Abstract

Interphase regions that form in heterogeneous materials through various underlying mechanisms such as poor mechanical or chemical adherence, roughness, and coating, play a crucial role in the response of the medium. A well-established strategy to capture a finite thickness interphase behavior is to replace it with a zero-thickness interface model characterized by its own displacement and/or traction jumps, resulting in different interface models. The contributions to date dealing with interfaces commonly assume that the interface is located in the middle of its corresponding interphase. This paper revisits this assumption and introduces an extended general interface model, wherein a unifying approach to the homogenization of heterogeneous materials embedding interfaces between their constituents is developed within the framework of linear elasticity. Through utilizing a weighted average operator, we demonstrate that the assumption of enforcing the interface to coincide with the midlayer is not required and thereby develop a new class of interfaces where the interface is allowed to take any arbitrary position between its bulk neighbors. The proposed novel interface model can recover any of the classical interface models. Next, via incorporating this extended general interface model into homogenization, we develop bounds and estimates for the overall moduli of fiber-reinforced and particle-reinforced composites as functions of the interface position and properties. Finally, we carry out a comprehensive numerical study to highlight the influence of interface position, stiffness ratio, and interface parameters on the overall properties of composites. The developed interface-enhanced homogenization framework also successfully captures size effects, which are immediately relevant to emerging applications of nanocomposites due to their pronounced interface effects at small scales.

References

1.
Voigt
,
W.
,
1889
, “
Ueber Die Beziehung Zwischen Den Beiden Elasticitätsconstanten Isotroper Körper
,”
Ann. Phys.
,
274
(
12
), pp.
573
578
.10.1002/andp.18892741206
2.
Reuss
,
V. A.
,
1929
, “
Berechnung Der Fliehgrenze Von Mischkristallen Auf Grund Der Plastizittitsbedingung Fiir Einkristalle
,”
Z. Angew. Math. Mech
,
9
(
1
), pp.
49
58
.10.1002/zamm.19290090104
3.
Hill
,
R.
,
1952
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proc. Phys. Soc. A
,
65
(
5
), pp.
349
354
.10.1088/0370-1298/65/5/307
4.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.10.1016/0022-5096(63)90036-X
5.
Hill
,
R.
,
1964
, “
Theory of Mechanical Properties of Fiber-Strengthened Matertials: I. Elastic Behavior
,”
J. Mech. Phys. Solids
,
12
(
4
), pp.
199
202
.10.1016/0022-5096(64)90019-5
6.
Hill
,
R.
,
1964
, “
Theory of Mechanical Properties of Fiber-Strengthened Materials: II. Inelastic Behaviour
,”
J. Mech. Phys. Solids
,
12
(
4
), pp.
213
218
.10.1016/0022-5096(64)90020-1
7.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.10.1016/0022-5096(65)90010-4
8.
Hill
,
R.
,
1965
, “
Theory of Mechanical Properties of Fiber-Strengthened Materials—III. Self-Consistent Model
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
189
198
.10.1016/0022-5096(65)90008-6
9.
Hill
,
R.
, “
On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London A
,
326
(
1972
), pp.
131
147
.10.1098/rspa.1972.0001
10.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, pp.
307
324
.
11.
Sachs
,
G.
,
1929
, “
Zur Ableitung Einer Fließbedingung
,”
Mitteilungen Der Deutschen Materialprüfungsanstalten
, Vol.
72
,
Springer
, Berlin, pp.
94
96
.
12.
Bishop
,
J. F. W.
, and
Hill
,
R.
,
1951
, “
A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
Philosophical Magazine
,
42
(
327
), pp.
414
427
.10.1080/14786445108561065
13.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
,
10
(
4
), pp.
335
342
.10.1016/0022-5096(62)90004-2
14.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Elastic Behaviour of Polycrystals
,”
J. Mech. Phys. Solids
,
10
(
4
), pp.
343
352
.10.1016/0022-5096(62)90005-4
15.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.10.1016/0022-5096(63)90060-7
16.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
.10.1063/1.1728579
17.
Hashin
,
Z.
,
1965
, “
On Elastic Behaviour of Fibre Reinforced Materials of Arbitrary Transverse Phase Geometry
,”
J. Mech. Phys. Solids
,
13
(
3
), pp.
119
134
.10.1016/0022-5096(65)90015-3
18.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
143
150
.10.1115/1.3636446
19.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials—A Survey
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
481
505
.10.1115/1.3167081
20.
Beran
,
M.
, and
Molyneux
,
J.
,
1966
, “
Use of Classical Variational Principles to Determine Bounds for the Effective Bulk Modulus in Heterogeneous Media
,”
Q. Appl. Math.
,
24
(
2
), pp.
107
118
.10.1090/qam/99925
21.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-I
,”
J. Mech. Phys. Solids
,
14
(
3
), pp.
151
162
.10.1016/0022-5096(66)90035-4
22.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems-II
,”
J. Mech. Phys. Solids
,
14
(
5
), pp.
289
301
.10.1016/0022-5096(66)90025-1
23.
Walpole
,
L. J.
,
1969
, “
On the Overall Elastic Moduli of Composite Materials
,”
J. Mech. Phys. Solids
,
17
(
4
), pp.
235
251
.10.1016/0022-5096(69)90014-3
24.
Fan
,
Z.
,
Tsakiropoulos
,
P.
, and
Miodownik
,
A. P.
,
1992
, “
Prediction of Young's Modulus of Particulate Two Phase Composites
,”
Mater. Sci. Technol.
,
8
(
10
), pp.
922
929
.10.1179/mst.1992.8.10.922
25.
Zimmerman
,
R. W.
,
1992
, “
Hashin-Shtrikman Bounds on the Poisson Ratio of a Composite Material
,”
Mech. Res. Commun.
,
19
(
6
), pp.
563
569
.10.1016/0093-6413(92)90085-O
26.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
223
232
.10.1115/1.3629590
27.
Rosen
,
B. W.
, and
Hashin
,
Z.
,
1970
, “
Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials
,”
Int. J. Eng. Sci.
,
8
(
2
), pp.
157
173
.10.1016/0020-7225(70)90066-2
28.
Milton
,
G. W.
,
1982
, “
New Bounds on Effective Elastic Moduli of Two-Component Materials
,”
Proc. R. Soc. A
,
380
, pp.
305
331
.10.1098/rspa.1982.0044
29.
Bornert
,
M.
,
Stolz
,
C.
, and
Zaoui
,
A.
,
1996
, “
Morphologically Representative Pattern-Based Bounding in Elasticity
,”
J. Mech. Phys. Solids
,
44
(
3
), pp.
307
331
.10.1016/0022-5096(95)00083-6
30.
Nemat-Nasser
,
S.
,
Yu
,
N.
, and
Hori
,
M.
,
1993
, “
Bounds and Estimates of Overall Moduli of Composites With Periodic Microstructure
,”
Mech. Mater.
,
15
(
3
), pp.
163
181
.10.1016/0167-6636(93)90016-K
31.
Aboudi
,
J.
,
1983
, “
The Effective Moduli of Short-Fiber Composites
,”
Int. J. Solids Struct.
,
19
(
8
), pp.
693
707
.10.1016/0020-7683(83)90065-3
32.
Torquato
,
S.
,
1991
, “
Random Heterogeneous Media: Hicrosttucture and Improwed Bounds on Effective Properties
,”
ASME Appl. Mech. Rev.
,
44
(
2
), pp.
37
76
.10.1115/1.3119494
33.
Milton
,
G. W.
, and
Kohn
,
R. V.
,
1988
, “
Variational Bounds of the Effective Moduli of Piezoelectric Composites
,”
J. Mech. Phys. Solids
,
36
(
6
), pp.
597
629
.10.1016/0022-5096(88)90001-4
34.
Bisegna
,
P.
, and
Luciano
,
R.
,
1996
, “
Variational Bounds for the Overall Properties of Piezoelectric Composites
,”
J. Mech. Phys. Solids
,
44
(
4
), pp.
583
602
.10.1016/0022-5096(95)00084-4
35.
Bisegna
,
P.
, and
Luciano
,
R.
,
1997
, “
On Methods for Bounding the Overall Properties of Periodic Piezoelectric Fibrous Composites
,”
J. Mech. Phys. Solids
,
45
(
8
), pp.
1329
1356
.10.1016/S0022-5096(96)00116-0
36.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1998
, “
Universal Bounds for Effective Piezoelectric Moduli
,”
Mech. Mater.
,
30
(
1
), pp.
1
19
.10.1016/S0167-6636(98)00029-5
37.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1993
, “
Double-Inclusion Model and Overall Moduli of Multi-Phase Composites
,”
Mech. Mater.
,
14
(
3
), pp.
189
206
.10.1016/0167-6636(93)90066-Z
38.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
, Amsterdam, The Netherlands.
39.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
2001
, “
Variational Bounds for the Effective Moduli of Heterogeneous Piezoelectric Solids
,”
Philos. Mag. A
,
81
(
4
), pp.
903
926
.10.1080/01418610108214327
40.
Gibiansky
,
L. V.
, and
Torquato
,
S.
,
1997
, “
Thermal Expansion of Isotropic Multiphase Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
45
(
7
), pp.
1223
1252
.10.1016/S0022-5096(96)00129-9
41.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London. Ser. A
,
241
, pp.
376
396
.10.1098/rspa.1957.0133
42.
Rodin
,
J. G.
,
1996
, “
Eshelby's Inclusion Problem for Polygons and Polyhedra
,”
J. Mech. Phys. Solids
,
44
(
12
), pp.
1977
1995
.10.1016/S0022-5096(96)00066-X
43.
Markenscoff
,
X.
,
1997
, “
On the Shape of the Eshelby Inclusions
,”
J. Elasticity
,
49
(
2
), pp.
163
166
.10.1023/A:1007474108433
44.
Mura
,
T.
,
1997
, “
The Determination of the Elastic Field of a Polygonal Star Shaped Inclusion
,”
Mech. Res. Commun.
,
24
(
5
), pp.
473
482
.10.1016/S0093-6413(97)00052-9
45.
Lubarda
,
V. A.
, and
Markenscoff
,
X.
,
1998
, “
On the Absence of Eshelby Property for Non-Ellipsoidal Inclusions
,”
Int. J. Solids Struct.
,
35
(
25
), pp.
3405
3411
.10.1016/S0020-7683(98)00025-0
46.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
2001
, “
Computational Micro-Macro Material Testing
,”
Arch. Comput. Methods Eng.
,
8
(
2
), pp.
131
228
.10.1007/BF02897871
47.
Hershey
,
A.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
(
3
), pp.
236
240
.10.1115/1.4010899
48.
Kröner
,
E.
,
1958
, “
Berechnung Der Elastischen Konstanten Des Vielkristalls Aus Den Konstanten Des Einkristalls
,”
Z. Für Phys.
,
151
, pp.
504
518
.10.1007/BF01337948
49.
Budiansky
,
B.
,
1965
, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
223
227
.10.1016/0022-5096(65)90011-6
50.
Laws
,
N.
,
1973
, “
On the Thermostatics of Composite Materials
,”
J. Mech. Phys. Solids
,
21
(
1
), pp.
9
17
.10.1016/0022-5096(73)90027-6
51.
Kerner
,
E. H.
,
1956
, “
The Elastic and Thermo-Elastic Properties of Composite Media
,”
Proc. Phys. Soc. B
,
69
(
8
), pp.
808
813
.10.1088/0370-1301/69/8/305
52.
Christensen
,
R. M.
, and
Lo
,
K. N.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
315
330
.10.1016/0022-5096(79)90032-2
53.
Huang
,
Y.
,
Hu
,
K. X.
,
Wei
,
X.
, and
Chandra
,
A.
,
1994
, “
A Generalized Self-Consistent Mechanics Method for Composite Materials With Multiphase Inclusions
,”
J. Mech. Phys. Solids
,
42
(
3
), pp.
491
504
.10.1016/0022-5096(94)90028-0
54.
Huang
,
Y.
, and
Hu
,
K. X.
,
1995
, “
A Generalized Self-Consistent Mechanics Method for Solids Containing Elliptical Inclusions
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
566
572
.10.1115/1.2895982
55.
Benveniste
,
Y.
, and
Berdichevsky
,
O.
,
2010
, “
On Two Models of Arbitrarily Curved Three-Dimensional Thin Interphases in Elasticity
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1899
1915
.10.1016/j.ijsolstr.2010.03.033
56.
Benveniste
,
Y.
, and
Milton
,
G. W.
,
2010
, “
The Effective Medium and the Average Field Approximations Vis-Vis the HashinShtrikman Bounds—I: The Self-Consistent Scheme in Matrix-Based Composites
,”
J. Mech. Phys. Solids
,
58
(
7
), pp.
1026
1038
.10.1016/j.jmps.2010.04.014
57.
Chatzigeorgiou
,
G.
,
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2012
, “
Effective Mechanical Properties of “Fuzzy Fiber” Composites
,”
Compos. Part B
,
43
(
6
), pp.
2577
2593
.10.1016/j.compositesb.2012.03.001
58.
Boucher
,
S.
