment of Interfacial Adhesion in Fibrous Composites
,”
Interfaces in Metal-Matrix Composites, Proceedings of a Symposium Held at the Annual Meeting of the Metallurgical Society,
New Orleans, LA, pp.
95
109
.
180.
Narkis
,
M.
,
Chen
,
E. J. H.
, and
Pipes
,
R. B.
,
1988
, “
Review of Methods for Characterization of Interfacial Fiber-Matrix Interactions
,”
Polym. Compos.
,
9
(
4
), pp.
245
251
.10.1002/pc.750090402
181.
Wang
,
Q.
, and
Chiang
,
F. P.
,
1996
, “
Experimental Characterization of Interphase Mechanical Properties of Composites
,”
Compos. Part B
,
27
(
2
), pp.
123
128
.10.1016/1359-8368(95)00034-8
182.
Drzal
,
L. T.
,
1983
, “
Composite Interphase Characterization
,”
Sampe J.
,
19
, pp.
7
14.
10.1016/0010-4361(84)90767-5
183.
Drzal
,
L. T.
,
1986
, “The
Interphase in Epoxy Composites
,” K. Dušek, ed.,
Epoxy Resins and Composites II. Advances in Polymer Science
, Vol. 75.
Springer
, Berlin, Heidelberg, pp.
1
32
.10.1007/BFb0017913
184.
Wang
,
W.
, and
Jasiuk
,
I.
,
1998
, “
Effective Elastic Constants of Participate Composites With Inhomogeneous Interphases
,”
J. Compos. Mater.
,
32
(
15
), pp.
1391
1424
.10.1177/002199839803201503
185.
Crasto
,
A. S.
,
Own
,
S. H.
, and
Subramanian
,
R. V.
,
1988
, “
The Influence of the Interphase on Composite Properties: Poly(Ethylene-co-Acrylic Acid) and Poly(Methyl Vinyl Ether-co-Maleic Anhydride) Electrodeposited on Graphite Fibers
,”
Polym. Compos.
,
9
(
1
), pp.
78
92
.10.1002/pc.750090111
186.
Kerans
,
R. J.
,
Hay
,
R. S.
,
Pagano
,
N. J.
, and
Parthasarathy
,
T. A.
,
1989
, “
The Role of the Fiber-Matrix Interface in Ceramic Composites
,”
Am. Ceram. Soc. Bull.
,
68
, pp.
429
442
.
187.
Swain
,
R. E.
,
Reifsnider
,
K. L.
,
Jayaraman
,
K.
, and
El-Zein
,
M.
,
1990
, “
Interface/Interphase Concepts in Composite Material Systems
,”
J. Thermoplastic Compos. Mater.
,
3
(
1
), pp.
13
23
.10.1177/089270579000300102
188.
Evans
,
A. G.
,
Zok
,
F. W.
, and
Davis
,
J.
,
1991
, “
The Role of Interfaces in Fiber-Reinforced Brittle Matrix Composites
,”
Compos. Sci. Technol.
,
42
(
1–3
), pp.
3
24
.10.1016/0266-3538(91)90010-M
189.
Hughes
,
J. D. H.
,
1991
, “
The Carbon Fibre/Epoxy Interface-A Review
,”
Compos. Sci. Technol.
,
41
(
1
), pp.
13
45
.10.1016/0266-3538(91)90050-Y
190.
Podgaiz
,
R. H.
, and
Williams
,
R. J. J.
,
1997
, “
Effects of Fiber Coatings on Mechanical Properties of Unidirectional Glass-Reinforced Composites
,”
Compos. Sci. Technol.
,
57
(
8
), pp.
1071
1076
.10.1016/S0266-3538(96)00182-0
191.
Wacker
,
G.
,
Bledzki
,
A. K.
, and
Chate
,
A.
,
1998
, “
Effect of Interphase on the Transverse Young's Modulus of Glass/Epoxy Composites
,”
Compos. Part A
,
29
(
5–6
), pp.
619
626
.10.1016/S1359-835X(97)00116-4
192.
Gao
,
S. L.
, and
Mäder
,
E.
,
2002
, “
Characterisation of Interphase Nanoscale Property Variations in Glass Fibre Reinforced Polypropylene and Epoxy Resin Composites
,”
Compos. Part A
,
33
(
4
), pp.
559
576
.10.1016/S1359-835X(01)00134-8
193.
Mäder
,
E.
,
Gao
,
S. L.
, and
Plonka
,
R.
,
2004
, “
Enhancing the Properties of Composites by Controlling Their Interphase Parameters
,”
Adv. Eng. Mater.
,
6
(
3
), pp.
147
150
.10.1002/adem.200300558
194.
Walpole
,
L. J.
,
1978
, “
A Coated Inclusion in an Elastic Medium
,”
Math. Proc. Cambridge Philos. Soc.
,
83
(
3
), pp.
495
506
.10.1017/S0305004100054773
195.
Theocaris
,
P. S.
, and
Papanicolaou
,
G. C.
,
1979
, “
The Effect of the Boundary Interphase on the Thermomechanical Behaviour of Composites Reinforced With Short Fibres
,”
Fibre Sci. Technol.
,
12
(
6
), pp.
421
433
.10.1016/0015-0568(79)90016-2
196.
Rosen
,
B. W.
,
1965
, “Mechanics of Composite Strengthening,”
Fibre Composite Materials, American Society for Metals
, pp.
37
75
.https://ntrs.nasa.gov/citations/19660035520
197.
Benveniste
,
Y.
,
Dvorak
,
G. J.
, and
Chen
,
T.
,
1989
, “
Stress Fields in Composites With Coated Inclusions
,”
Mech. Mater.
,
7
(
4
), pp.
305
317
.10.1016/0167-6636(89)90021-5
198.
Benveniste
,
Y.
,
Dvorak
,
G. J.
, and
Chen
,
T.
,
1991
, “
On Effective Properties of Composites With Coated Cylindrically Orthotropic Fibers
,”
Mech. Mater.
,
12
(
3–4
), pp.
289
297
.10.1016/0167-6636(91)90025-U
199.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Benveniste
,
Y.
,
1990
, “
Stress Fields in Composites Reinforced by Coated Cylindrically Orthotropic Fibers
,”
Mech. Mater.
,
9
(
1
), pp.
17
32
.10.1016/0167-6636(90)90027-D
200.
Carman
,
G. P.
,
Averill
,
R. C.
,
Reifsnider
,
K. L.
, and
Reddy
,
J. N.
,
1993
, “
Optimization of Fiber Coatings to Minimize Stress Concentrations in Composite Materials
,”
J. Compos. Mater.
,
27
(
6
), pp.
589
612
.10.1177/002199839302700603
201.
Mikata
,
Y.
, and
Taya
,
M.
,
1985
, “
Stress Field in a Coated Continuous Fiber Composite Subjected to Thermo-Mechanical Loadings
,”
J. Compos. Mater.
,
19
(
6
), pp.
554
578
.10.1177/002199838501900607
202.
Mikata
,
Y.
, and
Taya
,
M.
,
1985
, “
Stress Field in and Around a Coated Short Fiber in an Infinite Matrix Subjected to Uniaxial and Biaxial Loadings
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
19
24
.10.1115/1.3168996
203.
Hatta
,
H.
, and
Taya
,
M.
,
1987
, “
Thermal Stress in a Coated Short Fiber Composite
,”
ASME J. Eng. Mater. Technol.
,
109
(
1
), pp.
59
63
.10.1115/1.3225934
204.
Pagano
,
N. J.
, and
Tandon
,
G. P.
,
1988
, “
Elastic Response of Multi-Directional Coated-Fiber Composites
,”
Compos. Sci. Technol.
,
31
(
4
), pp.
273
293
.10.1016/0266-3538(88)90034-6
205.
Pagano
,
N. J.
, and
Tandon
,
G. P.
,
1990
, “
Thermo-Elastic Model for Multidirectional Coated-Fiber Composites: Traction Formulation
,”
Compos. Sci. Technol.
,
38
(
3
), pp.
247
269
.10.1016/0266-3538(90)90061-9
206.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Zhong
,
Y.
,
2005
, “
Stress Fields of a Spheroidal Inhomogeneity With an Interphase in an Infinite Medium Under Remote Loadings
,”
Proc. R. Soc. A
,
461
(
2056
), pp.
1055
1080
.10.1098/rspa.2004.1396
207.
Sullvian
,
B. J.
, and
Hashin
,
Z.
,
1990
, “
Determination of Mechanical Properties of Interfacial Region Between Fiber and Matrix in Organic Matrix Composites
,”
Controlled Interphases in Composite Materials
,
Springer
, Dordrecht, The Netherlands, pp.
521
537
.10.1007/978-94-011-7816-7_50
208.
Maurer
,
F. H. J.
,
1990
, “
An Interlayer Model to Describe the Physical Properties of Particulate Composites
,”
Controlled Interphases in Composite Materials
,
Springer
, Dordrecht, The Netherlands, pp.