,
1976
, “
Modulus Effectifs de Materiaux Quasi Homogenes et Quasi Isotropes, Constitues D'une Matrice Elastique et D'inclusions Elastiques
,”
Rev. Metall.
,
22
, pp.
31
36
.
59.
McLaughlin
,
R.
,
1977
, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
,
15
(
4
), pp.
237
244
.10.1016/0020-7225(77)90058-1
60.
Norris
,
A. N.
,
1985
, “
A Differential Scheme for the Effective Moduli of Composites
,”
Mech. Mater.
,
4
(
1
), pp.
1
16
.10.1016/0167-6636(85)90002-X
61.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
62.
Pierard
,
O.
,
Friebel
,
C.
, and
Doghri
,
I.
,
2004
, “
Mean-Field Homogenization of Multi-Phase Thermo-Elastic Composites : A General Framework and Its Validation
,”
Compos. Sci. Technol.
,
64
(
10–11
), pp.
1587
1603
.10.1016/j.compscitech.2003.11.009
63.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka's Theory in Composite Materials
,”
Mech. Mater.
,
6
(
2
), pp.
147
157
.10.1016/0167-6636(87)90005-6
64.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1987
, “
On Eshelby's Inclusion Problem in a Three-Phase Spherically Concentric Solid, and a Modification of Mori-Tanaka's Method
,”
Mech. Mater.
,
6
(
4
), pp.
347
361
.10.1016/0167-6636(87)90032-9
65.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1989
, “
On Eshelby's S-Tensor in a Three-Phase Cylindrically Concentric Solid, and the Elastic Moduli of Fiber-Reinforced Composites
,”
Mech. Mater.
,
8
(
2–3
), pp.
77
88
.10.1016/0167-6636(89)90008-2
66.
Weng
,
G. J.
,
1990
, “
The Theoretical Connection Between Mori-Tanaka's Theory and the Hashin-Shtrikman-Walpole Bounds
,”
Int. J. Eng. Sci.
,
28
(
11
), pp.
1111
1120
.10.1016/0020-7225(90)90111-U
67.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1990
, “
On the Application of Mori-Tanaka's Theory Involving Transversely Isotropic Spheroidal Inclusions
,”
Int. J. Eng. Sci.
,
28
(
11
), pp.
1121
1137
.10.1016/0020-7225(90)90112-V
68.
Tandon
,
G. P.
, and
Weng
,
G. J.
,
1984
, “
The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites
,”
Polym. Compos.
,
5
(
4
), pp.
327
333
.10.1002/pc.750050413
69.
Hu
,
G. K.
, and
Weng
,
G. J.
,
2000
, “
The Connections Between the Double-Inclusion Model and the Ponte Castaneda-Willis, Mori-Tanaka, and Kuster-Toksoz Models
,”
Mech. Mater.
,
32
(
8
), pp.
495
503
.10.1016/S0167-6636(00)00015-6
70.
Aboutajeddine
,
A.
, and
Neale
,
K. W.
,
2005
, “
The Double-Inclusion Model: A New Formulation and New Estimates
,”
Mech. Mater.
,
37
(
2–3
), pp.
331
341
.10.1016/j.mechmat.2003.08.016
71.
Riccardi
,
A.
, and
Montheillet
,
F.
,
1999
, “
A Generalized Self-Consistent Method for Solids Containing Randomly Oriented Spheroidal Inclusions
,”
Acta Mech.
,
133
(
1–4
), pp.
39
56
.10.1007/BF01179009
72.
Ogden
,
R. W.
,
1974
, “
On the Overall Moduli of Non-Linear Elastic Composite Materials
,”
J. Mech. Phys. Solids
,
22
(
6
), pp.
541
553
.10.1016/0022-5096(74)90033-7
73.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1985
, “
Variational Principles for Inhomogeneous Non-Linear Media
,”
IMA J. Appl. Math.
,
35
(
1
), pp.
39
54
.10.1093/imamat/35.1.39
74.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1987
, “
Bounds and Self-Consistent Estimates for the Overall Properties of Nonlinear Composites
,”
IMA J. Appl. Math.
,
39
(
3
), pp.
215
240
.10.1093/imamat/39.3.215
75.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1992
, “
Some Simple Explicit Bounds for the Overall Behaviour of Nonlinear Composites
,”
Int. J. Solids Struct.
,
29
(
14–15
), pp.
1981
1987
.10.1016/0020-7683(92)90188-Y
76.
Willis
,
J. R.
,
1977
, “
Bounds and Self-Consistent Estimates for the Overall Properties of Anisotropic Composites
,”
J. Mech. Phys. Solids
,
25
(
3
), pp.
185
202
.10.1016/0022-5096(77)90022-9
77.
Willis
,
J. R.
,
1983
, “
The Overall Elastic Response of Composite Materials
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
1202
1209
.10.1115/1.3167202
78.
Willis
,
J. R.
,
1991
, “
On Methods for Bounding the Overall Properties of Nonlinear Composites
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
73
86
.10.1016/0022-5096(91)90031-I
79.
Ponte Castañeda
,
P.
,
DeBotton
,
G.
, and
Li
,
G.
,
1992
, “
Effective Properties of Nonlinear Inhomogeneous Dielectrics
,”
Phys. Rev. B
,
46
(
8
), pp.
4387
4394
.10.1103/PhysRevB.46.4387
80.
Castañeda
,
P. P.
, and
Willis
,
J. R.
, “
On the Overall Properties of Nonlinearly Viscous Composites
,”
Proc. R. Soc. London A
,
416
(
1988
), pp.
217
244
.
81.
Suquet
,
P. M.
,
1993
, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
981
1002
.10.1016/0022-5096(93)90051-G
82.
DeBotton
,
G.
, and
Ponte Castañeda
,
P.
,
1993
, “
Elastoplastic Constitutive Relations for Fiber-Reinforced Solids
,”
Int. J. Solids Struct.
,
30
(
14
), pp.
1865
1890
.10.1016/0020-7683(93)90222-S
83.
Olson
,
T.
,
1994
, “
Improvements on Taylor's Upper Bound for Rigid-Plastic Composites
,”
Mater. Sci. Eng. A
,
175
(
1–2
), pp.
15
20
.10.1016/0921-5093(94)91039-1
84.
Ponte Castañeda
,
P.
, “
The Overall Constitutive Behaviour of Nonlinearly Elastic Composites
,”
Proc. R. Soc. A
,
422
(
1989
), pp.
147
171
.10.1098/rspa.1989.0023
85.
Ponte Castañeda
,
P.
,
1996
, “
Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
827
862
.10.1016/0022-5096(96)00015-4
86.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: I—Theory
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
737
757
.10.1016/S0022-5096(01)00099-0
87.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: II—Applications
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
759
782
.10.1016/S0022-5096(01)00098-9
88.
Ponte Castañeda
,
P.
,
1992
, “
New Variational Principles in Plasticity and Their Application to Composite Materials
,”
J. Mech. Phys. Solids
,
40
(
8
), pp.
1757
1788
.10.1016/0022-5096(92)90050-C
89.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
45
71
.10.1016/0022-5096(91)90030-R
90.
Castañeda
,
P. P.
, and
Suquet
,
P.
,
1997
,
Nonlinear Composites
, Vol.
34
,
Elsevier, Amsterdam, The Netherlands.
10.1016/S0065-2156(08)70321-1
91.
Leroy
,
Y.
, and
Ponte Castañeda
,
P.
,
2001
, “
Bounds on the Self-Consistent Approximation for Nonlinear Media and Implications for the Second-Order Method
,”
C. R. L'Académie Des Sci.
,
329
(
8
), pp.
571
577
.
92.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
,
2003
, “
Second-Order Estimates for the Large-Deformation Response of Particle-Reinforced Rubbers
,”
C. R. Mec.
,
331
(
1
), pp.
1
8
.10.1016/S1631-0721(03)00021-4
93.
Mura
,
T.
,
1988
, “
Inclusion Problems
,”
ASME Appl. Mech. Rev.
,
41
(
1
), pp.
15
20
.10.1115/1.3151875
94.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030803
10.1115/1.4001911.
95.
Firooz
,
S.
,
Saeb
,
S.
,
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2019
, “
Systematic Study of Homogenization and the Utility of Circular Simplified Representative Volume Element
,”
Math. Mech. Solids
,
24
(
9
), pp.
2961
2985
.10.1177/1081286518823834
96.
Mandel
,
J.
,
1966
,
Contribution Theorique a L'etude de L'ecrouissage et Des Lois de L'ecoulement Plastique
,
Springer, Berlin
.
97.
Tvergaard
,
V.
,
1990
, “
Analysis of Tensile Properties for a Whisker-Reinforced Metal-Matrix Composite
,”
Acta Metall. Et Mater.
,
38
(
2
), pp.
185
194
.10.1016/0956-7151(90)90048-L
98.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
1998
, “
Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
155
(
1–2
), pp.
181
192
.10.1016/S0045-7825(97)00139-4
99.
Bao
,
Y.
,
Hutchinson
,
W.
, and
McMeeking
,
R. M.
,
1991
, “
Plastic Reinforcement of Ductile Materials Against Plastic Flow and Creep
,”
Acta Metall. Mater.
,
39
(
8
), pp.
1871
1882
.10.1016/0956-7151(91)90156-U
100.
Sluis
,
OV. D.
,
Vosbeek
,
P. H. J.
,
Schreurs
,
P. J. G.
, and
Jer
,
H. E. H. M.
,
1999
, “
Homogenization of Heterogeneous Polymers
,”
Int. J. Solids Struct.
,
36
(
21
), pp.
3193
3214
.10.1016/S0020-7683(98)00144-9
101.
van der Sluis
,
O.
,
Schreurs
,
P. J. G.
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
2000
, “
Overall Behaviour of Heterogeneous Elastoviscoplastic Materials: Effect of Microstructural Modelling
,”
Mech. Mater.
,
32
(
8
), pp.
449
462
.10.1016/S0167-6636(00)00019-3
102.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1995
, “
Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids
,”
ASME J. Eng. Mater. Technol.
,
117
(
4
), pp.
412
432
.10.1115/1.2804735
103.
Miehe
,
C.
,
2002
, “
Strain-Driven Homogenization of Inelastic Microstructures and Composites Based on an Incremental Variational Formulation
,”
Int. J. Numer. Methods Eng.
,
55
(
11
), pp.
1285
1322
.10.1002/nme.515
104.
Kaczmarczyk
,
Ł. C.
,
Pearce
,
J.
, and
Bićanić
,
N.
,
2008
, “
Scale Transition and Enforcement of RVE Boundary Conditions in Second-Order Computational Homogenization
,”
Int. J. Numer. Methods Eng.
,
74
(
3
), pp.
506
522
.10.1002/nme.2188
105.
Terada
,
K.
,
Hori
,
M.
,
Kyoya
,
T.
, and
Kikuchi
,
N.
,
2000
, “
Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches
,”
Int. J. Solids Struct.
,
37
(
16
), pp.
2285
2311
.10.1016/S0020-7683(98)00341-2
106.
Drago
,
A.
, and
Pindera
,
M. J.
,
2007
, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous Vs Periodic Microstructures
,”
Compos. Sci. Technol.
,
67
(
6
), pp.
1243
1263
.10.1016/j.compscitech.2006.02.031
107.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes: IV—The Equations of Hydrodynamics
,”
J. Chem. Phys.
,
18
(
6
), pp.
817
829
.10.1063/1.1747782
108.
Mercer
,
B. S.
,
Mandadapu
,
K. K.
, and
Papadopoulos
,
P.
,
2015
, “
Novel Formulations of Microscopic Boundary-Value Problems in Continuous Multiscale Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
268
292
.10.1016/j.cma.2014.12.021
109.
Fritzen
,
F.
, and
Böhlke
,
T.
,
2010
, “
Influence of the Type of Boundary Conditions on the Numerical Properties of Unit Cell Problems
,”
Tech. Mech.
,
30
(
4
), pp.
354
363
.https://www.researchgate.net/publication/288033928_Influence_of_the_type_of_boundary_conditions_on_the_numerical_properties_of_unit_cell_problems
110.
Yuan
,
X.
, and
Tomita
,
Y.
,
2001
, “
Effective Properties of Cosserat Composites With Periodic Microstructure
,”
Mech. Res. Commun.
,
28
(
3
), pp.
265
270
.10.1016/S0093-6413(01)00172-0
111.
Jiang
,
C. P.
, and
Cheung
,
Y. K.
,
2001
, “
An Exact Solution for the Three-Phase Piezoelectric Cylinder Model Under Antiplane Shear and Its Applications to Piezoelectric Composites
,”
Int. J. Solids Struct.
,
38
(
28–29
), pp.
4777
4796
.10.1016/S0020-7683(00)00324-3
112.
Inglis
,
H. M.
,
Geubelle
,
P. H.
, and
Matouš
,
K.
,
2008
, “
Boundary Condition Effects on Multiscale Analysis of Damage Localization
,”
Philos. Mag.
,
88
(
16
), pp.
2373
2397
.10.1080/14786430802345645
113.
Larsson
,
F.
,
Runesson
,
K.
,
Saroukhani
,
S.
, and
Vafadari
,
R.
,
2011
, “
Computational Homogenization Based on a Weak Format of Micro-Periodicity for RVE-Problems
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
11
26
.10.1016/j.cma.2010.06.023
114.