491
504
.10.1007/978-94-011-7816-7_48
209.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1991
, “
Elastic Moduli of Thickly Coated Particle and Fiber-Reinforced Composites
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
388
398
.10.1115/1.2897198
210.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
,
1994
, “
Micramechanical Approach of the Coated Inclusion Problem and Applications to Composite Materials
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
274
278
.10.1115/1.2904286
211.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
,
1995
, “
Elastic Composites With Coated Reinforcements: A Micromechanical Approach for Nonhomothetic Topology
,”
Int. J. Eng. Sci.
,
33
(
6
), pp.
829
843
.10.1016/0020-7225(94)00108-V
212.
Barhdadi
,
E. H.
,
Lipinski
,
P.
, and
Cherkaoui
,
M.
,
2007
, “
Four Phase Model: A New Formulation to Predict the Effective Elastic Moduli of Composites
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
313
320
.10.1115/1.2712472
213.
El Mouden
,
M.
,
Cherkaoui
,
M.
,
Molinari
,
A.
, and
Berveiller
,
M.
,
1998
, “
The Overall Elastic Response of Materials Containing Coated Inclusions in a Periodic Array
,”
Int. J. Eng. Sci.
,
36
(
7–8
), pp.
813
829
.10.1016/S0020-7225(97)00111-0
214.
Sarvestani
,
A. S.
,
2003
, “
On the Overall Elastic Moduli of Composites With Spherical Coated Fillers
,”
Int. J. Solids Struct.
,
40
(
26
), pp.
7553
7566
.10.1016/S0020-7683(03)00299-3
215.
Nazarenko
,
L.
,
Bargmann
,
S.
, and
Stolarski
,
H.
,
2016
, “
Lurie Solution for Spherical Particle and Spring Layer Model of Interphases: Its Application in Analysis of Effective Properties of Composites
,”
Mech. Mater.
,
96
, pp.
39
52
.10.1016/j.mechmat.2016.01.011
216.
Nazarenko
,
L.
,
Stolarski
,
H.
, and
Altenbach
,
H.
,
2017
, “
Thermo-Elastic Properties of Random Particulate Nano-Materials for Various Models of Interphase
,”
Int. J. Mech. Sci.
,
126
, pp.
130
141
.10.1016/j.ijmecsci.2017.03.021
217.
Nazarenko
,
L.
,
Stolarski
,
H.
, and
Altenbach
,
H.
,
2018
, “
Thermo-Elastic Properties of Random Composites With Unidirectional Anisotropic Short-Fibers and Interphases
,”
Eur. J. Mech., A/Solids
,
70
, pp.
249
266
.10.1016/j.euromechsol.2018.01.002
218.
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2006
, “
Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composites
,”
Mech. Mater.
,
38
(
8–10
), pp.
884
907
.10.1016/j.mechmat.2005.06.029
219.
Xu
,
W.
,
Ma
,
H.
,
Ji
,
S.
, and
Chen
,
H.
,
2016
, “
Analytical Effective Elastic Properties of Particulate Composites With Soft Interfaces Around Anisotropic Particles
,”
Compos. Sci. Technol.
,
129
, pp.
10
18
.10.1016/j.compscitech.2016.04.011
220.
Xu
,
W.
,
Wu
,
F.
,
Jiao
,
Y.
, and
Liu
,
M.
,
2017
, “
A General Micromechanical Framework of Effective Moduli for the Design of Nonspherical Nano- and Micro-Particle Reinforced Composites With Interface Properties
,”
Mater. Des.
,
127
, pp.
162
172
.10.1016/j.matdes.2017.04.075
221.
Xu
,
W.
,
Jia
,
M.
,
Zhu
,
Z.
,
Liu
,
M.
,
Lei
,
D.
, and
Gou
,
X.
,
2018
, “
n-Phase Micromechanical Framework for the Conductivity and Elastic Modulus of Particulate Composites: Design to Microencapsulated Phase Change Materials (MPCMs)-Cementitious Composites
,”
Mater. Des.
,
145
, pp.
108
115
.10.1016/j.matdes.2018.02.065
222.
Xu
,
W.
,
Zhang
,
D.
,
Lan
,
P.
, and
Jiao
,
Y.
,
2019
, “
Multiple-Inclusion Model for the Transport Properties of Porous Composites Considering Coupled Effects of Pores and Interphase Around Spheroidal Particles
,”
Int. J. Mech. Sci.
,
150
, pp.
610
616
.10.1016/j.ijmecsci.2018.10.063
223.
Wu
,
Y.
,
Ling
,
Z.
, and
Dong
,
Z.
,
2000
, “
Stress-Strain Fields and the Effectiveness Shear Properties for Three-Phase Composites With Imperfect Interface
,”
Int. J. Solids Struct.
,
37
(
9
), pp.
1275
1292
.10.1016/S0020-7683(98)00295-9
224.
Nie
,
S.
, and
Basaran
,
C.
,
2005
, “
A Micromechanical Model for Effective Elastic Properties of Particulate Composites With Imperfect Interfacial Bonds
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
4179
4191
.10.1016/j.ijsolstr.2004.12.009
225.
Lu
,
P.
,
Leong
,
Y. W.
,
Pallathadka
,
P. K.
, and
He
,
C. B.
,
2013
, “
Effective Moduli of Nanoparticle Reinforced Composites Considering Interphase Effect by Extended Double-Inclusion model - Theory and Explicit Expressions
,”
Int. J. Eng. Sci.
,
73
, pp.
33
55
.10.1016/j.ijengsci.2013.08.003
226.
Shi
,
C.
,
Tu
,
Q.
,
Fan
,
H.
,
Rios
,
C. A. O.
, and
Li
,
S.
,
2016
, “
Interphase Models for Nanoparticle-Polymer Composites
,”
J. Nanomech. Micromech.
,
6
(
2
), p.
04016003
.10.1061/(ASCE)NM.2153-5477.0000107
227.
Marcadon
,
V.
,
Herve
,
E.
, and
Zaoui
,
A.
,
2007
, “
Micromechanical Modeling of Packing and Size Effects in Particulate Composites
,”
Int. J. Solids Struct.
,
44
(
25–26
), pp.
8213
8228
.10.1016/j.ijsolstr.2007.06.008
228.
Liu
,
H. T.
, and
Sun
,
L. Z.
,
2008
, “
A Micromechanics-Based Elastoplastic Model for Amorphous Composites With Nanoparticle Interactions
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
0310091
.10.1115/1.2839899
229.
Deng
,
F.
, and
Van Vliet
,
K. J.
,
2011
, “
Prediction of Elastic Properties for Polymer-Particle Nanocomposites Exhibiting an Interphase
,”
Nanotechnology
,
22
(
16
), p.
165703
.10.1088/0957-4484/22/16/165703
230.
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1993
, “
Polymeric Composite Materials Incorporating an Elastomeric Interphase: A Mathematical Assessment
,”
Compos. Sci. Technol.
,
46
(
4
), pp.
307
318
.10.1016/0266-3538(93)90176-H
231.
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1993
, “
Residual Thermal Stresses in Filamentary Polymer-Matrix Composites Containing an Elastomeric Interphase
,”
J. Compos. Mater.
,
27
(
8
), pp.
830
860
.10.1177/002199839302700805
232.
Gardner
,
S. D.
,
Pittman
,
C. U.
,
Chang
,
T. C.
,
Low
,
B. Y.
, and
Hackett
,
R. M.
,
1995
, “
Microstress Distribution in Graphite Fibre/Epoxy Composites Containing an Elastomeric Interphase: Response to Uniaxial and Biaxial Loading Conditions
,”
Composite
,
26
(
4
), pp.
269
280
.10.1016/0010-4361(95)93670-F
233.
Ordóñez-Miranda
,
J.
,
Alvarado-Gil
,
J. J.
, and
Medina-Ezquivel
,
R.
,
2010
, “
Generalized Bruggeman Formula for the Effective Thermal Conductivity of Particulate Composites With an Interface Layer
,”
Int. J. Thermophys.
,
31
(
4–5
), pp.
975
986
.10.1007/s10765-010-0756-2
234.
Pham
,
D. C.
, and
Torquato
,
S.
,
2003
, “
Strong-Contrast Expansions and Approximations for the Effective Conductivity of Isotropic Multiphase Composites
,”
J. Appl. Phys.
,
94
(
10
), pp.
6591
6602
.10.1063/1.1619573
235.
Tong
,
Y.
, and
Jasiuk
,
I.
,
1990
, “
Transverse Elastic Moduli of Composites Reinforced With Cylindrical Coated Fibers: Successive Iteration Method
,”
Proceedings of Fifth Technical Conference of the American Society for Composites
, Lancaster, PA, May 1, pp.
117
126
.
236.
Chouchaoui
,
C. S.
, and
Benzeggagh
,
M. L.
,
1997
, “
The Effect of Interphase on the Elastic Behavior of a Glass/Epoxy Bundle
,”
Compos. Sci. Technol.
,
57
(
6
), pp.
617
622
.10.1016/S0266-3538(96)00133-9
237.
Guinovart-Díaz
,
R.
,
Rodríguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
, and
Sabina
,
F. J.
,
2003
, “
Modeling of Three-Phase Fibrous Composite Using the Asymptotic Homogenization Method
,”
Mech. Adv. Mater. Struct.
,
10
(
4
), pp.
319
333
.10.1080/10759410306753
238.
Lurie
,
S.
,
Belov
,
P.
,
Volkov-Bogorodsky
,
D.
, and
Tuchkova
,
N.
,
2006
, “
Interphase Layer Theory and Application in the Mechanics of Composite Materials
,”
J. Mater. Sci.
,
41
(
20
), pp.
6693
6707
.10.1007/s10853-006-0183-8
239.
Lebon
,
F.
, and
Rizzoni
,
R.
,
2010
, “
Asymptotic Analysis of a Thin Interface: The Case Involving Similar Rigidity
,”
Int. J. Eng. Sci.
,
48
(
5
), pp.
473
486
.10.1016/j.ijengsci.2009.12.001
240.
Lebon
,
F.
, and
Rizzoni
,
R.
,
2011
, “
Asymptotic Behavior of a Hard Thin Linear Elastic Interphase: An Energy Approach
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
441
449
.10.1016/j.ijsolstr.2010.10.006
241.
Papanicolaou
,
G. C.
,
Theocaris
,
P. S.
, and
Spathis
,
G. D.
,
1980
, “
Adhesion Efficiency Between phases in fibre-Reinforced Polymers by Means of the Concept of Boundary Interphase
,”
Colloid Polym. Sci.
,
258
(
11
), pp.
1231
1237
.10.1007/BF01668768
242.
Ostoja-Starzewski
,
M.
,
Jasiuk
,
I.
,
Wang
,
W.
, and
Alzebdeh
,
K.
,
1996
, “
Composites With Functionally Graded Interphases: Mesocontinuum Concept and Effective Transverse Conductivity
,”
Acta Mater.
,
44
(
5
), pp.
2057
2066
.10.1016/1359-6454(95)00269-3
243.
Sottos
,
N. R.
,
McCullough
,
R. L.
, and
Guceri
,
S. I.
,
1989
, “
Thermal Stresses Due to Property Gradients at the Fiber/Matrix Interface, in: American Society of Mechanical Engineers
,”
Appl. Mech. Div.
,
100
, pp.
11
20
.https://www.scopus.com/record/display.uri?eid=2-s2.0-0024863415&origin=inward&txGid=356960a232a82edf87d2b4ec2f24d913&featureToggles=FEATURE_NEW_METRICS_SECTION:1
244.
Jayaraman
,
K.
,
Gao
,
Z.
, and
Reifsnider
,
K. L.
,
1991
, “
Stress Fields in Continuous Fiber Composites With Interphasial Property Gradients
,”
Proceedings of the American Society for Composites. Sixth Technical Conference. Composite Materials, Mechanics and Processing
, Albany, New York, Oct. 7–9, pp.
759
768
.
245.
Jayaraman
,
K.
,
Reifsnider
,
K. L.
, and
Giacco
,
A.
,
1992
, “
Local Stress Fields in a Unidirectional Fiber-Reinforced Composite With a Non-Homogeneous Interphase Region: Formulation
,”
Adv. Compos. Lett.
,
1
(
2
), pp.
54
57
.10.1177/096369359200100201
246.
Jayaraman
,
K.
, and
Reifsnider
,
K. L.
,
1993
, “
The Interphase in Unidirectional Fiber-Reinforced Epoxies: Effect on Residual Thermal Stress
,”
Compos. Sci. Technol.
,
47
(
2
), pp.
119
129
.10.1016/0266-3538(93)90041-E
247.
Mikata
,
Y.
,
1994
, “
Stress Fields in a Continuous Fiber Composite With a Variable Interphase Under Thermo-Mechanical Loadings
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
367
377
.10.1115/1.2904300
248.
Ru
,
C. Q.
,
1999
, “
A New Method for an Inhomogeneity With Stepwise Graded Interphase Under Thermomechanical Loadings
,”
J. Elasticity
,
56
(
2
), pp.
107
127
.10.1023/A:1007677114424
249.
Theocaris
,
P. S.
,
Spathis
,
G.
, and
Sideridis
,
E.
,
1982
, “
Elastic and Viscoelastic Properties of Fibre-Reinforced Composite Materials
,”
Fibre Sci. Technol.
,
17
(
3
), pp.
169
181
.10.1016/0015-0568(82)90002-1
250.
Theocaris
,
P. S.
,
Sideridis
,
E. P.
, and
Papanicolaou
,
G. C.
,
1985
, “
The Elastic Longitudinal Modulus and Poisson's Ratio of Fiber Composites
,”
J. Reinf. Plast. Compos.
,
4
(
4
), pp.
396
418
.10.1177/073168448500400405
251.
Sideridis
,
E.
,
1988
, “
The In-Plane Shear Modulus of Fibre Reinforced Composites as Defined by the Concept of Interphase
,”
Compos. Sci. Technol.
,
31
(
1
), pp.
35
53
.10.1016/0266-3538(88)90076-0
252.
Theocaris
,
P. S.
,
1987
,
The Mesophase Concept in Composites
,
Springer-Verlag
, Berlin.
253.
Theocaris
,
P. S.
,
1985
, “
The Unfolding Model for the Representation of the Mesophase Layer in Composites
,”
J. Appl. Polym. Sci.
,
30
(
2
), pp.
621
645
.10.1002/app.1985.070300214
254.
Dasgupta
,
A.
, and
Bhandarkar
,
S. M.
,
1992
, “
A Generalized Self-Consistent Mori-Tanaka Scheme for Fiber-Composites With Multiple Interphases
,”
Mech. Mater.
,
14
(
1
), pp.
67
82
.10.1016/0167-6636(92)90019-A
255.
Shabana
,
Y. M.
,
2013
, “
A Micromechanical Model for Composites Containing Multi-Layered Interphases
,”
Compos. Struct.
,
101
, pp.
265
273
.10.1016/j.compstruct.2013.02.008
256.
Herve
,
E.
, and
Zaoui
,
A.
,
1993
, “
n-Layered Inclusion-Based Micromechanical Modelling
,”
Int. J. Eng. Sci.
,
31
(
1
), pp.
1
10
.10.1016/0020-7225(93)90059-4
257.
Herve
,
E.
, and
Zaoui
,
A.
,
1995
, “
Elastic Behaviour of Multiply Coated Fibre-Reinforced Composites
,”
Int. J. Eng. Sci.
,
33
(
10
), pp.
1419
1433
.10.1016/0020-7225(95)00008-L
258.
Berbenni
,
S.
, and
Cherkaoui
,
M.
,
2010
, “
Homogenization of Multicoated Inclusion-Reinforced Linear Elastic Composites With Eigenstrains: Application to Thermoelastic Behavior
,”
Philos. Mag.
,
90
(
22
), pp.
3003
3026
.10.1080/14786431003767033
259.
Bonfoh
,
N.
,
Coulibaly
,
M.
, and
Sabar
,
H.
,
2014
, “
Effective Properties of Elastic Composite Materials With Multi-Coated Reinforcements: A New Micromechanical Modelling and Applications
,”
Compos. Struct.
,
115
, pp.
111
119
.10.1016/j.compstruct.2014.04.011
260.
Jasiuk
,
I.
, and
Kouider
,
M. W.
,
1993
, “
The Effect of an Inhomogeneous Interphase on the Elastic Constants of Transversely Isotropic Composites
,”
Mech. Mater.
,
15
(
1
), pp.
53
63
.10.1016/0167-6636(93)90078-6
261.
Wu
,
Y. M.
,
Huang
,
Z. P.
,
Zhong
,
Y.
, and
Wang
,
J.
,
2004
, “
Effective Moduli of Particle-Filled Composite With Inhomogeneous Interphase: Part I—Bounds
,”
Compos. Sci. Technol.
,
64
(
9
), pp.
1345
1351
.10.1016/j.compscitech.2003.10.009
262.
Zhong
,
Y.
,
Wang
,
J.
,
Wu
,
Y. M.
, and
Huang
,
Z. P.
,
2004
, “
Effective Moduli of Particle-Filled Composite With Inhomogeneous Interphase: Part II - Mapping Method and Evaluation
,”
Compos. Sci. Technol.
,
64
(
9
), pp.
1353
1362
.10.1016/j.compscitech.2003.10.010
263.
Xu
,
W.
,
Wu
,
Y.
, and
Gou
,
X.
,
2019
, “
Effective Elastic Moduli of Nonspherical Particle-Reinforced Composites With Inhomogeneous Interphase Considering Graded Evolutions of Elastic Modulus and Porosity
,”
Comput. Methods Appl. Mech. Eng.
,
350
, pp.