Glüge
,
R.
,
2013
, “
Generalized Boundary Conditions on Representative Volume Elements and Their Use in Determining the Effective Material Properties
,”
Comput. Mater. Sci.
,
79
, pp.
408
416
.10.1016/j.commatsci.2013.06.038
115.
Saroukhani
,
S.
,
Vafadari
,
R.
,
Andersson
,
R.
,
Larsson
,
F.
, and
Runesson
,
K.
,
2015
, “
On Statistical Strain and Stress Energy Bounds From Homogenization and Virtual Testing
,”
Eur. J. Mech., A/Solids
,
51
, pp.
77
95
.10.1016/j.euromechsol.2014.11.003
116.
Nguyen
,
V. D.
,
Wu
,
L.
, and
Noels
,
L.
,
2017
, “
Unified Treatment of Microscopic Boundary Conditions and Efficient Algorithms for Estimating Tangent Operators of the Homogenized Behavior in the Computational Homogenization Method
,”
Comput. Mech.
,
59
(
3
), pp.
483
505
.10.1007/s00466-016-1358-z
117.
Drugan
,
W. J.
, and
Willis
,
J. R.
,
1996
, “
A Micromechanics-Based Nonlocal Constitutive Equation and Estimates of Representative Volume Element Size for Elastic Composites
,”
J. Mech. Phys. Solids
,
44
(
4
), pp.
497
524
.10.1016/0022-5096(96)00007-5
118.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3647
3679
.10.1016/S0020-7683(03)00143-4
119.
Gitman
,
I. M.
,
Askes
,
H.
, and
Aifantis
,
E. C.
,
2005
, “
The Representative Volume Size in Static and Dynamic Micro-Macro Transitions
,”
Int. J. Fract.
,
135
(
1–4
), pp.
L3
9
.10.1007/s10704-005-4389-6
120.
Khisaeva
,
Z. F.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
On the Size of RVE in Finite Elasticity of Random Composites
,”
J. Elasticity
,
85
(
2
), pp.
153
173
.10.1007/s10659-006-9076-y
121.
Temizer
,
I.
, and
Zohdi
,
T. I.
,
2007
, “
A Numerical Method for Homogenization in Non-Linear Elasticity
,”
Comput. Mech.
,
40
(
2
), pp.
281
298
.10.1007/s00466-006-0097-y
122.
Thomas
,
M.
,
Boyard
,
N.
,
Perez
,
L.
,
Jarny
,
Y.
, and
Delaunay
,
D.
,
2008
, “
Representative Volume Element of Anisotropic Unidirectional Carbon-Epoxy Composite With High-Fibre Volume Fraction
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3184
3192
.10.1016/j.compscitech.2008.07.015
123.
Temizer
,
I.
,
Wu
,
T.
, and
Wriggers
,
P.
,
2013
, “
On the Optimality of the Window Method in Computational Homogenization
,”
Int. J. Eng. Sci.
,
64
, pp.
66
73
.10.1016/j.ijengsci.2012.12.007
124.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2014
, “
Towards Gigantic RVE Sizes for 3D Stochastic Fibrous Networks
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
359
376
.10.1016/j.ijsolstr.2013.10.011
125.
Dai
,
M.
,
Schiavone
,
P.
, and
Gao
,
C. F.
,
2017
, “
A New Method for the Evaluation of the Effective Properties of Composites Containing Unidirectional Periodic Nanofibers
,”
Arch. Appl. Mech.
,
87
(
4
), pp.
647
665
.10.1007/s00419-016-1215-8
126.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Prob. Eng. Mech.
,
21
(
2
), pp.
112
132
.10.1016/j.probengmech.2005.07.007
127.
Ghosh
,
S.
,
Lee
,
K.
, and
Moorthy
,
S.
,
1995
, “
Multiple Scale Analysis of Heterogeneous Elastic Structures Using Homogenization Theory and Voronoi Cell Finite Element Method
,”
Int. J. Solids Struct.
,
32
(
1
), pp.
27
62
.10.1016/0020-7683(94)00097-G
128.
Ghosh
,
S.
, and
Moorthy
,
S.
,
1995
, “
Elastic-Plastic Analysis of Arbitrary Heterogeneous Materials With the Voronoi Cell Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
121
(
1–4
), pp.
373
409
.10.1016/0045-7825(94)00687-I
129.
Moorthy
,
S.
, and
Ghosh
,
S.
,
1996
, “
A Model for Analysis of Arbitrary Composite and Porous Microstructures With Voronoi Cell Finite Elements
,”
Int. J. Numer. Methods Eng.
,
39
(
14
), pp.
2363
2398
.10.1002/(SICI)1097-0207(19960730)39:14<2363::AID-NME958>3.0.CO;2-D
130.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
69
94
.10.1016/S0045-7825(97)00218-1
131.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
1999
, “
Effective Properties of Composite Materials With Periodic Microstructure: A Computational Approach
,”
Comput. Methods Appl. Mech. Eng.
,
172
(
1–4
), pp.
109
143
.10.1016/S0045-7825(98)00227-8
132.
Vinogradov
,
V.
, and
Milton
,
G. W.
,
2008
, “
An Accelerated FFT Algorithm for Thermoelastic and Non-Linear Composites
,”
Int. J. Numer. Methods Eng.
,
76
(
11
), pp.
1678
1695
.10.1002/nme.2375
133.
Lee
,
S. B.
,
Lebensohn
,
R. A.
, and
Rollett
,
A. D.
,
2011
, “
Modeling the Viscoplastic Micromechanical Response of Two-Phase Materials Using Fast Fourier Transforms
,”
Int. J. Plasticity
,
27
(
5
), pp.
707
727
.10.1016/j.ijplas.2010.09.002
134.
Monchiet
,
V.
, and
Bonnet
,
G.
,
2012
, “
A Polarization-Based FFT Iterative Scheme for Computing the Effective Properties of Elastic Composites With Arbitrary Contrast
,”
Int. J. Numer. Methods Eng.
,
89
(
11
), pp.
1419
1436
.10.1002/nme.3295
135.
Moulinec
,
H.
, and
Silva
,
F.
,
2014
, “
Comparison of Three Accelerated FFT-Based Schemes for Computing the Mechanical Response of Composite Materials
,”
Int. J. Numer. Methods Eng.
,
97
(
13
), pp.
960
985
.10.1002/nme.4614
136.
Kabel
,
M.
,
Merkert
,
D.
, and
Schneider
,
M.
,
2015
, “
Use of Composite Voxels in FFT-Based Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
168
188
.10.1016/j.cma.2015.06.003
137.
Kamiński
,
M.
,
1999
, “
Boundary Element Method Homogenization of the Periodic Linear Elastic Fiber Composites
,”
Eng. Anal. Bound. Elem.
,
23
(
10
), pp.
815
823
.10.1016/S0955-7997(99)00029-6
138.
Okada
,
H.
,
Fukui
,
Y.
, and
Kumazawa
,
N.
,
2001
, “
Homogenization Method for Heterogeneous Material Based on Boundary Element Method
,”
Comput. Struct.
,
79
(
20–21
), pp.
1987
2007
.10.1016/S0045-7949(01)00121-3
139.
Procházka
,
P.
,
2001
, “
Homogenization of Linear and of Debonding Composites Using the BEM
,”
Eng. Anal. Bound. Elem.
,
25
(
9
), pp.
753
769
.10.1016/S0955-7997(01)00066-2
140.
Renard
,
J.
, and
Marmonier
,
M. F.
,
1987
, “
Etude de L'initiation de L'endommagement Dans la Matrice D'un Matériau Composite Par Une Méthode D'homogénéisation
,”
La Recherche Aérospatiale
,
6
, pp.
43
51
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7761287
141.
Takano
,
N.
,
Ohnishi
,
Y.
,
Zako
,
M.
, and
Nishiyabu
,
K.
,
2000
, “
The Formulation of Homogenization Method Applied to Large Deformation Problem for Composite Materials
,”
Int. J. Solids Struct.
,
37
(
44
), pp.
6517
6535
.10.1016/S0020-7683(99)00284-X
142.
Feyel
,
F.
, and
Chaboche
,
J. L.
,
2000
, “
FE2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre SiC/Ti Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
), pp.
309
330
.10.1016/S0045-7825(99)00224-8
143.
Terada
,
K.
, and
Kikuchi
,
N.
,
2001
, “
A Class of General Algorithms for Multi-Scale Analyses of Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
40–41
), pp.
5427
5464
.10.1016/S0045-7825(01)00179-7
144.
Miehe
,
C.
, and
Koch
,
A.
,
2002
, “
Computational Micro-to-Macro Transitions of Discretized Microstructures Undergoing Small Strains
,”
Arch. Appl. Mech.
,
72
(
4–5
), pp.
300
317
.10.1007/s00419-002-0212-2
145.
Segurado
,
J.
, and
Llorca
,
J.
,
2002
, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
,
50
(
10
), pp.
2107
2121
.10.1016/S0022-5096(02)00021-2
146.
Segurado
,
J.
, and
LLorca
,
J.
,
2006
, “
Computational Micromechanics of Composites: The Effect of Particle Spatial Distribution
,”
Mech. Mater.
,
38
(
8–10
), pp.
873
883
.10.1016/j.mechmat.2005.06.026
147.
Miehe
,
C.
,
Schröder
,
J.
, and
Bayreuther
,
C.
,
2002
, “
On the Homogenization Analysis of Composite Materials Based on Discretized Fluctuations on the Micro-Structure
,”
Acta Mech.
,
155
(
1–2
), pp.
1
16
.10.1007/BF01170836
148.
Feyel
,
F.
,
2003
, “
A Multilevel Finite Element Method (FE2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
28–30
), pp.
3233
3244
.10.1016/S0045-7825(03)00348-7
149.
Terada
,
K.
,
Saiki
,
I.
,
Matsui
,
K.
, and
Yamakawa
,
Y.
,
2003
, “
Two-Scale Kinematics and Linearization for Simultaneous Two-Scale Analysis of Periodic Heterogeneous Solids at Finite Strain
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
31–32
), pp.
3531
3563
.10.1016/S0045-7825(03)00365-7
150.
Klinge
,
S.
, and
Hackl
,
K.
,
2012
, “
Application of the Multiscale Fem to the Modeling of Nonlinear Composites With a Random Microstructure
,”
Int. J. Multiscale Comput. Eng.
,
10
(
3
), pp.
213
227
.10.1615/IntJMultCompEng.2012002059
151.
Moës
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
(
7
), pp.
813
833
.10.1016/S0013-7944(01)00128-X
152.
Spieler
,
C.
,
Kästner
,
M.
,
Goldmann
,
J.
,
Brummund
,
J.
, and
Ulbricht
,
V.
,
2013
, “
XFEM Modeling and Homogenization of Magnetoactive Composites
,”
Acta Mech.
,
224
(
11
), pp.
2453
2469
.10.1007/s00707-013-0948-5
153.
Savvas
,
D.
,
Stefanou
,
G.
,
Papadrakakis
,
M.
, and
Deodatis
,
G.
,
2014
, “
Homogenization of Random Heterogeneous Media With Inclusions of Arbitrary Shape Modeled by XFEM
,”
Comput. Mech.
,
54
(
5
), pp.
1221
1235
.10.1007/s00466-014-1053-x
154.
Patil
,
R. U.
,
Mishra
,
B. K.
, and
Singh
,
I. V.
,
2017
, “
A New Multiscale XFEM for the Elastic Properties Evaluation of Heterogeneous Materials
,”
Int. J. Mech. Sci.
,
122
, pp.
277
287
.10.1016/j.ijmecsci.2017.01.028
155.
Lee
,
B. J.
, and
Mear
,
M. E.
,
1991
, “
Effect of Inclusion Shape on Stiffness of Isotropic and Transversely Isotropic Two-Phase Composites
,”
J. Mech. Phys. Solids
,
39
(
5
), pp.
627
649
.10.1016/0022-5096(91)90044-O
156.
Wang
,
Y. M.
, and
Weng
,
G. J.
,
1992
, “
The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
510
518
.10.1115/1.2893753
157.
Monette
,
L.
,
Anderson
,
M. P.
, and
Grest
,
G. S.
,
1994
, “
Effect of Volume Fraction and Morphology of Reinforcing Phases in Composites
,”
J. Appl. Phys.
,
75
(
2
), pp.
1155
1170
.10.1063/1.356501
158.
BöHm
,
H. J.
,
Rammerstorfer
,
F. G.
,
Fischer
,
F. D.
, and
Siegmund
,
T.
,
1994
, “
Microscale Arrangement Effects on the Thermomechanical Behavior of Advanced Two-Phase Materials
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
268
273
.10.1115/1.2904285
159.
Ghosh
,
S.
,
Nowak
,
Z.
, and
Lee
,
K.
,
1997
, “
Quantitative Characterization and Modeling of Composite Microstructures by Voronoi Cells
,”
Acta Mater.
,
45
(
6
), pp.
2215
2234
.10.1016/S1359-6454(96)00365-5
160.
Brockenbrough
,
J. R.
,
Suresh
,
S.