535
553
.10.1016/j.cma.2019.03.021
264.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
1996
, “
Effect of an Inhomogeneous Interphase Zone on the Bulk Modulus of a Particulate Composite
,”
Compos. Part B
,
63
(
4
), pp.
855
561
.10.1115/1.2787239
265.
Lutz
,
M. P.
,
Monteiro
,
P. J. M.
, and
Zimmerman
,
R. W.
,
1997
, “
Inhomogeneous Interfacial Transition Zone Model for the Bulk Modulus of Mortar
,”
Cem. Concrete Res.
,
27
(
7
), pp.
1113
1122
.10.1016/S0008-8846(97)00086-0
266.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
2005
, “
Effect of an Inhomogeneous Interphase Zone on the Bulk Modulus and Conductivity of a Particulate Composite
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
429
437
.10.1016/j.ijsolstr.2004.06.046
267.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
2016
, “
Effect of the Interphase Zone on the Conductivity or Diffusivity of a Particulate Composite Using Maxwell's Homogenization Method
,”
Int. J. Eng. Sci.
,
98
, pp.
51
59
.10.1016/j.ijengsci.2015.07.006
268.
Low
,
B. Y.
,
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1994
, “
A Micromechanical Characterization of Graphite-Fiber/Epoxy Composites Containing a Heterogeneous Interphase Region
,”
Compos. Sci. Technol.
,
52
(
4
), pp.
589
606
.10.1016/0266-3538(94)90042-6
269.
Low
,
B. Y.
,
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1995
, “
A Micromechanical Characterization of Residual Thermal Stresses in Carbon Fiber/Epoxy Composites Containing a Non-Uniform Interphase Region
,”
Compos. Eng.
,
5
(
4
), pp.
375
396
.10.1016/0961-9526(94)00104-H
270.
Li
,
J. Y.
,
2000
, “
Thermoelastic Behavior of Composites With Functionally Graded Interphase: A Multi-Inclusion Model
,”
Int. J. Solids Struct.
,
37
(
39
), pp.
5579
5597
.10.1016/S0020-7683(99)00227-9
271.
Shen
,
L.
, and
Yi
,
S.
,
2001
, “
An Effective Inclusion Model for Effective Moduli of Heterogeneous Materials With Ellipsoidal Inhomogeneities
,”
Int. J. Solids Struct.
,
38
(
32–33
), pp.
5789
5805
.10.1016/S0020-7683(00)00370-X
272.
Shen
,
L.
, and
Li
,
J.
,
2003
, “
Effective Elastic Moduli of Composites Reinforced by Particle or Fiber With an Inhomogeneous Interphase
,”
Int. J. Solids Struct.
,
40
(
6
), pp.
1393
1409
.10.1016/S0020-7683(02)00659-5
273.
Shen
,
L.
, and
Li
,
J.
,
2005
, “
Homogenization of a Fibre/Sphere With an Inhomogeneous Interphase for the Effective Elastic Moduli of Composites
,”
Proc. R. Soc. A
,
461
(
2057
), pp.
1475
1504
.10.1098/rspa.2005.1447
274.
Sevostianov
,
I.
, and
Kachanov
,
M.
,
2007
, “
Effect of Interphase Layers on the Overall Elastic and Conductive Properties of Matrix Composites. Applications to Nanosize Inclusion
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
1304
1315
.10.1016/j.ijsolstr.2006.06.020
275.
Jiang
,
Y.
,
Tohgo
,
K.
, and
Shimamura
,
Y.
,
2009
, “
A Micro-Mechanics Model for Composites Reinforced by Regularly Distributed Particles With an Inhomogeneous Interphase
,”
Comput. Mater. Sci.
,
46
(
2
), pp.
507
515
.10.1016/j.commatsci.2009.04.003
276.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
A Closed-Form, Hierarchical, Multi-Interphase Model for Composites—Derivation, Verification and Application to Nanocomposites
,”
J. Mech. Phys. Solids
,
59
(
1
), pp.
43
63
.10.1016/j.jmps.2010.09.015
277.
Hernández-Pérez
,
A.
, and
Avilés
,
F.
,
2010
, “
Modeling the Influence of Interphase on the Elastic Properties of Carbon Nanotube Composites
,”
Comput. Mater. Sci.
,
47
(
4
), pp.
926
933
.10.1016/j.commatsci.2009.11.025
278.
Mahiou
,
H.
, and
Béakou
,
A.
,
1998
, “
Modelling of Interfacial Effects on the Mechanical Properties of Fibre-Reinforced Composites
,”
Compos. Part A
,
29
(
9–10
), pp.
1035
1048
.10.1016/S1359-835X(98)00090-6
279.
Kiritsi
,
C. C.
, and
Anifantis
,
N. K.
,
2001
, “
Load Carrying Characteristics of Short Fiber Composites Containing a Heterogeneous Interphase Region
,”
Comput. Mater. Sci.
,
20
(
1
), pp.
86
97
.10.1016/S0927-0256(00)00129-4
280.
You
,
L. H.
,
You
,
X. Y.
, and
Zheng
,
Z. Y.
,
2006
, “
Thermomechanical Analysis of Elastic-Plastic Fibrous Composites Comprising an Inhomogeneous Interphase
,”
Comput. Mater. Sci.
,
36
(
4
), pp.
440
450
.10.1016/j.commatsci.2005.08.010
281.
Yao
,
Y.
,
Chen
,
S.
, and
Chen
,
P.
,
2013
, “
The Effect of a Graded Interphase on the Mechanism of Stress Transfer in a Fiber-Reinforced Composite
,”
Mech. Mater.
,
58
, pp.
35
54
.10.1016/j.mechmat.2012.11.008
282.
Sabiston
,
T.
,
Mohammadi
,
M.
,
Cherkaoui
,
M.
,
Lévesque
,
J.
, and
Inal
,
K.
,
2016
, “
Micromechanics for a Long Fibre Reinforced Composite Model With a Functionally Graded Interphase
,”
Compos. Part B
,
84
, pp.
188
199
.10.1016/j.compositesb.2015.08.070
283.
Sburlati
,
R.
, and
Cianci
,
R.
,
2015
, “
Interphase Zone Effect on the Spherically Symmetric Elastic Response of a Composite Material Reinforced by Spherical Inclusions
,”
Int. J. Solids Struct.
,
71
, pp.
91
98
.10.1016/j.ijsolstr.2015.06.010
284.
Sburlati
,
R.
,
Cianci
,
R.
, and
Kashtalyan
,
M.
,
2018
, “
Hashin's Bounds for Elastic Properties of Particle-Reinforced Composites With Graded Interphase
,”
Int. J. Solids Struct.
,
138
, pp.
224
235
.10.1016/j.ijsolstr.2018.01.015
285.
Rao
,
Y. N.
, and
Dai
,
H. L.
,
2017
, “
Micromechanics-Based Thermo-Viscoelastic Properties Prediction of Fiber Reinforced Polymers With Graded Interphases and Slightly Weakened Interfaces
,”
Compos. Struct.
,
168
, pp.
440
455
.10.1016/j.compstruct.2017.02.059
286.
Yang
,
Y.
,
He
,
Q.
,
Dai
,
H. L.
,
Pang
,
J.
,
Yang
,
L.
,
Li
,
X. Q.
,
Rao
,
Y. N.
, and
Dai
,
T.
,
2020
, “
Micromechanics-Based Analyses of Short Fiber-Reinforced Composites With Functionally Graded Interphases
,”
J. Compos. Mater.
,
54
(
8
), pp.
1031
1048
.10.1177/0021998319873033
287.
Broutman
,
L. J.
, and
Agarwal
,
B. D.
,
1974
, “
A Theoretical Study of the Effect of an Interfacial Layer on the Properties of Composites
,”
Polym. Eng. Sci.
,
14
(
8
), pp.
581
588
.10.1002/pen.760140808
288.
Agarwal
,
B. D.
, and
Bansal
,
R. K.
,
1979
, “
Effect of an Interfacial Layer on the Properties of Fibrous Composites: A Theoretical Analysis
,”
Fibre Sci. Technol.
,
12
(
2
), pp.
149
158
.10.1016/0015-0568(79)90027-7
289.
Tsai
,
H. C.
,
Arocho
,
A. M.
, and
Gause
,
L. W.
,
1990
, “
Prediction of Fiber-Matrix Interphase Properties and Their Influence on Interface Stress, Displacement and Fracture Toughness of Composite Material
,”
Mater. Sci. Eng. A
,
126
(
1–2
), pp.
295
304
.10.1016/0921-5093(90)90136-Q
290.
Nassehi
,
V.
,
Dhillon
,
J.
, and
Mascia
,
L.
,
1993
, “
Finite Element Simulation of the Micromechanics of Interlayered Polymer/Fiber Composites: A Study of the Interactions Between the Reinforcing Phases
,”
Compos. Sci. Technol.
,
47
(
4
), pp.
349
358
.10.1016/0266-3538(93)90004-Z
291.
Nassehi
,
V.
,
Kinsella
,
M.
, and
Mascia
,
L.
,
1993
, “
Finite Element Modelling of the Stress Distribution in Polymer Composites With Coated Fibre Interlayers
,”
J. Compos. Mater.
,
27
(
2
), pp.
195
214
.10.1177/002199839302700205
292.
Wu
,
Y.
, and
Dong
,
Z.
,
1995
, “
Three-Dimensional Finite Element Analysis of Composites With Coated Spherical Inclusions
,”
Mater. Sci. Eng. A
,
203
(
1–2
), pp.
314
323
.10.1016/0921-5093(95)09827-5
293.
Tsui
,
C. P.
,
Tang
,
C. Y.
, and
Lee
,
T. C.
,
2001
, “
Finite Element Analysis of Polymer Composites Filled by Interphase Coated Particles
,”
J. Mater. Process. Technol.
,
117
(
1–2
), pp.
105
110
.10.1016/S0924-0136(01)01117-7
294.
Al-Ostaz
,
A.
, and
Jasiuk
,
I.
,
1997
, “
The Influence of Interface and Arrangement of Inclusions on Local Stresses in Composite Materials
,”
Acta Mater.
,
45
(
10
), pp.
4131
4143
.10.1016/S1359-6454(97)00089-X
295.
Kari
,
S.
,
Berger
,
H.
,
Gabbert
,
U.
,
Guinovart-Dıaz
,
R.
,
Bravo-Castillero
,
J.
, and
Rodrıguez-Ramos
,
R.
,
2008
, “
Evaluation of Influence of Interphase Material Parameters on Effective Material Properties of Three Phase Composites
,”
Compos. Sci. Technol.
,
68
(
3–4
), pp.
684
691
.10.1016/j.compscitech.2007.09.009
296.
Pathan
,
M. V.
,
Tagarielli
,
V. L.
, and
Patsias
,
S.
,
2017
, “
Effect of Fibre Shape and Interphase on the Anisotropic Viscoelastic Response of Fibre Composites
,”
Compos. Struct.
,
162
, pp.
156
163
.10.1016/j.compstruct.2016.11.046
297.
Riaño
,
L.
,
Belec
,
L.
,
Chailan
,
J. F.
, and
Joliff
,
Y.
,
2018
, “
Effect of Interphase Region on the Elastic Behavior of Unidirectional Glass-Fiber/Epoxy Composites
,”
Compos. Struct.
,
198
, pp.
109
116
.10.1016/j.compstruct.2018.05.039
298.
Chang
,
C.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2019
, “
Micromechanical Modeling of Unidirectional Composites With Random Fiber and Interphase Thickness Distributions
,”
Arch. Appl. Mech.
,
89
(
12
), pp.
2563
2575
.10.1007/s00419-019-01595-0
299.
Gosz
,
M.
,
Moran
,
B.
, and
Achenbach
,
J. D.
,
1994
, “
On the Role of Interphases in the Transverse Failure of Fiber Composites
,”
Int. J. Damage Mech.
,
3
(
4
), pp.
357
377
.10.1177/105678959400300404
300.
Gulrajani
,
S. N.
, and
Mukherjee
,
S.
,
1993
, “
Sensitivities and Optimal Design of Hexagonal Array Fiber Composites With Respect to Interphase Properties
,”
Int. J. Solids Struct.
,
30
(
15
), pp.
2009
2026
.10.1016/0020-7683(93)90048-C
301.
Liu
,
Y. J.
,
Xu
,
N.
, and
Luo
,
J. F.
,
2000
, “
Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
41
49
.10.1115/1.321150
302.
Chen
,
T.
,
2001
, “
Thermal Conduction of a Circular Inclusion With Variable Interface Parameter
,”
Int. J. Solids Struct.
,
38
(
17
), pp.
3081
3097
.10.1016/S0020-7683(00)00191-8
303.
Yao
,
Z.
,
Kong
,
F.
,
Wang
,
H.
, and
Wang
,
P.
,
2004
, “
2D Simulation of Composite Materials Using BEM
,”
Eng. Anal. Bound. Elem.
,
28
(
8
), pp.
927
935
.10.1016/S0955-7997(03)00119-X
304.
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2004
, “
A Galerkin Boundary Integral Method for Multiple Circular Elastic Inclusions With Uniform Interphase Layers
,”
Int. J. Solids Struct.
,
41
(
5–6
), pp.
1285
1311
.10.1016/j.ijsolstr.2003.09.037
305.
Ozmusul
,
M. S.
, and
Picu
,
R. C.
,
2002
, “
Elastic Moduli of Particulate Composites With Graded Filler-Matrix Interfaces
,”
Polym. Compos.
,
23
(
1
), pp.
110
119
.10.1002/pc.10417
306.
Wang
,
J.
,
Crouch
,
S. L.
, and
Mogilevskaya
,
S. G.
,
2006
, “
Numerical Modeling of the Elastic Behavior of Fiber-Reinforced Composites With Inhomogeneous Interphases
,”
Compos. Sci. Technol.
,
66
(
1
), pp.
1
18
.10.1016/j.compscitech.2005.06.006
307.
Lagache
,
M.
,
Agbossou
,
A.
,
Pastor
,
J.
, and
Muller
,
D.
,
1994
, “
Role of Interphase on the Elastic Behavior of Composite Materials: Theoretical and Experimental Analysis
,”
J. Compos. Mater.
,
28
(
12
), pp.
1140
1157
.10.1177/002199839402801205
308.
Pan
,
L.
,
Adams
,
D. O.
, and
Rizzo
,
F. J.
,
1998
, “
Boundary Element Analysis for Composite Materials and a Library of Green's Functions
,”
Comput. Struct.
,
66
(
5
), pp.
685
693
.10.1016/S0045-7949(97)00114-4
309.
Hayes
,
S. A.
,
Lane
,
R.
, and
Jones
,
F. R.
,
2001
, “
Fibre/Matrix Stress Transfer Through a Discrete Interphase: Part 1—Single-Fibre Model Composites
,”
Compos. Part A
,
32
(
3–4
), pp.
379
389
.10.1016/S1359-835X(00)00127-5
310.
Lane
,
R.
,
Hayes
,
S. A.
, and
Jones
,
F. R.
,
2001
, “
Fibre/Matrix Stress Transfer Through a Discrete Interphase: 2—High Volume Fraction Systems
,”
Compos. Sci. Technol.
,
61
(
4
), pp.
565
578
.10.1016/S0266-3538(00)00229-3
311.
Fisher
,
F. T.
, and
Brinson
,
L. C.
,
2001
, “
Viscoelastic Interphases in Polymer-Matrix Composites: Theoretical Models and Finite-Element Analysis
,”
Compos. Sci. Technol.
,
61
(
5
), pp.
731
748
.10.1016/S0266-3538(01)00002-1
312.
Wang
,
X.
,
Zhang
,
J.
,
Wang
,
Z.
,
Zhou
,
S.
, and
Sun
,
X.
,
2011
, “
Effects of Interphase Properties in Unidirectional Fiber Reinforced Composite Materials
,”
Mater. Des.
,
32
(
6
), pp.
3486
3492
.10.1016/j.matdes.2011.01.029
313.
Han
,
F.
,
Azdoud
,
Y.
, and
Lubineau
,
G.
,
2014
, “
Computational Modeling of Elastic Properties of Carbon Nanotube/Polymer Composites With Interphase Regions: Part I—Micro-Structural Characterization and Geometric Modeling
,”
Comput. Mater. Sci.
,
81
, pp.
641
651
.10.1016/j.commatsci.2013.07.036
314.
Han
,
F.
,
Azdoud
,
Y.
, and
Lubineau
,
G.
,
2014
, “
Computational Modeling of Elastic Properties of Carbon Nanotube/Polymer Composites With Interphase Regions: Part II—Mechanical Modeling
,”
Comput. Mater. Sci.
,
81
, pp.
652
661
.10.1016/j.commatsci.2013.07.008
315.
Xu
,
W.
,
Xu
,
B.
, and
Guo
,
F.
,
2017
, “
Elastic Properties of Particle-Reinforced Composites Containing Nonspherical Particles of High Packing Density and Interphase: DEM-FEM Simulation and Micromechanical Theory
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
122
143
.10.1016/j.cma.2017.08.010
316.
Lee
,
S. H.
,
Wang
,
S.
,
Pharr
,
G. M.
, and
Xu
,
H.
,
2007
, “
Evaluation of Interphase Properties in a Cellulose Fiber-Reinforced Polypropylene Composite by Nanoindentation and Finite Element Analysis
,”
Compos. Part A
,
38
(
6
), pp.
1517
1524
.10.1016/j.compositesa.2007.01.007
317.
Jiang
,
Y.
,
Guo
,
W.
, and
Yang
,
H.
,
2008
, “
Numerical Studies on the Effective Shear Modulus of Particle Reinforced Composites With an Inhomogeneous Inter-Phase
,”
Comput. Mater. Sci.
,
43
(
4
), pp.
724
731
.10.1016/j.commatsci.2008.01.069
318.
Sabiston
,
T.