, and
Wienecke
,
H. A.
,
1991
, “
Deformation of Metal-Matrix Composites With Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape
,”
Acta Metall. Mater.
,
39
(
5
), pp.
735
752
.10.1016/0956-7151(91)90274-5
161.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
,
2001
, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
,
27
(
1
), pp.
37
48
.10.1007/s004660000212
162.
Chawla
,
N.
,
Sidhu
,
R. S.
, and
Ganesh
,
V. V.
,
2006
, “
Three-Dimensional Visualization and Microstructure-Based Modeling of Deformation in Particle-Reinforced Composites
,”
Acta Mater.
,
54
(
6
), pp.
1541
1548
.10.1016/j.actamat.2005.11.027
163.
Kanouté
,
P.
,
Boso
,
D. P.
,
Chaboche
,
J. L.
, and
Schrefler
,
B. A.
,
2009
, “
Multiscale Methods for Composites: A Review
,”
Arch. Comput. Methods Eng.
,
16
(
1
), pp.
31
75
.10.1007/s11831-008-9028-8
164.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Brekelmans
,
W. A. M.
,
2010
, “
Multi-Scale Computational Homogenization: Trends and Challenges
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2175
2182
.10.1016/j.cam.2009.08.077
165.
Nguyen
,
V. P.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2011
, “
Multiscale Continuous and Discontinuous Modeling of Heterogeneous Materials: A Review on Recent Developments
,”
J. Multiscale Modell.
,
03
(
04
), pp.
229
270
.10.1142/S1756973711000509
166.
Saeb
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2016
, “
Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's
,”
ASME Bound, Appl. Mech. Rev.
,
68
(
5
), p.
050801
.10.1115/1.4034024
167.
Matouš
,
K.
,
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Gillman
,
A.
,
2017
, “
A Review of Predictive Nonlinear Theories for Multiscale Modeling of Heterogeneous Materials
,”
J. Comput. Phys.
,
330
, pp.
192
220
.10.1016/j.jcp.2016.10.070
168.
Hancox
,
N. L.
, and
Wells
,
H.
,
1977
, “
The Effects of Fibre Surface Coatings on the Mechanical Properties of CFRP
,”
Fibre Sci. Technol.
,
10
(
1
), pp.
9
22
.10.1016/0015-0568(77)90025-2
169.
Williams
,
J. H.
, and
Kousiounelos
,
P. N.
,
1978
, “
Thermoplastic Fibre Coatings Enhance Composite Strength and Toughness
,”
Fibre Sci. Technol.
,
11
(
2
), pp.
83
88
.10.1016/0015-0568(78)90001-5
170.
Drzal
,
L. T.
,
Rich
,
M. J.
,
Koenig
,
M. F.
, and
Lloyd
,
P. F.
,
1983
, “
Adhesion of Graphite Fibers to Epoxy Matrices: I—The Role of Fivber Surface Treatment
,”
J. Adhes.
,
16
(
1
), pp.
1
30
.10.1080/00218468308074901
171.
Drzal
,
L. T.
,
Rich
,
M. J.
,
Koenig
,
M. F.
, and
Lloyd
,
P. F.
,
1983
, “
Adhesion of Graphite Fibers to Epoxy Matrices: II—The Effect of Fiber Finish
,”
J. Adhes.
,
16
(
2
), pp.
133
152
.10.1080/00218468308074911
172.
Subramanian
,
R. V.
, and
Crasto
,
A. S.
,
1986
, “
Electrodeposition of a Polymer Interphase in Carbon-Fiber Composites
,”
Polym. Compos.
,
7
(
4
), pp.
201
218
.10.1002/pc.750070403
173.
Adams
,
D. F.
,
1987
, “
A Micromechanics Analysis of the Influence of the Interface on the Performance of Polymer-Matrix Composites
,”
J. Reinf. Plast. Compos.
,
6
(
1
), pp.
66
88
.10.1177/073168448700600106
174.
Sinien
,
L.
,
Lin
,
Y.
,
Xiaoguang
,
Z.
, and
Zongneng
,
Q.
,
1992
, “
Microdamage and Interfacial Adhesion in Glass Bead-Filled High-Density Polyethylene
,”
J. Mater. Sci.
,
27
(
17
), pp.
4633
4638
.10.1007/BF01165998
175.
Mascia
,
L.
,
Dhillon
,
J.
, and
Harper
,
J. F.
,
1993
, “
Adhesion Enhancement of Rubbery and Ductile Polyolefin Coatings on Glass Fibers for Epoxy Composites and Effects on Failure Mechanism
,”
J. Appl. Polym. Sci.
,
47
(
3
), pp.
487
498
.10.1002/app.1993.070470309
176.
Kouris
,
D.
,
1993
, “
Stress Concentration Due to the Interaction Between Two Imperfectly Bonded Fibers in a Continuous Fiber Composite
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
203
206
.10.1115/1.2900747
177.
Torquato
,
S.
, and
Rintoul
,
M. D.
,
1995
, “
Effect of the Interface on the Properties of Composite Media
,”
Phys. Rev. Lett.
,
75
(
22
), pp.
4067
4070
.10.1103/PhysRevLett.75.4067
178.
Chamis
,
C. C.
,
1972
,
Mechanics of Load Transfer at the Fiber/Matrix Interface
,
National Aeronautics and Space Administration
, Washington, DC.
179.
Jang
,
B. Z.
,
Hwang
,
L. R.
, and
Lieu
,
Y. K.
,
1986
, “
The Assessment of Interfacial Adhesion in Fibrous Composites
,”
Interfaces in Metal-Matrix Composites, Proceedings of a Symposium Held at the Annual Meeting of the Metallurgical Society,
New Orleans, LA, pp.
95
109
.
180.
Narkis
,
M.
,
Chen
,
E. J. H.
, and
Pipes
,
R. B.
,
1988
, “
Review of Methods for Characterization of Interfacial Fiber-Matrix Interactions
,”
Polym. Compos.
,
9
(
4
), pp.
245
251
.10.1002/pc.750090402
181.
Wang
,
Q.
, and
Chiang
,
F. P.
,
1996
, “
Experimental Characterization of Interphase Mechanical Properties of Composites
,”
Compos. Part B
,
27
(
2
), pp.
123
128
.10.1016/1359-8368(95)00034-8
182.
Drzal
,
L. T.
,
1983
, “
Composite Interphase Characterization
,”
Sampe J.
,
19
, pp.
7
14.
10.1016/0010-4361(84)90767-5
183.
Drzal
,
L. T.
,
1986
, “The
Interphase in Epoxy Composites
,” K. Dušek, ed.,
Epoxy Resins and Composites II. Advances in Polymer Science
, Vol. 75.
Springer
, Berlin, Heidelberg, pp.
1
32
.10.1007/BFb0017913
184.
Wang
,
W.
, and
Jasiuk
,
I.
,
1998
, “
Effective Elastic Constants of Participate Composites With Inhomogeneous Interphases
,”
J. Compos. Mater.
,
32
(
15
), pp.
1391
1424
.10.1177/002199839803201503
185.
Crasto
,
A. S.
,
Own
,
S. H.
, and
Subramanian
,
R. V.
,
1988
, “
The Influence of the Interphase on Composite Properties: Poly(Ethylene-co-Acrylic Acid) and Poly(Methyl Vinyl Ether-co-Maleic Anhydride) Electrodeposited on Graphite Fibers
,”
Polym. Compos.
,
9
(
1
), pp.
78
92
.10.1002/pc.750090111
186.
Kerans
,
R. J.
,
Hay
,
R. S.
,
Pagano
,
N. J.
, and
Parthasarathy
,
T. A.
,
1989
, “
The Role of the Fiber-Matrix Interface in Ceramic Composites
,”
Am. Ceram. Soc. Bull.
,
68
, pp.
429
442
.
187.
Swain
,
R. E.
,
Reifsnider
,
K. L.
,
Jayaraman
,
K.
, and
El-Zein
,
M.
,
1990
, “
Interface/Interphase Concepts in Composite Material Systems
,”
J. Thermoplastic Compos. Mater.
,
3
(
1
), pp.
13
23
.10.1177/089270579000300102
188.
Evans
,
A. G.
,
Zok
,
F. W.
, and
Davis
,
J.
,
1991
, “
The Role of Interfaces in Fiber-Reinforced Brittle Matrix Composites
,”
Compos. Sci. Technol.
,
42
(
1–3
), pp.
3
24
.10.1016/0266-3538(91)90010-M
189.
Hughes
,
J. D. H.
,
1991
, “
The Carbon Fibre/Epoxy Interface-A Review
,”
Compos. Sci. Technol.
,
41
(
1
), pp.
13
45
.10.1016/0266-3538(91)90050-Y
190.
Podgaiz
,
R. H.
, and
Williams
,
R. J. J.
,
1997
, “
Effects of Fiber Coatings on Mechanical Properties of Unidirectional Glass-Reinforced Composites
,”
Compos. Sci. Technol.
,
57
(
8
), pp.
1071
1076
.10.1016/S0266-3538(96)00182-0
191.
Wacker
,
G.
,
Bledzki
,
A. K.
, and
Chate
,
A.
,
1998
, “
Effect of Interphase on the Transverse Young's Modulus of Glass/Epoxy Composites
,”
Compos. Part A
,
29
(
5–6
), pp.
619
626
.10.1016/S1359-835X(97)00116-4
192.
Gao
,
S. L.
, and
Mäder
,
E.
,
2002
, “
Characterisation of Interphase Nanoscale Property Variations in Glass Fibre Reinforced Polypropylene and Epoxy Resin Composites
,”
Compos. Part A
,
33
(
4
), pp.
559
576
.10.1016/S1359-835X(01)00134-8
193.
Mäder
,
E.
,
Gao
,
S. L.
, and
Plonka
,
R.
,
2004
, “
Enhancing the Properties of Composites by Controlling Their Interphase Parameters
,”
Adv. Eng. Mater.
,
6
(
3
), pp.
147
150
.10.1002/adem.200300558
194.
Walpole
,
L. J.
,
1978
, “
A Coated Inclusion in an Elastic Medium
,”
Math. Proc. Cambridge Philos. Soc.
,
83
(
3
), pp.
495
506
.10.1017/S0305004100054773
195.
Theocaris
,
P. S.
, and
Papanicolaou
,
G. C.
,
1979
, “
The Effect of the Boundary Interphase on the Thermomechanical Behaviour of Composites Reinforced With Short Fibres
,”
Fibre Sci. Technol.
,
12
(
6
), pp.
421
433
.10.1016/0015-0568(79)90016-2
196.
Rosen
,
B. W.
,
1965
, “Mechanics of Composite Strengthening,”
Fibre Composite Materials, American Society for Metals
, pp.
37
75
.https://ntrs.nasa.gov/citations/19660035520
197.
Benveniste
,
Y.
,
Dvorak
,
G. J.
, and
Chen
,
T.
,
1989
, “
Stress Fields in Composites With Coated Inclusions
,”
Mech. Mater.
,
7
(
4
), pp.
305
317
.10.1016/0167-6636(89)90021-5
198.
Benveniste
,
Y.
,
Dvorak
,
G. J.
, and
Chen
,
T.
,
1991
, “
On Effective Properties of Composites With Coated Cylindrically Orthotropic Fibers
,”
Mech. Mater.
,
12
(
3–4
), pp.
289
297
.10.1016/0167-6636(91)90025-U
199.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Benveniste
,
Y.
,
1990
, “
Stress Fields in Composites Reinforced by Coated Cylindrically Orthotropic Fibers
,”
Mech. Mater.
,
9
(
1
), pp.
17
32
.10.1016/0167-6636(90)90027-D
200.
Carman
,
G. P.
,
Averill
,
R. C.
,
Reifsnider
,
K. L.
, and
Reddy
,
J. N.
,
1993
, “
Optimization of Fiber Coatings to Minimize Stress Concentrations in Composite Materials
,”
J. Compos. Mater.
,
27
(
6
), pp.
589
612
.10.1177/002199839302700603
201.
Mikata
,
Y.
, and
Taya
,
M.
,
1985
, “
Stress Field in a Coated Continuous Fiber Composite Subjected to Thermo-Mechanical Loadings
,”
J. Compos. Mater.
,
19
(
6
), pp.
554
578
.10.1177/002199838501900607
202.
Mikata
,
Y.
, and
Taya
,
M.
,
1985
, “
Stress Field in and Around a Coated Short Fiber in an Infinite Matrix Subjected to Uniaxial and Biaxial Loadings
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
19
24
.10.1115/1.3168996
203.
Hatta
,
H.
, and
Taya
,
M.
,
1987
, “
Thermal Stress in a Coated Short Fiber Composite
,”
ASME J. Eng. Mater. Technol.
,
109
(
1
), pp.
59
63
.10.1115/1.3225934
204.
Pagano
,
N. J.
, and
Tandon
,
G. P.
,
1988
, “
Elastic Response of Multi-Directional Coated-Fiber Composites
,”
Compos. Sci. Technol.
,
31
(
4
), pp.
273
293
.10.1016/0266-3538(88)90034-6
205.
Pagano
,
N. J.
, and
Tandon
,
G. P.
,
1990
, “
Thermo-Elastic Model for Multidirectional Coated-Fiber Composites: Traction Formulation
,”
Compos. Sci. Technol.