,
Mohammadi
,
M.
,
Cherkaoui
,
M.
,
Lévesque
,
J.
, and
Inal
,
K.
,
2016
, “
Micromechanics Based Elasto-Visco-Plastic Response of Long Fibre Composites Using Functionally Graded Interphases at Quasi-Static and Moderate Strain Rates
,”
Compos. Part B
,
100
, pp.
31
43
.10.1016/j.compositesb.2016.06.035
319.
Sokołowski
,
D.
, and
Kamiński
,
M.
,
2018
, “
Computational Homogenization of Carbon/Polymer Composites With Stochastic Interface Defects
,”
Compos. Struct.
,
183
, pp.
434
449
.10.1016/j.compstruct.2017.04.076
320.
Sokołowski
,
D.
, and
Kamiński
,
M.
,
2018
, “
Homogenization of Carbon/Polymer Composites With Anisotropic Distribution of Particles and Stochastic Interface Defects
,”
Acta Mech.
,
229
(
9
), pp.
3727
3765
.10.1007/s00707-018-2174-7
321.
Sokołowski
,
D.
, and
Kamiński
,
M.
,
2020
, “
Probabilistic Homogenization of Hyper-Elastic Particulate Composites With Random Interface
,”
Compos. Struct.
,
241
, p.
112118
.10.1016/j.compstruct.2020.112118
322.
Kamiński
,
M.
, and
Ostrowski
,
P.
,
2021
, “
Homogenization of Heat Transfer in Fibrous Composite With Stochastic Interface Defects
,”
Compos. Struct.
,
261
, p.
113555
.10.1016/j.compstruct.2021.113555
323.
Tac
,
V.
, and
Gürses
,
E.
,
2019
, “
Micromechanical Modelling of Carbon Nanotube Reinforced Composite Materials With a Functionally Graded Interphase
,”
J. Compos. Mater.
,
53
(
28–30
), pp.
4337
4348
.10.1177/0021998319857126
324.
Cheng
,
Y.
,
Cheng
,
H.
,
Zhang
,
K.
,
Jones
,
K. K.
,
Gao
,
J.
,
Hu
,
J.
,
Li
,
H.
, and
Liu
,
W. K.
,
2019
, “
A Sequential Homogenization of Multi-Coated Micromechanical Model for Functionally Graded Interphase Composites
,”
Comput. Mech.
,
64
(
5
), pp.
1321
1337
.10.1007/s00466-019-01712-4
325.
Huang
,
J.
,
Wu
,
Y.
, and
Huang
,
L.
,
2021
, “
Evaluation of the Mechanical Properties of Graphene-Based Nanocomposites Incorporating a Graded Interphase Based on Isoparametric Graded Finite Element Model
,”
Compos. Interfaces
,
28
(
6
), pp.
543
575
.10.1080/09276440.2020.1794164
326.
Le
,
T. T.
,
2021
, “
Probabilistic Modeling of Surface Effects in Nano-Reinforced Materials
,”
Comput. Mater. Sci.
,
186
, p.
109987
.10.1016/j.commatsci.2020.109987
327.
Papanicolaou
,
G. C.
,
Paipetis
,
S. A.
, and
Theocaris
,
P. S.
,
1978
, “
The Concept of Boundary Interphase in Composite Mechanics
,”
Colloid Polym. Sci.
,
256
(
7
), pp.
625
630
.10.1007/BF01784402
328.
Papanicolaou
,
G. C.
, and
Theocaris
,
P. S.
,
1979
, “
Thermal Properties and Volume Fraction of the Boundary Interphase in Metal-Filled Epoxies
,”
Colloid Polym. Sci.
,
257
(
3
), pp.
239
246
.10.1007/BF01382364
329.
Chu
,
Y. C.
, and
Rokhlin
,
S. I.
,
1995
, “
Determination of Fiber-Matrix Interphase Moduli From Experimental Moduli of Composites With Multi-Layered Fibers
,”
Mech. Mater.
,
21
(
3
), pp.
191
215
.10.1016/0167-6636(95)00006-2
330.
Huang
,
W.
, and
Rokhlin
,
S. I.
,
1996
, “
Generalized Self-Consistent Model for Composites With Functionally Graded and Multilayered Interphases. Transfer Matrix Approach
,”
Mech. Mater.
,
22
(
3
), pp.
219
247
.10.1016/0167-6636(95)00032-1
331.
Rokhlin
,
S. I.
, and
Huang
,
W.
,
1998
, “
Micromechanical Analysis and Ultrasonic Characterization of Interphases and Interphasial Damage in High Temperature Composites
,”
Compos. Part B
,
29
(
2
), pp.
147
157
.10.1016/S1359-8368(97)00005-X
332.
Hashin
,
Z.
, and
Monteiro
,
P. J. M.
,
2002
, “
An Inverse Method to Determine the Elastic Properties of the Interphase Between the Aggregate and the Cement Paste
,”
Cem. Concrete Res.
,
32
(
8
), pp.
1291
1300
.10.1016/S0008-8846(02)00792-5
333.
Ramesh
,
G.
,
Sotelino
,
E. D.
, and
Chen
,
W. F.
,
1996
, “
Effect of Transition Zone on Elastic Moduli of Concrete Materials
,”
Cem. Concrete Res.
,
26
(
4
), pp.
611
622
.10.1016/0008-8846(96)00016-6
334.
Meurs
,
P. F. M.
,
Schreurs
,
P. J. G.
,
Peijs
,
T.
, and
Meijer
,
H. E. H.
,
1996
, “
Characterization of Interphase Conditions in Composite Materials
,”
Compos. Part A
,
27
(
9
), pp.
781
786
.10.1016/1359-835X(96)00020-6
335.
Matzenmiller
,
A.
, and
Gerlach
,
S.
,
2005
, “
Parameter Identification of Elastic Interphase Properties in Fiber Composites
,”
Compos. Part B
,
37
(
2–3
), pp.
117
126
. 2006).10.1016/j.compositesb.2005.08.003
336.
Paley
,
M.
, and
Aboudi
,
J.
,
1992
, “
Micromechanical Analysis of Composites by the Generalized Cells Model
,”
Mech. Mater.
,
14
(
2
), pp.
127
139
.10.1016/0167-6636(92)90010-B
337.
Matzenmiller
,
A.
, and
Gerlach
,
S.
,
2004
, “
Micromechanical Modeling of Viscoelastic Composites With Compliant Fiber-Matrix Bonding
,”
Comput. Mater. Sci.
,
29
(
3
), pp.
283
300
.10.1016/j.commatsci.2003.10.005
338.
Broutman
,
L. J.
,
1966
, “
Glass-Resin Joint Strength and Their Effect on Failure Mechanisms in Reinforced Plastics
,”
Polym. Eng. Sci.
,
6
(
3
), pp.
263
272
.10.1002/pen.760060316
339.
Bowling
,
J.
, and
Groves
,
G. W.
,
1979
, “
The Debonding and Pull-Out of Ductile Wires From a Brittle Matrix
,”
J. Mater. Sci.
,
14
(
2
), pp.
431
442
.10.1007/BF00589836
340.
Bartoš
,
P.
,
1980
, “
Analysis of Pull-Out Tests on Fibres Embedded in Brittle Matrices
,”
J. Mater. Sci.
,
15
(
12
), pp.
3122
3128
.10.1007/BF00550385
341.
Miller
,
B.
,
Muri
,
P.
, and
Rebenfeld
,
L.
,
1987
, “
A Microbond Method for Determination of the Shear Strength of a Fiber/Resin Interface
,”
Compos. Sci. Technol.
,
28
(
1
), pp.
17
32
.10.1016/0266-3538(87)90059-5
342.
Drzal
,
L. T.
, and
Madhukar
,
M.
,
1993
, “
Fibre-Matrix Adhesion and Its Relationship to Composite Mechanical Properties
,”
J. Mater. Sci.
,
28
(
3
), pp.
569
610
.10.1007/BF01151234
343.
Larson
,
B. K.
, and
Drzal
,
L. T.
,
1994
, “
Glass Fibre Sizing/Matrix Interphase Formation in Liquid Composite Moulding: Effects on Fibre/Matrix Adhesion and Mechanical Properties
,”
Composite
,
25
(
7
), pp.
711
721
.10.1016/0010-4361(94)90206-2
344.
Mäder
,
E.
, and
Pisanova
,
E.
,
2000
, “
Characterization and Design of Interphases in Glass Fiber Reinforced Polypropylene
,”
Polym. Compos.
,
21
(
3
), pp.
361
368
.10.1002/pc.10194
345.
Pompe
,
G.
, and
Mäder
,
E.
,
2000
, “
Experimental Detection of a Transcrystalline Interphase in Glass-Fibre/Polypropylene Composites
,”
Compos. Sci. Technol.
,
60
(
11
), pp.
2159
2167
.10.1016/S0266-3538(00)00120-2
346.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
,
2001
, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
3
10
.10.1115/1.1346680
347.