,
38
(
3
), pp.
247
269
.10.1016/0266-3538(90)90061-9
206.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Zhong
,
Y.
,
2005
, “
Stress Fields of a Spheroidal Inhomogeneity With an Interphase in an Infinite Medium Under Remote Loadings
,”
Proc. R. Soc. A
,
461
(
2056
), pp.
1055
1080
.10.1098/rspa.2004.1396
207.
Sullvian
,
B. J.
, and
Hashin
,
Z.
,
1990
, “
Determination of Mechanical Properties of Interfacial Region Between Fiber and Matrix in Organic Matrix Composites
,”
Controlled Interphases in Composite Materials
,
Springer
, Dordrecht, The Netherlands, pp.
521
537
.10.1007/978-94-011-7816-7_50
208.
Maurer
,
F. H. J.
,
1990
, “
An Interlayer Model to Describe the Physical Properties of Particulate Composites
,”
Controlled Interphases in Composite Materials
,
Springer
, Dordrecht, The Netherlands, pp.
491
504
.10.1007/978-94-011-7816-7_48
209.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1991
, “
Elastic Moduli of Thickly Coated Particle and Fiber-Reinforced Composites
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
388
398
.10.1115/1.2897198
210.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
,
1994
, “
Micramechanical Approach of the Coated Inclusion Problem and Applications to Composite Materials
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
274
278
.10.1115/1.2904286
211.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
,
1995
, “
Elastic Composites With Coated Reinforcements: A Micromechanical Approach for Nonhomothetic Topology
,”
Int. J. Eng. Sci.
,
33
(
6
), pp.
829
843
.10.1016/0020-7225(94)00108-V
212.
Barhdadi
,
E. H.
,
Lipinski
,
P.
, and
Cherkaoui
,
M.
,
2007
, “
Four Phase Model: A New Formulation to Predict the Effective Elastic Moduli of Composites
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
313
320
.10.1115/1.2712472
213.
El Mouden
,
M.
,
Cherkaoui
,
M.
,
Molinari
,
A.
, and
Berveiller
,
M.
,
1998
, “
The Overall Elastic Response of Materials Containing Coated Inclusions in a Periodic Array
,”
Int. J. Eng. Sci.
,
36
(
7–8
), pp.
813
829
.10.1016/S0020-7225(97)00111-0
214.
Sarvestani
,
A. S.
,
2003
, “
On the Overall Elastic Moduli of Composites With Spherical Coated Fillers
,”
Int. J. Solids Struct.
,
40
(
26
), pp.
7553
7566
.10.1016/S0020-7683(03)00299-3
215.
Nazarenko
,
L.
,
Bargmann
,
S.
, and
Stolarski
,
H.
,
2016
, “
Lurie Solution for Spherical Particle and Spring Layer Model of Interphases: Its Application in Analysis of Effective Properties of Composites
,”
Mech. Mater.
,
96
, pp.
39
52
.10.1016/j.mechmat.2016.01.011
216.
Nazarenko
,
L.
,
Stolarski
,
H.
, and
Altenbach
,
H.
,
2017
, “
Thermo-Elastic Properties of Random Particulate Nano-Materials for Various Models of Interphase
,”
Int. J. Mech. Sci.
,
126
, pp.
130
141
.10.1016/j.ijmecsci.2017.03.021
217.
Nazarenko
,
L.
,
Stolarski
,
H.
, and
Altenbach
,
H.
,
2018
, “
Thermo-Elastic Properties of Random Composites With Unidirectional Anisotropic Short-Fibers and Interphases
,”
Eur. J. Mech., A/Solids
,
70
, pp.
249
266
.10.1016/j.euromechsol.2018.01.002
218.
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2006
, “
Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composites
,”
Mech. Mater.
,
38
(
8–10
), pp.
884
907
.10.1016/j.mechmat.2005.06.029
219.
Xu
,
W.
,
Ma
,
H.
,
Ji
,
S.
, and
Chen
,
H.
,
2016
, “
Analytical Effective Elastic Properties of Particulate Composites With Soft Interfaces Around Anisotropic Particles
,”
Compos. Sci. Technol.
,
129
, pp.
10
18
.10.1016/j.compscitech.2016.04.011
220.
Xu
,
W.
,
Wu
,
F.
,
Jiao
,
Y.
, and
Liu
,
M.
,
2017
, “
A General Micromechanical Framework of Effective Moduli for the Design of Nonspherical Nano- and Micro-Particle Reinforced Composites With Interface Properties
,”
Mater. Des.
,
127
, pp.
162
172
.10.1016/j.matdes.2017.04.075
221.
Xu
,
W.
,
Jia
,
M.
,
Zhu
,
Z.
,
Liu
,
M.
,
Lei
,
D.
, and
Gou
,
X.
,
2018
, “
n-Phase Micromechanical Framework for the Conductivity and Elastic Modulus of Particulate Composites: Design to Microencapsulated Phase Change Materials (MPCMs)-Cementitious Composites
,”
Mater. Des.
,
145
, pp.
108
115
.10.1016/j.matdes.2018.02.065
222.
Xu
,
W.
,
Zhang
,
D.
,
Lan
,
P.
, and
Jiao
,
Y.
,
2019
, “
Multiple-Inclusion Model for the Transport Properties of Porous Composites Considering Coupled Effects of Pores and Interphase Around Spheroidal Particles
,”
Int. J. Mech. Sci.
,
150
, pp.
610
616
.10.1016/j.ijmecsci.2018.10.063
223.
Wu
,
Y.
,
Ling
,
Z.
, and
Dong
,
Z.
,
2000
, “
Stress-Strain Fields and the Effectiveness Shear Properties for Three-Phase Composites With Imperfect Interface
,”
Int. J. Solids Struct.
,
37
(
9
), pp.
1275
1292
.10.1016/S0020-7683(98)00295-9
224.
Nie
,
S.
, and
Basaran
,
C.
,
2005
, “
A Micromechanical Model for Effective Elastic Properties of Particulate Composites With Imperfect Interfacial Bonds
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
4179
4191
.10.1016/j.ijsolstr.2004.12.009
225.
Lu
,
P.
,
Leong
,
Y. W.
,
Pallathadka
,
P. K.
, and
He
,
C. B.
,
2013
, “
Effective Moduli of Nanoparticle Reinforced Composites Considering Interphase Effect by Extended Double-Inclusion model - Theory and Explicit Expressions
,”
Int. J. Eng. Sci.
,
73
, pp.
33
55
.10.1016/j.ijengsci.2013.08.003
226.
Shi
,
C.
,
Tu
,
Q.
,
Fan
,
H.
,
Rios
,
C. A. O.
, and
Li
,
S.
,
2016
, “
Interphase Models for Nanoparticle-Polymer Composites
,”
J. Nanomech. Micromech.
,
6
(
2
), p.
04016003
.10.1061/(ASCE)NM.2153-5477.0000107
227.
Marcadon
,
V.
,
Herve
,
E.
, and
Zaoui
,
A.
,
2007
, “
Micromechanical Modeling of Packing and Size Effects in Particulate Composites
,”
Int. J. Solids Struct.
,
44
(
25–26
), pp.
8213
8228
.10.1016/j.ijsolstr.2007.06.008
228.
Liu
,
H. T.
, and
Sun
,
L. Z.
,
2008
, “
A Micromechanics-Based Elastoplastic Model for Amorphous Composites With Nanoparticle Interactions
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
0310091
.10.1115/1.2839899
229.
Deng
,
F.
, and
Van Vliet
,
K. J.
,
2011
, “
Prediction of Elastic Properties for Polymer-Particle Nanocomposites Exhibiting an Interphase
,”
Nanotechnology
,
22
(
16
), p.
165703
.10.1088/0957-4484/22/16/165703
230.
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1993
, “
Polymeric Composite Materials Incorporating an Elastomeric Interphase: A Mathematical Assessment
,”
Compos. Sci. Technol.
,
46
(
4
), pp.
307
318
.10.1016/0266-3538(93)90176-H
231.
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1993
, “
Residual Thermal Stresses in Filamentary Polymer-Matrix Composites Containing an Elastomeric Interphase
,”
J. Compos. Mater.
,
27
(
8
), pp.
830
860
.10.1177/002199839302700805
232.
Gardner
,
S. D.
,
Pittman
,
C. U.
,
Chang
,
T. C.
,
Low
,
B. Y.
, and
Hackett
,
R. M.
,
1995
, “
Microstress Distribution in Graphite Fibre/Epoxy Composites Containing an Elastomeric Interphase: Response to Uniaxial and Biaxial Loading Conditions
,”
Composite
,
26
(
4
), pp.
269
280
.10.1016/0010-4361(95)93670-F
233.
Ordóñez-Miranda
,
J.
,
Alvarado-Gil
,
J. J.
, and
Medina-Ezquivel
,
R.
,
2010
, “
Generalized Bruggeman Formula for the Effective Thermal Conductivity of Particulate Composites With an Interface Layer
,”
Int. J. Thermophys.
,
31
(
4–5
), pp.
975
986
.10.1007/s10765-010-0756-2
234.
Pham
,
D. C.
, and
Torquato
,
S.
,
2003
, “
Strong-Contrast Expansions and Approximations for the Effective Conductivity of Isotropic Multiphase Composites
,”
J. Appl. Phys.
,
94
(
10
), pp.
6591
6602
.10.1063/1.1619573
235.
Tong
,
Y.
, and
Jasiuk
,
I.
,
1990
, “
Transverse Elastic Moduli of Composites Reinforced With Cylindrical Coated Fibers: Successive Iteration Method
,”
Proceedings of Fifth Technical Conference of the American Society for Composites
, Lancaster, PA, May 1, pp.
117
126
.
236.
Chouchaoui
,
C. S.
, and
Benzeggagh
,
M. L.
,
1997
, “
The Effect of Interphase on the Elastic Behavior of a Glass/Epoxy Bundle
,”
Compos. Sci. Technol.
,
57
(
6
), pp.
617
622
.10.1016/S0266-3538(96)00133-9
237.
Guinovart-Díaz
,
R.
,
Rodríguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
, and
Sabina
,
F. J.
,
2003
, “
Modeling of Three-Phase Fibrous Composite Using the Asymptotic Homogenization Method
,”
Mech. Adv. Mater. Struct.
,
10
(
4
), pp.
319
333
.10.1080/10759410306753
238.
Lurie
,
S.
,
Belov
,
P.
,
Volkov-Bogorodsky
,
D.
, and
Tuchkova
,
N.
,
2006
, “
Interphase Layer Theory and Application in the Mechanics of Composite Materials
,”
J. Mater. Sci.
,
41
(
20
), pp.
6693
6707
.10.1007/s10853-006-0183-8
239.
Lebon
,
F.
, and
Rizzoni
,
R.
,
2010
, “
Asymptotic Analysis of a Thin Interface: The Case Involving Similar Rigidity
,”
Int. J. Eng. Sci.
,
48
(
5
), pp.
473
486
.10.1016/j.ijengsci.2009.12.001
240.
Lebon
,
F.
, and
Rizzoni
,
R.
,
2011
, “
Asymptotic Behavior of a Hard Thin Linear Elastic Interphase: An Energy Approach
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
441
449
.10.1016/j.ijsolstr.2010.10.006
241.
Papanicolaou
,
G. C.
,
Theocaris
,
P. S.
, and
Spathis
,
G. D.
,
1980
, “
Adhesion Efficiency Between phases in fibre-Reinforced Polymers by Means of the Concept of Boundary Interphase
,”
Colloid Polym. Sci.
,
258
(
11
), pp.
1231
1237
.10.1007/BF01668768
242.
Ostoja-Starzewski
,
M.
,
Jasiuk
,
I.
,
Wang
,
W.
, and
Alzebdeh
,
K.
,
1996
, “
Composites With Functionally Graded Interphases: Mesocontinuum Concept and Effective Transverse Conductivity
,”
Acta Mater.
,
44
(
5
), pp.
2057
2066
.10.1016/1359-6454(95)00269-3
243.
Sottos
,
N. R.
,
McCullough
,
R. L.
, and
Guceri
,
S. I.
,
1989
, “
Thermal Stresses Due to Property Gradients at the Fiber/Matrix Interface, in: American Society of Mechanical Engineers
,”
Appl. Mech. Div.
,
100
, pp.
11
20
.https://www.scopus.com/record/display.uri?eid=2-s2.0-0024863415&origin=inward&txGid=356960a232a82edf87d2b4ec2f24d913&featureToggles=FEATURE_NEW_METRICS_SECTION:1
244.
Jayaraman
,
K.
,
Gao
,
Z.
, and
Reifsnider
,
K. L.
,
1991
, “
Stress Fields in Continuous Fiber Composites With Interphasial Property Gradients
,”
Proceedings of the American Society for Composites. Sixth Technical Conference. Composite Materials, Mechanics and Processing
, Albany, New York, Oct. 7–9, pp.
759
768
.
245.
Jayaraman
,
K.
,
Reifsnider
,
K. L.
, and
Giacco
,
A.
,
1992
, “
Local Stress Fields in a Unidirectional Fiber-Reinforced Composite With a Non-Homogeneous Interphase Region: Formulation
,”
Adv. Compos. Lett.
,
1
(
2
), pp.
54
57
.10.1177/096369359200100201
246.
Jayaraman
,
K.
, and
Reifsnider
,
K. L.
,
1993
, “
The Interphase in Unidirectional Fiber-Reinforced Epoxies: Effect on Residual Thermal Stress
,”
Compos. Sci. Technol.
,
47
(
2
), pp.
119
129
.10.1016/0266-3538(93)90041-E
247.
Mikata
,
Y.
,
1994
, “
Stress Fields in a Continuous Fiber Composite With a Variable Interphase Under Thermo-Mechanical Loadings
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
367
377
.10.1115/1.2904300
248.
Ru
,
C. Q.
,
1999
, “
A New Method for an Inhomogeneity With Stepwise Graded Interphase Under Thermomechanical Loadings
,”
J. Elasticity
,
56
(
2
), pp.
107
127
.10.1023/A:1007677114424
249.
Theocaris
,
P. S.
,
Spathis
,
G.
, and
Sideridis
,
E.
,
1982
, “
Elastic and Viscoelastic Properties of Fibre-Reinforced Composite Materials
,”
Fibre Sci. Technol.
,
17
(
3
), pp.
169
181
.10.1016/0015-0568(82)90002-1
250.
Theocaris
,
P. S.
,
Sideridis
,
E. P.
, and
Papanicolaou
,
G. C.
,
1985
, “
The Elastic Longitudinal Modulus and Poisson's Ratio of Fiber Composites
,”
J. Reinf. Plast. Compos.
,
4
(
4
), pp.
396
418
.10.1177/073168448500400405
251.
Sideridis
,
E.
,
1988
, “
The In-Plane Shear Modulus of Fibre Reinforced Composites as Defined by the Concept of Interphase
,”
Compos. Sci. Technol.
,
31
(
1
), pp.
35
53
.10.1016/0266-3538(88)90076-0
252.
Theocaris
,
P. S.
,
1987
,
The Mesophase Concept in Composites
,
Springer-Verlag
, Berlin.
253.
Theocaris
,
P. S.
,
1985
, “
The Unfolding Model for the Representation of the Mesophase Layer in Composites
,”
J. Appl. Polym. Sci.
,
30
(
2
), pp.
621
645
.10.1002/app.1985.070300214
254.
Dasgupta
,
A.
, and
Bhandarkar
,
S. M.
,
1992
, “
A Generalized Self-Consistent Mori-Tanaka Scheme for Fiber-Composites With Multiple Interphases
,”
Mech. Mater.
,
14
(
1
), pp.
67
82
.10.1016/0167-6636(92)90019-A
255.
Shabana
,
Y. M.
,
2013
, “
A Micromechanical Model for Composites Containing Multi-Layered Interphases
,”
Compos. Struct.
,
101
, pp.
265
273
.10.1016/j.compstruct.2013.02.008
256.
Herve
,
E.
, and
Zaoui
,
A.
,
1993
, “
n-Layered Inclusion-Based Micromechanical Modelling
,”
Int. J. Eng. Sci.
,
31
(
1
), pp.
1
10
.10.1016/0020-7225(93)90059-4
257.
Herve
,
E.
, and
Zaoui
,
A.
,
1995
, “
Elastic Behaviour of Multiply Coated Fibre-Reinforced Composites
,”
Int. J. Eng. Sci.
,
33
(
10
), pp.
1419
1433
.10.1016/0020-7225(95)00008-L
258.
Berbenni
,
S.
, and
Cherkaoui
,
M.
,
2010
, “
Homogenization of Multicoated Inclusion-Reinforced Linear Elastic Composites With Eigenstrains: Application to Thermoelastic Behavior
,”
Philos. Mag.
,
90
(
22
), pp.
3003
3026
.10.1080/14786431003767033
259.
Bonfoh
,
N.
,
Coulibaly
,
M.
, and
Sabar
,
H.
,
2014
, “
Effective Properties of Elastic Composite Materials With Multi-Coated Reinforcements: A New Micromechanical Modelling and Applications
,”
Compos. Struct.
,
115
, pp.
111
119
.10.1016/j.compstruct.2014.04.011
260.
Jasiuk
,
I.
, and
Kouider
,
M. W.
,
1993
, “
The Effect of an Inhomogeneous Interphase on the Elastic Constants of Transversely Isotropic Composites
,”
Mech. Mater.
,
15
(
1
), pp.
53
63
.10.1016/0167-6636(93)90078-6
261.
Wu
,
Y. M.
,
Huang
,
Z. P.
,
Zhong
,
Y.
, and
Wang
,
J.
,
2004
, “
Effective Moduli of Particle-Filled Composite With Inhomogeneous Interphase: Part I—Bounds
,”
Compos. Sci. Technol.
,
64
(
9
), pp.
1345
1351
.10.1016/j.compscitech.2003.10.009
262.
Zhong
,
Y.
,
Wang
,
J.
,
Wu
,
Y. M.
, and
Huang
,
Z. P.
,
2004
, “
Effective Moduli of Particle-Filled Composite With Inhomogeneous Interphase: Part II - Mapping Method and Evaluation
,”
Compos. Sci. Technol.
,
64
(
9
), pp.
1353
1362
.10.1016/j.compscitech.2003.10.010
263.
Xu
,
W.
,
Wu
,
Y.
, and
Gou
,
X.
,
2019
, “
Effective Elastic Moduli of Nonspherical Particle-Reinforced Composites With Inhomogeneous Interphase Considering Graded Evolutions of Elastic Modulus and Porosity
,”
Comput. Methods Appl. Mech. Eng.
,
350
, pp.
535
553
.10.1016/j.cma.2019.03.021
264.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
1996
, “
Effect of an Inhomogeneous Interphase Zone on the Bulk Modulus of a Particulate Composite
,”
Compos. Part B
,
63
(
4
), pp.
855
561
.10.1115/1.2787239
265.
Lutz
,
M. P.
,
Monteiro
,
P. J. M.
, and
Zimmerman
,
R. W.
,
1997
, “
Inhomogeneous Interfacial Transition Zone Model for the Bulk Modulus of Mortar
,”
Cem. Concrete Res.
,
27
(
7
), pp.
1113
1122
.10.1016/S0008-8846(97)00086-0
266.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
2005
, “
Effect of an Inhomogeneous Interphase Zone on the Bulk Modulus and Conductivity of a Particulate Composite
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
429
437
.10.1016/j.ijsolstr.2004.06.046
267.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
2016
, “
Effect of the Interphase Zone on the Conductivity or Diffusivity of a Particulate Composite Using Maxwell's Homogenization Method
,”
Int. J. Eng. Sci.
,
98
, pp.
51
59
.10.1016/j.ijengsci.2015.07.006
268.
Low
,
B. Y.
,
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1994
, “
A Micromechanical Characterization of Graphite-Fiber/Epoxy Composites Containing a Heterogeneous Interphase Region
,”
Compos. Sci. Technol.
,
52
(
4
), pp.
589
606
.10.1016/0266-3538(94)90042-6
269.
Low
,
B. Y.
,
Gardner
,
S. D.
,
Pittman
,
C. U.
, and
Hackett
,
R. M.
,
1995
, “
A Micromechanical Characterization of Residual Thermal Stresses in Carbon Fiber/Epoxy Composites Containing a Non-Uniform Interphase Region
,”
Compos. Eng.
,
5
(
4
), pp.
375
396
.10.1016/0961-9526(94)00104-H
270.
Li
,
J. Y.
,
2000
, “
Thermoelastic Behavior of Composites With Functionally Graded Interphase: A Multi-Inclusion Model
,”
Int. J. Solids Struct.
,
37
(
39
), pp.
5579
5597
.10.1016/S0020-7683(99)00227-9
271.
Shen
,
L.
, and
Yi
,
S.
,
2001
, “
An Effective Inclusion Model for Effective Moduli of Heterogeneous Materials With Ellipsoidal Inhomogeneities
,”
Int. J. Solids Struct.
,
38
(
32–33
), pp.
5789
5805
.10.1016/S0020-7683(00)00370-X
272.
Shen
,
L.
, and
Li
,
J.
,
2003
, “
Effective Elastic Moduli of Composites Reinforced by Particle or Fiber With an Inhomogeneous Interphase
,”
Int. J. Solids Struct.
,
40
(
6
), pp.
1393
1409
.10.1016/S0020-7683(02)00659-5
273.
Shen
,
L.
, and
Li
,
J.
,
2005
, “
Homogenization of a Fibre/Sphere With an Inhomogeneous Interphase for the Effective Elastic Moduli of Composites
,”
Proc. R. Soc. A
,
461
(
2057
), pp.
1475
1504
.10.1098/rspa.2005.1447
274.
Sevostianov
,
I.
, and
Kachanov
,
M.
,
2007
, “
Effect of Interphase Layers on the Overall Elastic and Conductive Properties of Matrix Composites. Applications to Nanosize Inclusion
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
1304
1315
.10.1016/j.ijsolstr.2006.06.020
275.
Jiang
,
Y.
,
Tohgo
,
K.
, and
Shimamura
,
Y.
,
2009
, “
A Micro-Mechanics Model for Composites Reinforced by Regularly Distributed Particles With an Inhomogeneous Interphase
,”
Comput. Mater. Sci.
,
46
(
2
), pp.
507
515
.10.1016/j.commatsci.2009.04.003
276.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
A Closed-Form, Hierarchical, Multi-Interphase Model for Composites—Derivation, Verification and Application to Nanocomposites
,”
J. Mech. Phys. Solids
,
59
(
1
), pp.
43
63
.10.1016/j.jmps.2010.09.015
277.
Hernández-Pérez
,
A.
, and
Avilés
,
F.
,
2010
, “
Modeling the Influence of Interphase on the Elastic Properties of Carbon Nanotube Composites
,”
Comput. Mater. Sci.
,
47
(
4
), pp.
926
933
.10.1016/j.commatsci.2009.11.025
278.
Mahiou
,
H.
, and
Béakou
,
A.
,
1998
, “
Modelling of Interfacial Effects on the Mechanical Properties of Fibre-Reinforced Composites
,”
Compos. Part A
,
29
(
9–10
), pp.
1035
1048
.10.1016/S1359-835X(98)00090-6
279.
Kiritsi
,
C. C.
, and
Anifantis
,
N. K.
,
2001
, “
Load Carrying Characteristics of Short Fiber Composites Containing a Heterogeneous Interphase Region
,”
Comput. Mater. Sci.
,
20
(
1
), pp.
86
97
.10.1016/S0927-0256(00)00129-4
280.
You
,
L. H.
,
You
,
X. Y.
, and
Zheng
,
Z. Y.
,
2006
, “
Thermomechanical Analysis of Elastic-Plastic Fibrous Composites Comprising an Inhomogeneous Interphase
,”
Comput. Mater. Sci.
,
36
(
4
), pp.
440
450
.10.1016/j.commatsci.2005.08.010
281.
Yao
,
Y.
,
Chen
,
S.
, and
Chen
,
P.
,
2013
, “
The Effect of a Graded Interphase on the Mechanism of Stress Transfer in a Fiber-Reinforced Composite
,”
Mech. Mater.
,
58
, pp.
35
54
.10.1016/j.mechmat.2012.11.008
282.
Sabiston
,
T.
,
Mohammadi
,
M.
,
Cherkaoui
,
M.
,
Lévesque
,
J.
, and
Inal
,
K.
,
2016
, “
Micromechanics for a Long Fibre Reinforced Composite Model With a Functionally Graded Interphase
,”
Compos. Part B
,
84
, pp.
188
199
.10.1016/j.compositesb.2015.08.070
283.
Sburlati
,
R.
, and
Cianci
,
R.
,
2015
, “
Interphase Zone Effect on the Spherically Symmetric Elastic Response of a Composite Material Reinforced by Spherical Inclusions
,”
Int. J. Solids Struct.
,
71
, pp.
91
98
.10.1016/j.ijsolstr.2015.06.010
284.
Sburlati
,
R.
,
Cianci
,
R.
, and
Kashtalyan
,
M.
,
2018
, “
Hashin's Bounds for Elastic Properties of Particle-Reinforced Composites With Graded Interphase
,”
Int. J. Solids Struct.
,
138
, pp.
224
235
.10.1016/j.ijsolstr.2018.01.015
285.
Rao
,
Y. N.
, and
Dai
,
H. L.
,
2017
, “
Micromechanics-Based Thermo-Viscoelastic Properties Prediction of Fiber Reinforced Polymers With Graded Interphases and Slightly Weakened Interfaces
,”
Compos. Struct.
,
168
, pp.
440
455
.10.1016/j.compstruct.2017.02.059
286.
Yang
,
Y.
,
He
,
Q.
,
Dai
,
H. L.
,
Pang
,
J.
,
Yang
,
L.
,
Li
,
X. Q.
,
Rao
,
Y. N.
, and
Dai
,
T.
,
2020
, “
Micromechanics-Based Analyses of Short Fiber-Reinforced Composites With Functionally Graded Interphases
,”
J. Compos. Mater.
,
54
(
8
), pp.
1031
1048
.10.1177/0021998319873033
287.