Mandell
,
J. F.
,
Grande
,
D. H.
,
Tsiang
,
T. H.
, and
McGarry
,
F. J.
,
1986
, “
Modified Mircodebonding Test for Direct in Situ Fiber/Matrix Bond Strength Determination in Fiber Composites
,”
Composite Materials: Testing and Design
,
ASTM International
, West Conshohocken, PA.10.1520/STP35343S
348.
Ochiai
,
S.
, and
Osamura
,
K.
,
1987
, “
Computer Simulation of Strength of Metal Matrix Composites With a Reaction Layer at the Interface
,”
Metall. Trans.
,
18
(
4
), pp.
673
679
A.10.1007/BF02649483
349.
Zhu
,
H.
, and
Achenbach
,
J. D.
,
1991
, “
Radial Matrix Cracking and Interphase Failure in Transversely Loaded Fiber Composites
,”
Mech. Mater.
,
11
(
4
), pp.
347
356
.10.1016/0167-6636(91)90032-U
350.
Weitsman
,
Y.
, and
Zhu
,
H.
,
1993
, “
Multi-Fracture of Ceramic Composites
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
351
388
.10.1016/0022-5096(93)90012-5
351.
Asp
,
L. E.
,
Berglund
,
L. A.
, and
Talreja
,
R.
,
1996
, “
Effects of Fiber and Interphase on Matrix-Initiated Transverse Failure in Polymer Composites
,”
Compos. Sci. Technol.
,
56
(
6
), pp.
657
665
.10.1016/0266-3538(96)00047-4
352.
Wu
,
W.
,
Verpoest
,
I.
, and
Varna
,
J.
,
1998
, “
An Improved Analysis of the Stresses in a Single-Fibre Fragmentation Test—II: 3-Phase Model
,”
Compos. Sci. Technol.
,
58
(
1
), pp.
41
50
.10.1016/S0266-3538(97)00087-0
353.
Needleman
,
A.
,
Borders
,
T. L.
,
Brinson
,
L. C.
,
Flores
,
V. M.
, and
Schadler
,
L. S.
,
2010
, “
Effect of an Interphase Region on Debonding of a CNT Reinforced Polymer Composite
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2207
2215
.10.1016/j.compscitech.2010.09.002
354.
Romanowicz
,
M.
,
2010
, “
Progressive Failure Analysis of Unidirectional Fiber-Reinforced Polymers With Inhomogeneous Interphase and Randomly Distributed Fibers Under Transverse Tensile Loading
,”
Compos. Part A
,
41
(
12
), pp.
1829
1838
.10.1016/j.compositesa.2010.09.001
355.
Maligno
,
A. R.
,
Warrior
,
N. A.
, and
Long
,
A. C.
,
2010
, “
Effects of Interphase Material Properties in Unidirectional Fibre Reinforced Composites
,”
Compos. Sci. Technol.
,
70
(
1
), pp.
36
44
.10.1016/j.compscitech.2009.09.003
356.
Sanchez-Palencia
,
E.
,
1970
, “
Comportement Limite D'un Probleme de Transmissiona Travers Une Plaque Faiblement Conductrice
,”
C. R. Math. Acad. Sci.
,
270
, pp.
1026
1028
.
357.
Pham Huy
,
H.
, and
Sanchez-Palencia
,
E.
,
1974
, “
Phénomènes de Transmission à Travers Des Couches Minces de Conductivitéélevée
,”
J. Math. Anal. Appl.
,
47
(
2
), pp.
284
309
.10.1016/0022-247X(74)90023-7
358.
Hashin
,
Z.
,
1991
, “
Thermoelastic Properties of Particulate Composites With Imperfect Interface
,”
J. Mech. Phys. Solids
,
39
(
6
), pp.
745
762
.10.1016/0022-5096(91)90023-H
359.
Hashin
,
Z.
,
1991
, “
Composite Materials With Interphase: Thermoelastic and Inelastic Effects
,”
Inelastic Deformation of Composite Materials
,
Springer-Verlag
, New York, pp.
3
34
.
360.
Hashin
,
Z.
,
1990
, “
Thermoelastic Properties of Fiber Composites With Imperfect Interface
,”
Mech. Mater.
,
8
(
4
), pp.
333
348
.10.1016/0167-6636(90)90051-G
361.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2001
, “
Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,”
Mech. Mater.
,
33
(
6
), pp.
309
323
.10.1016/S0167-6636(01)00055-2
362.
Wang
,
J.
,
Duan
,
H. L.
,
Zhang
,
Z.
, and
Huang
,
Z. P.
,
2005
, “
An Anti-Interpenetration Model and Connections Between Interphase and Interface Models in Particle-Reinforced Composites
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
701
718
.10.1016/j.ijmecsci.2004.12.014
363.
Daher
,
N.
, and
Maugin
,
G. A.
,
1986
, “
The Method of Virtual Power in Continuum Mechanics Application to Media Presenting Singular Surfaces and Interfaces
,”
Acta Mech.
,
60
(
3–4
), pp.
217
240
.10.1007/BF01176354
364.
Lipton
,
R.
, and
Vernescu
,
B.
,
1995
, “
Variational Methods, Size Effects and Extremal Microgeometries for Elastic Composites With Imperfect Interface
,”
Math. Models Methods Appl. Sci.
,
05
(
08
), pp.
1139
1173
.10.1142/S0218202595000607
365.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.10.1088/0957-4484/11/3/301
366.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
(
3
), pp.
622
444
.10.1016/0021-8928(59)90157-1
367.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
368.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
369.
Jones
,
J. P.
, and
Whittier
,
J. S.
,
1967
, “
Waves at a Flexibly Bonded Interface
,”
ASME J. Appl. Mech.
,
34
(
4
), pp.
905
909
.10.1115/1.3607854
370.
Mal
,
A. K.
, and
Bose
,
S. K.
,
1974
, “
Dynamic Elastic Moduli of a Suspension of Imperfectly Bonded Spheres
,”
Math. Proc. Cambridge Philos. Soc.
,
76
(
3
), pp.
587
600
.10.1017/S0305004100049318
371.
Theocaris
,
P. S.
,
Paipetis
,
S. A.
, and
Stassinakis
,
C. A.
,
1978
, “
Effect of Geometry and Imperfect Bonding in Composite Systems With Limiting Shear Properties
,”
Fibre Sci. Technol.
,
11
(
5
), pp.
335
352
.10.1016/0015-0568(78)90030-1
372.
Benveniste
,
Y.
,
1985
, “
The Effective Mechanical Behaviour of Composite Materials With Imperfect Contact Between the Constituents
,”
Mech. Mater.
,
4
(
2
), pp.
197
208
.10.1016/0167-6636(85)90016-X
373.
Benveniste
,
Y.
, and
Miloh
,
T.
,
1986
, “
The Effective Conductivity of Multiphase Composites With Imperfect Thermal Contact at Constituent Interfaces
,”
Int. J. Eng. Sci.
,
24
(
9
), pp.
1537
1552
.10.1016/0020-7225(86)90162-X
374.
Aboudi
,
J.
,
1988
, “
Constitutive Equations for Elastoplastic Composites With Imperfect Bonding
,”
Int. J. Plasticity
,
4
(
2
), pp.
103
125
.10.1016/0749-6419(88)90016-2
375.
Aboudi
,
J.
,
1987
, “
Damage in Composites-Modeling of Imperfect Bonding
,”
Int. J. Eng. Sci.
,
28
(
2
), pp.
103
128
.10.1016/0266-3538(87)90093-5
376.
Takahashi
,
K.
, and
Chou
,
T. W.
,
1988
, “
Transverse Elastic Moduli of Unidirectional Fiber Composites With Interfacial Debonding
,”
Metall. Trans. A
,
19
(
1
), pp.
129
135
.10.1007/BF02669821
377.
Shan
,
H. Z.
, and
Chou
,
T. W.
,
1995
, “
Transverse Elastic Moduli of Unidirectional Fiber Composites With Fiber/Matrix Interfacial Debonding
,”
Compos. Sci. Technol.
,
53
(
4
), pp.
383
391
.10.1016/0266-3538(95)00026-7
378.
Karihaloo
,
B. L.
, and
Viswanathan
,
K.
,
1988
, “
A Partially Debonded Ellipsoidal Inclusion in an Elastic Medium: Part I—Stress and Displacement Fields
,”
Mech. Mater.
,
7
(
3
), pp.
191
197
.10.1016/0167-6636(88)90018-X
379.
Karihaloo
,
B. L.
, and
Viswanathan
,
K.
,
1988
, “
A Partially Debonded Ellipsoidal Inclusion in an Elastic Medium: Part II—Stress Intensity Factors and Debond Opening Displacement
,”
Mech. Mater.
,
7
(
3
), pp.
199
203
.10.1016/0167-6636(88)90019-1
380.
Hashin
,
Z.
,
1992
, “
Extremum Principles for Elastic Heterogenous Media With Imperfect Interfaces and Their Application to Bounding of Effective Moduli
,”
J. Mech. Phys. Solids
,
40
(
4
), pp.
767
781
.10.1016/0022-5096(92)90003-K
381.
Levy
,
A. J.
,
1991
, “
The Debonding of Elastic Inclusions and Inhomogeneities
,”
J. Mech. Phys. Solids
,
39
(
4
), pp.
477
505
.10.1016/0022-5096(91)90037-O
382.
Levy
,
A. J.
,
1996
, “
The Effective Dilatational Response of Fiber-Reinforced Composites With Nonlinear Interface
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
357
364
.10.1115/1.2788873
383.
Qu
,
J.
,
1993
, “
Eshelby Tensor for an Elastic Inclusion With Slightly Weakened Interface
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
1048
1050
.10.1115/1.2900974
384.
Gao
,
Z.
,
1995
, “
Circular Inclusion With Imperfect Interface: Eshelby's Tensor and Related Problems
,”
ASME J. Appl. Mech.
,
62
(
4
), pp.
860
866
.10.1115/1.2896012
385.
Lee
,
H. K.
, and
Pyo
,
S. H.
,
2008
, “
Multi-Level Modeling of Effective Elastic Behavior and Progressive Weakened Interface in Particulate Composites
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
387
397
.10.1016/j.compscitech.2007.06.026
386.
Ju
,
J. W.
, and
Chen
,
T. M.
,
1994
, “
Micromechanics and Effective Elastoplastic Behavior of Two-Phase Metal Matrix Composites
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
310
318
.10.1115/1.2904293
387.
Esteva
,
M.
, and
Spanos
,
P. D.
,
2009
, “
Effective Elastic Properties of Nanotube Reinforced Composites With Slightly Weakened Interfaces
,”
J. Mech. Mater. Struct.
,
4
(
5
), pp.
887
900
.10.2140/jomms.2009.4.887
388.
Othmani
,
Y.
,
Delannay
,
L.
, and
Doghri
,
I.
,
2011
, “
Equivalent Inclusion Solution Adapted to Particle Debonding With a Non-Linear Cohesive Law
,”
Int. J. Solids Struct.
,
48
(
24
), pp.
3326
3335
.10.1016/j.ijsolstr.2011.08.002
389.
Xu
,
B. X.
,
Mueller
,
R.
, and
Wang
,
M. Z.
,
2011
, “
The Eshelby Property of Sliding Inclusions
,”
Archive Appl. Mech.
,
81
(
1
), pp.
19
35
.10.1007/s00419-009-0391-1
390.
Yanase
,
K.
, and
Ju
,
J. W.
,
2012
, “
Effective Elastic Moduli of Spherical Particle Reinforced Composites Containing Imperfect Interfaces
,”
Int. J. Damage Mech.
,
21
(
1
), pp.
97
127
.10.1177/1056789510397076
391.
Hosseini Kordkheili
,
S. A.
, and
Toozandehjani
,
H.
,
2014
, “
Effective Mechanical Properties of Unidirectional Composites in the Presence of Imperfect Interface
,”
Arch. Appl. Mech.
,
84
(
6
), pp.
807
819
.10.1007/s00419-014-0834-1
392.
Lee
,
S.
,
Kim
,
Y.
,
Lee
,
J.
, and
Ryu
,
S.
,
2019
, “
Applicability of the Interface Spring Model for Micromechanical Analyses With Interfacial Imperfections to Predict the Modified Exterior Eshelby Tensor and Effective Modulus
,”
Math. Mech. Solids
,
24
(
9
), pp.
2944
2960
.10.1177/1081286519826343
393.
Lee
,
S.
,
Lee
,
J.
, and
Ryu
,
S.
,
2019
, “
Modified Eshelby Tensor for an Anisotropic Matrix With Interfacial Damage
,”
Math. Mech. Solids
,
24
(
6
), pp.
1749
1762
.10.1177/1081286518805521
394.
Qu
,
J.
,
1993
, “
The Effect of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials
,”
Mech. Mater.
,
14
(
4
), pp.
269
281
.10.1016/0167-6636(93)90082-3
395.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
, and
Geubelle
,
P. H.
,
2005
, “
The Mori-Tanaka Method for Composite Materials With Nonlinear Interface Debonding
,”
Int. J. Plasticity
,
21
(
10
), pp.
1890
1918
.10.1016/j.ijplas.2004.10.001
396.
Tan
,
H.
,
Liu
,
C.
,
Huang
,
Y.
, and
Geubelle
,
P. H.
,
2005
, “
The Cohesive Law for the Particle/Matrix Interfaces in High Explosives
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1892
1917
.10.1016/j.jmps.2005.01.009
397.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
,
Ravichandran
,
G.
, and
Paulino
,
G. H.
,
2007
, “
Constitutive Behaviors of Composites With Interface Debonding: The Extended Mori-Tanaka Method for Uniaxial Tension
,”
Int. J. Fract.
,
146
(
3
), pp.
139
148
.10.1007/s10704-007-9155-5
398.
Zhao
,
Y. H.
, and
Weng
,
G. J.
,
1997
, “
Transversely Isotropic Moduli of Two Partially Debonded Composites
,”
Int. J. Solids Struct.
,
34
(
4
), pp.
493
507
.10.1016/S0020-7683(96)00027-3
399.
Liu
,
H. T.
,
Sun
,
L. Z.
, and
Ju
,
J. W.
,
2004
, “
An Interfacial Debonding Model for Particle-Reinforced Composites
,”
Int. J. Damage Mech.
,
13
(
2
), pp.
163
185
.10.1177/1056789504041057
400.
Shao
,
L. H.
,
Luo
,
R. Y.
,
Bai
,
S. L.
, and
Wang
,
J.
,
2009
, “
Prediction of Effective Moduli of Carbon Nanotube-Reinforced Composites With Waviness and Debonding
,”
Compos. Struct.
,
87
(
3
), pp.
274
281
.10.1016/j.compstruct.2008.02.011
401.
Brassart
,
L.
,
Inglis
,
H. M.
,
Delannay
,
L.
,
Doghri
,
I.
, and
Geubelle
,
P. H.
,
2009
, “
An Extended Mori-Tanaka Homogenization Scheme for Finite Strain Modeling of Debonding in Particle-Reinforced Elastomers
,”
Comput. Mater. Sci.
,
45
(
3
), pp.
611
616
.10.1016/j.commatsci.2008.06.021
402.
Teng
,
H.
,
2010
, “
Stiffness Properties of Particulate Composites Containing Debonded Particles
,”
Int. J. Solids Struct.
,
47
(
17
), pp.
2191
2200
.10.1016/j.ijsolstr.2010.04.004
403.
Koyama
,
S.
,
Katano
,
S.
,
Saiki
,
I.
, and
Iwakuma
,
T.
,
2011
, “
A Modification of the Mori-Tanaka Estimate of Average Elastoplastic Behavior of Composites and Polycrystals With Interfacial Debonding
,”
Mech. Mater.
,
43
(
10
), pp.
538
555
.10.1016/j.mechmat.2011.06.010
404.
Nafar Dastgerdi
,
J.
,
Marquis
,
G.
, and
Salimi
,
M.
,
2014
, “
Micromechanical Modeling of Nanocomposites Considering Debonding and Waviness of Reinforcements
,”
Compos. Struct.
,
110
, pp.
1
6
.10.1016/j.compstruct.2013.11.017
405.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Luo
,
Z. Y.
,
2005
, “
Stress Concentration Tensors of Inhomogeneities With Interface Effects
,”
Mech. Mater.
,
37
(
7
), pp.
723
736
.10.1016/j.mechmat.2004.07.004
406.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects: Part I—Theoretical Framework
,”
Mech. Mater.
,
39
(
1
), pp.
81
93
.10.1016/j.mechmat.2006.02.009
407.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects: Part II-Application and Scaling Laws
,”
Mech. Mater.
,
39
(
1
), pp.
94
103
.10.1016/j.mechmat.2006.02.010
408.
Shen
,
H.
,
Schiavone
,
P.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2000
, “
An Elliptic Inclusion With Imperfect Interface in Anti-Plane Shear H
,”
Int. J. Solids Struct.
,
37
(
33
), pp.
4557
4575
.10.1016/S0020-7683(99)00174-2
409.
Shen
,
H.
,
Schiavone
,
P.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2001
, “
Stress Analysis of an Elliptic Inclusion With Imperfect Interface in Plane Elasticity
,”
J. Elasticity
,
62
(
1
), pp.
25
46
.10.1023/A:1010911813697
410.
Ru
,
C. Q.
, and
Schiavone
,
P.
,
1997
, “
A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear
,”
Proc. R. Soc. A
,
453
(
1967
), pp.
2551
2572
.10.1098/rspa.1997.0136
411.
Sudak
,
L. J.
,
Ru
,
C. Q.
,
Schiavone
,
P.
, and
Mioduchowski
,
A.
,
1999
, “
Circular Inclusion With Inhomogeneously Imperfect Interface in Plane Elasticity
,”
J. Elasticity
,
5