Broutman
,
L. J.
, and
Agarwal
,
B. D.
,
1974
, “
A Theoretical Study of the Effect of an Interfacial Layer on the Properties of Composites
,”
Polym. Eng. Sci.
,
14
(
8
), pp.
581
588
.10.1002/pen.760140808
288.
Agarwal
,
B. D.
, and
Bansal
,
R. K.
,
1979
, “
Effect of an Interfacial Layer on the Properties of Fibrous Composites: A Theoretical Analysis
,”
Fibre Sci. Technol.
,
12
(
2
), pp.
149
158
.10.1016/0015-0568(79)90027-7
289.
Tsai
,
H. C.
,
Arocho
,
A. M.
, and
Gause
,
L. W.
,
1990
, “
Prediction of Fiber-Matrix Interphase Properties and Their Influence on Interface Stress, Displacement and Fracture Toughness of Composite Material
,”
Mater. Sci. Eng. A
,
126
(
1–2
), pp.
295
304
.10.1016/0921-5093(90)90136-Q
290.
Nassehi
,
V.
,
Dhillon
,
J.
, and
Mascia
,
L.
,
1993
, “
Finite Element Simulation of the Micromechanics of Interlayered Polymer/Fiber Composites: A Study of the Interactions Between the Reinforcing Phases
,”
Compos. Sci. Technol.
,
47
(
4
), pp.
349
358
.10.1016/0266-3538(93)90004-Z
291.
Nassehi
,
V.
,
Kinsella
,
M.
, and
Mascia
,
L.
,
1993
, “
Finite Element Modelling of the Stress Distribution in Polymer Composites With Coated Fibre Interlayers
,”
J. Compos. Mater.
,
27
(
2
), pp.
195
214
.10.1177/002199839302700205
292.
Wu
,
Y.
, and
Dong
,
Z.
,
1995
, “
Three-Dimensional Finite Element Analysis of Composites With Coated Spherical Inclusions
,”
Mater. Sci. Eng. A
,
203
(
1–2
), pp.
314
323
.10.1016/0921-5093(95)09827-5
293.
Tsui
,
C. P.
,
Tang
,
C. Y.
, and
Lee
,
T. C.
,
2001
, “
Finite Element Analysis of Polymer Composites Filled by Interphase Coated Particles
,”
J. Mater. Process. Technol.
,
117
(
1–2
), pp.
105
110
.10.1016/S0924-0136(01)01117-7
294.
Al-Ostaz
,
A.
, and
Jasiuk
,
I.
,
1997
, “
The Influence of Interface and Arrangement of Inclusions on Local Stresses in Composite Materials
,”
Acta Mater.
,
45
(
10
), pp.
4131
4143
.10.1016/S1359-6454(97)00089-X
295.
Kari
,
S.
,
Berger
,
H.
,
Gabbert
,
U.
,
Guinovart-Dıaz
,
R.
,
Bravo-Castillero
,
J.
, and
Rodrıguez-Ramos
,
R.
,
2008
, “
Evaluation of Influence of Interphase Material Parameters on Effective Material Properties of Three Phase Composites
,”
Compos. Sci. Technol.
,
68
(
3–4
), pp.
684
691
.10.1016/j.compscitech.2007.09.009
296.
Pathan
,
M. V.
,
Tagarielli
,
V. L.
, and
Patsias
,
S.
,
2017
, “
Effect of Fibre Shape and Interphase on the Anisotropic Viscoelastic Response of Fibre Composites
,”
Compos. Struct.
,
162
, pp.
156
163
.10.1016/j.compstruct.2016.11.046
297.
Riaño
,
L.
,
Belec
,
L.
,
Chailan
,
J. F.
, and
Joliff
,
Y.
,
2018
, “
Effect of Interphase Region on the Elastic Behavior of Unidirectional Glass-Fiber/Epoxy Composites
,”
Compos. Struct.
,
198
, pp.
109
116
.10.1016/j.compstruct.2018.05.039
298.
Chang
,
C.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2019
, “
Micromechanical Modeling of Unidirectional Composites With Random Fiber and Interphase Thickness Distributions
,”
Arch. Appl. Mech.
,
89
(
12
), pp.
2563
2575
.10.1007/s00419-019-01595-0
299.
Gosz
,
M.
,
Moran
,
B.
, and
Achenbach
,
J. D.
,
1994
, “
On the Role of Interphases in the Transverse Failure of Fiber Composites
,”
Int. J. Damage Mech.
,
3
(
4
), pp.
357
377
.10.1177/105678959400300404
300.
Gulrajani
,
S. N.
, and
Mukherjee
,
S.
,
1993
, “
Sensitivities and Optimal Design of Hexagonal Array Fiber Composites With Respect to Interphase Properties
,”
Int. J. Solids Struct.
,
30
(
15
), pp.
2009
2026
.10.1016/0020-7683(93)90048-C
301.
Liu
,
Y. J.
,
Xu
,
N.
, and
Luo
,
J. F.
,
2000
, “
Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
41
49
.10.1115/1.321150
302.
Chen
,
T.
,
2001
, “
Thermal Conduction of a Circular Inclusion With Variable Interface Parameter
,”
Int. J. Solids Struct.
,
38
(
17
), pp.
3081
3097
.10.1016/S0020-7683(00)00191-8
303.
Yao
,
Z.
,
Kong
,
F.
,
Wang
,
H.
, and
Wang
,
P.
,
2004
, “
2D Simulation of Composite Materials Using BEM
,”
Eng. Anal. Bound. Elem.
,
28
(
8
), pp.
927
935
.10.1016/S0955-7997(03)00119-X
304.
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2004
, “
A Galerkin Boundary Integral Method for Multiple Circular Elastic Inclusions With Uniform Interphase Layers
,”
Int. J. Solids Struct.
,
41
(
5–6
), pp.
1285
1311
.10.1016/j.ijsolstr.2003.09.037
305.
Ozmusul
,
M. S.
, and
Picu
,
R. C.
,
2002
, “
Elastic Moduli of Particulate Composites With Graded Filler-Matrix Interfaces
,”
Polym. Compos.
,
23
(
1
), pp.
110
119
.10.1002/pc.10417
306.
Wang
,
J.
,
Crouch
,
S. L.
, and
Mogilevskaya
,
S. G.
,
2006
, “
Numerical Modeling of the Elastic Behavior of Fiber-Reinforced Composites With Inhomogeneous Interphases
,”
Compos. Sci. Technol.
,
66
(
1
), pp.
1
18
.10.1016/j.compscitech.2005.06.006
307.
Lagache
,
M.
,
Agbossou
,
A.
,
Pastor
,
J.
, and
Muller
,
D.
,
1994
, “
Role of Interphase on the Elastic Behavior of Composite Materials: Theoretical and Experimental Analysis
,”
J. Compos. Mater.
,
28
(
12
), pp.
1140
1157
.10.1177/002199839402801205
308.
Pan
,
L.
,
Adams
,
D. O.
, and
Rizzo
,
F. J.
,
1998
, “
Boundary Element Analysis for Composite Materials and a Library of Green's Functions
,”
Comput. Struct.
,
66
(
5
), pp.
685
693
.10.1016/S0045-7949(97)00114-4
309.
Hayes
,
S. A.
,
Lane
,
R.
, and
Jones
,
F. R.
,
2001
, “
Fibre/Matrix Stress Transfer Through a Discrete Interphase: Part 1—Single-Fibre Model Composites
,”
Compos. Part A
,
32
(
3–4
), pp.
379
389
.10.1016/S1359-835X(00)00127-5
310.
Lane
,
R.
,
Hayes
,
S. A.
, and
Jones
,
F. R.
,
2001
, “
Fibre/Matrix Stress Transfer Through a Discrete Interphase: 2—High Volume Fraction Systems
,”
Compos. Sci. Technol.
,
61
(
4
), pp.
565
578
.10.1016/S0266-3538(00)00229-3
311.
Fisher
,
F. T.
, and
Brinson
,
L. C.
,
2001
, “
Viscoelastic Interphases in Polymer-Matrix Composites: Theoretical Models and Finite-Element Analysis
,”
Compos. Sci. Technol.
,
61
(
5
), pp.
731
748
.10.1016/S0266-3538(01)00002-1
312.
Wang
,
X.
,
Zhang
,
J.
,
Wang
,
Z.
,
Zhou
,
S.
, and
Sun
,
X.
,
2011
, “
Effects of Interphase Properties in Unidirectional Fiber Reinforced Composite Materials
,”
Mater. Des.
,
32
(
6
), pp.
3486
3492
.10.1016/j.matdes.2011.01.029
313.
Han
,
F.
,
Azdoud
,
Y.
, and
Lubineau
,
G.
,
2014
, “
Computational Modeling of Elastic Properties of Carbon Nanotube/Polymer Composites With Interphase Regions: Part I—Micro-Structural Characterization and Geometric Modeling
,”
Comput. Mater. Sci.
,
81
, pp.
641
651
.10.1016/j.commatsci.2013.07.036
314.
Han
,
F.
,
Azdoud
,
Y.
, and
Lubineau
,
G.
,
2014
, “
Computational Modeling of Elastic Properties of Carbon Nanotube/Polymer Composites With Interphase Regions: Part II—Mechanical Modeling
,”
Comput. Mater. Sci.
,
81
, pp.
652
661
.10.1016/j.commatsci.2013.07.008
315.
Xu
,
W.
,
Xu
,
B.
, and
Guo
,
F.
,
2017
, “
Elastic Properties of Particle-Reinforced Composites Containing Nonspherical Particles of High Packing Density and Interphase: DEM-FEM Simulation and Micromechanical Theory
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
122
143
.10.1016/j.cma.2017.08.010
316.
Lee
,
S. H.
,
Wang
,
S.
,
Pharr
,
G. M.
, and
Xu
,
H.
,
2007
, “
Evaluation of Interphase Properties in a Cellulose Fiber-Reinforced Polypropylene Composite by Nanoindentation and Finite Element Analysis
,”
Compos. Part A
,
38
(
6
), pp.
1517
1524
.10.1016/j.compositesa.2007.01.007
317.
Jiang
,
Y.
,
Guo
,
W.
, and
Yang
,
H.
,
2008
, “
Numerical Studies on the Effective Shear Modulus of Particle Reinforced Composites With an Inhomogeneous Inter-Phase
,”
Comput. Mater. Sci.
,
43
(
4
), pp.
724
731
.10.1016/j.commatsci.2008.01.069
318.
Sabiston
,
T.
,
Mohammadi
,
M.
,
Cherkaoui
,
M.
,
Lévesque
,
J.
, and
Inal
,
K.
,
2016
, “
Micromechanics Based Elasto-Visco-Plastic Response of Long Fibre Composites Using Functionally Graded Interphases at Quasi-Static and Moderate Strain Rates
,”
Compos. Part B
,
100
, pp.
31
43
.10.1016/j.compositesb.2016.06.035
319.
Sokołowski
,
D.
, and
Kamiński
,
M.
,
2018
, “
Computational Homogenization of Carbon/Polymer Composites With Stochastic Interface Defects
,”
Compos. Struct.
,
183
, pp.
434
449
.10.1016/j.compstruct.2017.04.076
320.
Sokołowski
,
D.
, and
Kamiński
,
M.
,
2018
, “
Homogenization of Carbon/Polymer Composites With Anisotropic Distribution of Particles and Stochastic Interface Defects
,”
Acta Mech.
,
229
(
9
), pp.
3727
3765
.10.1007/s00707-018-2174-7
321.
Sokołowski
,
D.
, and
Kamiński
,
M.
,
2020
, “
Probabilistic Homogenization of Hyper-Elastic Particulate Composites With Random Interface
,”
Compos. Struct.
,
241
, p.
112118
.10.1016/j.compstruct.2020.112118
322.
Kamiński
,
M.
, and
Ostrowski
,
P.
,
2021
, “
Homogenization of Heat Transfer in Fibrous Composite With Stochastic Interface Defects
,”
Compos. Struct.
,
261
, p.
113555
.10.1016/j.compstruct.2021.113555
323.
Tac
,
V.
, and
Gürses
,
E.
,
2019
, “
Micromechanical Modelling of Carbon Nanotube Reinforced Composite Materials With a Functionally Graded Interphase
,”
J. Compos. Mater.
,
53
(
28–30
), pp.
4337
4348
.10.1177/0021998319857126
324.
Cheng
,
Y.
,
Cheng
,
H.
,
Zhang
,
K.
,
Jones
,
K. K.
,
Gao
,
J.
,
Hu
,
J.
,
Li
,
H.
, and
Liu
,
W. K.
,
2019
, “
A Sequential Homogenization of Multi-Coated Micromechanical Model for Functionally Graded Interphase Composites
,”
Comput. Mech.
,
64
(
5
), pp.
1321
1337
.10.1007/s00466-019-01712-4
325.
Huang
,
J.
,
Wu
,
Y.
, and
Huang
,
L.
,
2021
, “
Evaluation of the Mechanical Properties of Graphene-Based Nanocomposites Incorporating a Graded Interphase Based on Isoparametric Graded Finite Element Model
,”
Compos. Interfaces
,
28
(
6
), pp.
543
575
.10.1080/09276440.2020.1794164
326.
Le
,
T. T.
,
2021
, “
Probabilistic Modeling of Surface Effects in Nano-Reinforced Materials
,”
Comput. Mater. Sci.
,
186
, p.
109987
.10.1016/j.commatsci.2020.109987
327.
Papanicolaou
,
G. C.
,
Paipetis
,
S. A.
, and
Theocaris
,
P. S.
,
1978
, “
The Concept of Boundary Interphase in Composite Mechanics
,”
Colloid Polym. Sci.
,
256
(
7
), pp.
625
630
.10.1007/BF01784402
328.
Papanicolaou
,
G. C.
, and
Theocaris
,
P. S.
,
1979
, “
Thermal Properties and Volume Fraction of the Boundary Interphase in Metal-Filled Epoxies
,”
Colloid Polym. Sci.
,
257
(
3
), pp.
239
246
.10.1007/BF01382364
329.
Chu
,
Y. C.
, and
Rokhlin
,
S. I.
,
1995
, “
Determination of Fiber-Matrix Interphase Moduli From Experimental Moduli of Composites With Multi-Layered Fibers
,”
Mech. Mater.
,
21
(
3
), pp.
191
215
.10.1016/0167-6636(95)00006-2
330.
Huang
,
W.
, and
Rokhlin
,
S. I.
,
1996
, “
Generalized Self-Consistent Model for Composites With Functionally Graded and Multilayered Interphases. Transfer Matrix Approach
,”
Mech. Mater.
,
22
(
3
), pp.
219
247
.10.1016/0167-6636(95)00032-1
331.
Rokhlin
,
S. I.
, and
Huang
,
W.
,
1998
, “
Micromechanical Analysis and Ultrasonic Characterization of Interphases and Interphasial Damage in High Temperature Composites
,”
Compos. Part B
,
29
(
2
), pp.
147
157
.10.1016/S1359-8368(97)00005-X
332.
Hashin
,
Z.
, and
Monteiro
,
P. J. M.
,
2002
, “
An Inverse Method to Determine the Elastic Properties of the Interphase Between the Aggregate and the Cement Paste
,”
Cem. Concrete Res.
,
32
(
8
), pp.
1291
1300
.10.1016/S0008-8846(02)00792-5
333.
Ramesh
,
G.
,
Sotelino
,
E. D.
, and
Chen
,
W. F.
,
1996
, “
Effect of Transition Zone on Elastic Moduli of Concrete Materials
,”
Cem. Concrete Res.
,
26
(
4
), pp.
611
622
.10.1016/0008-8846(96)00016-6
334.
Meurs
,
P. F. M.
,
Schreurs
,
P. J. G.
,
Peijs
,
T.
, and
Meijer
,
H. E. H.
,
1996
, “
Characterization of Interphase Conditions in Composite Materials
,”
Compos. Part A
,
27
(
9
), pp.
781
786
.10.1016/1359-835X(96)00020-6
335.
Matzenmiller
,
A.
, and
Gerlach
,
S.
,
2005
, “
Parameter Identification of Elastic Interphase Properties in Fiber Composites
,”
Compos. Part B
,
37
(
2–3
), pp.
117
126
. 2006).10.1016/j.compositesb.2005.08.003
336.
Paley
,
M.
, and
Aboudi
,
J.
,
1992
, “
Micromechanical Analysis of Composites by the Generalized Cells Model
,”
Mech. Mater.
,
14
(
2
), pp.
127
139
.10.1016/0167-6636(92)90010-B
337.
Matzenmiller
,
A.
, and
Gerlach
,
S.
,
2004
, “
Micromechanical Modeling of Viscoelastic Composites With Compliant Fiber-Matrix Bonding
,”
Comput. Mater. Sci.
,
29
(
3
), pp.
283
300
.10.1016/j.commatsci.2003.10.005
338.
Broutman
,
L. J.
,
1966
, “
Glass-Resin Joint Strength and Their Effect on Failure Mechanisms in Reinforced Plastics
,”
Polym. Eng. Sci.
,
6
(
3
), pp.
263
272
.10.1002/pen.760060316
339.
Bowling
,
J.
, and
Groves
,
G. W.
,
1979
, “
The Debonding and Pull-Out of Ductile Wires From a Brittle Matrix
,”
J. Mater. Sci.
,
14
(
2
), pp.
431
442
.10.1007/BF00589836
340.
Bartoš
,
P.
,
1980
, “
Analysis of Pull-Out Tests on Fibres Embedded in Brittle Matrices
,”
J. Mater. Sci.
,
15
(
12
), pp.
3122
3128
.10.1007/BF00550385
341.
Miller
,
B.
,
Muri
,
P.
, and
Rebenfeld
,
L.
,
1987
, “
A Microbond Method for Determination of the Shear Strength of a Fiber/Resin Interface
,”
Compos. Sci. Technol.
,
28
(
1
), pp.
17
32
.10.1016/0266-3538(87)90059-5
342.
Drzal
,
L. T.
, and
Madhukar
,
M.
,
1993
, “
Fibre-Matrix Adhesion and Its Relationship to Composite Mechanical Properties
,”
J. Mater. Sci.
,
28
(
3
), pp.
569
610
.10.1007/BF01151234
343.
Larson
,
B. K.
, and
Drzal
,
L. T.
,
1994
, “
Glass Fibre Sizing/Matrix Interphase Formation in Liquid Composite Moulding: Effects on Fibre/Matrix Adhesion and Mechanical Properties
,”
Composite
,
25
(
7
), pp.
711
721
.10.1016/0010-4361(94)90206-2
344.
Mäder
,
E.
, and
Pisanova
,
E.
,
2000
, “
Characterization and Design of Interphases in Glass Fiber Reinforced Polypropylene
,”
Polym. Compos.
,
21
(
3
), pp.
361
368
.10.1002/pc.10194
345.
Pompe
,
G.
, and
Mäder
,
E.
,
2000
, “
Experimental Detection of a Transcrystalline Interphase in Glass-Fibre/Polypropylene Composites
,”
Compos. Sci. Technol.
,
60
(
11
), pp.
2159
2167
.10.1016/S0266-3538(00)00120-2
346.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
,
2001
, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
3
10
.10.1115/1.1346680
347.
Mandell
,
J. F.
,
Grande
,
D. H.
,
Tsiang
,
T. H.
, and
McGarry
,
F. J.
,
1986
, “
Modified Mircodebonding Test for Direct in Situ Fiber/Matrix Bond Strength Determination in Fiber Composites
,”
Composite Materials: Testing and Design
,
ASTM International
, West Conshohocken, PA.10.1520/STP35343S
348.
Ochiai
,
S.
, and
Osamura
,
K.
,
1987
, “
Computer Simulation of Strength of Metal Matrix Composites With a Reaction Layer at the Interface
,”
Metall. Trans.
,
18
(
4
), pp.
673
679
A.10.1007/BF02649483
349.
Zhu
,
H.
, and
Achenbach
,
J. D.
,
1991
, “
Radial Matrix Cracking and Interphase Failure in Transversely Loaded Fiber Composites
,”
Mech. Mater.
,
11
(
4
), pp.
347
356
.10.1016/0167-6636(91)90032-U
350.
Weitsman
,
Y.
, and
Zhu
,
H.
,
1993
, “
Multi-Fracture of Ceramic Composites
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
351
388
.10.1016/0022-5096(93)90012-5
351.
Asp
,
L. E.
,
Berglund
,
L. A.
, and
Talreja
,
R.
,
1996
, “
Effects of Fiber and Interphase on Matrix-Initiated Transverse Failure in Polymer Composites
,”
Compos. Sci. Technol.
,
56
(
6
), pp.
657
665
.10.1016/0266-3538(96)00047-4
352.
Wu
,
W.
,
Verpoest
,
I.
, and
Varna
,
J.
,
1998
, “
An Improved Analysis of the Stresses in a Single-Fibre Fragmentation Test—II: 3-Phase Model
,”
Compos. Sci. Technol.
,
58
(
1
), pp.
41
50
.10.1016/S0266-3538(97)00087-0
353.
Needleman
,
A.
,
Borders
,
T. L.
,
Brinson
,
L. C.
,
Flores
,
V. M.
, and
Schadler
,
L. S.
,
2010
, “
Effect of an Interphase Region on Debonding of a CNT Reinforced Polymer Composite
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2207
2215
.10.1016/j.compscitech.2010.09.002
354.
Romanowicz
,
M.
,
2010
, “
Progressive Failure Analysis of Unidirectional Fiber-Reinforced Polymers With Inhomogeneous Interphase and Randomly Distributed Fibers Under Transverse Tensile Loading
,”
Compos. Part A
,
41
(
12
), pp.
1829
1838
.10.1016/j.compositesa.2010.09.001
355.
Maligno
,
A. R.
,
Warrior
,
N. A.
, and
Long
,
A. C.
,
2010
, “
Effects of Interphase Material Properties in Unidirectional Fibre Reinforced Composites
,”
Compos. Sci. Technol.
,
70
(
1
), pp.
36
44
.10.1016/j.compscitech.2009.09.003
356.
Sanchez-Palencia
,
E.
,
1970
, “
Comportement Limite D'un Probleme de Transmissiona Travers Une Plaque Faiblement Conductrice
,”
C. R. Math. Acad. Sci.
,
270
, pp.
1026
1028
.
357.
Pham Huy
,
H.
, and
Sanchez-Palencia
,
E.
,
1974
, “
Phénomènes de Transmission à Travers Des Couches Minces de Conductivitéélevée
,”
J. Math. Anal. Appl.
,
47
(
2
), pp.
284
309
.10.1016/0022-247X(74)90023-7
358.
Hashin
,
Z.
,
1991
, “
Thermoelastic Properties of Particulate Composites With Imperfect Interface
,”
J. Mech. Phys. Solids
,
39
(
6
), pp.
745
762
.10.1016/0022-5096(91)90023-H
359.
Hashin
,
Z.
,
1991
, “
Composite Materials With Interphase: Thermoelastic and Inelastic Effects
,”
Inelastic Deformation of Composite Materials
,
Springer-Verlag
, New York, pp.
3
34
.
360.
Hashin
,
Z.
,
1990
, “
Thermoelastic Properties of Fiber Composites With Imperfect Interface
,”
Mech. Mater.
,
8
(
4
), pp.
333
348
.10.1016/0167-6636(90)90051-G
361.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2001
, “
Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,”
Mech. Mater.
,
33
(
6
), pp.
309
323
.10.1016/S0167-6636(01)00055-2
362.
Wang
,
J.
,
Duan
,
H. L.
,
Zhang
,
Z.
, and
Huang
,
Z. P.
,
2005
, “
An Anti-Interpenetration Model and Connections Between Interphase and Interface Models in Particle-Reinforced Composites
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
701
718
.10.1016/j.ijmecsci.2004.12.014
363.
Daher
,
N.
, and
Maugin
,
G. A.
,
1986
, “
The Method of Virtual Power in Continuum Mechanics Application to Media Presenting Singular Surfaces and Interfaces
,”
Acta Mech.
,
60
(
3–4
), pp.
217
240
.10.1007/BF01176354
364.
Lipton
,
R.
, and
Vernescu
,
B.
,
1995
, “
Variational Methods, Size Effects and Extremal Microgeometries for Elastic Composites With Imperfect Interface
,”
Math. Models Methods Appl. Sci.
,
05
(
08
), pp.
1139
1173
.10.1142/S0218202595000607
365.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.10.1088/0957-4484/11/3/301
366.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
(
3
), pp.
622
444
.10.1016/0021-8928(59)90157-1
367.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
368.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
369.
Jones
,
J. P.
, and
Whittier
,
J. S.
,
1967
, “
Waves at a Flexibly Bonded Interface
,”
ASME J. Appl. Mech.
,
34
(
4
), pp.
905
909
.10.1115/1.3607854
370.
Mal
,
A. K.
, and
Bose
,
S. K.
,
1974
, “
Dynamic Elastic Moduli of a Suspension of Imperfectly Bonded Spheres
,”
Math. Proc. Cambridge Philos. Soc.
,
76
(
3
), pp.
587
600
.10.1017/S0305004100049318
371.
Theocaris
,
P. S.
,
Paipetis
,
S. A.
, and
Stassinakis
,
C. A.
,
1978
, “
Effect of Geometry and Imperfect Bonding in Composite Systems With Limiting Shear Properties
,”
Fibre Sci. Technol.
,
11
(
5
), pp.
335
352
.10.1016/0015-0568(78)90030-1
372.
Benveniste
,
Y.
,
1985
, “
The Effective Mechanical Behaviour of Composite Materials With Imperfect Contact Between the Constituents
,”
Mech. Mater.
,
4
(
2
), pp.
197
208
.10.1016/0167-6636(85)90016-X
373.
Benveniste
,
Y.
, and
Miloh
,
T.
,
1986
, “
The Effective Conductivity of Multiphase Composites With Imperfect Thermal Contact at Constituent Interfaces
,”
Int. J. Eng. Sci.
,
24
(
9
), pp.
1537
1552
.10.1016/0020-7225(86)90162-X
374.
Aboudi
,
J.
,
1988
, “
Constitutive Equations for Elastoplastic Composites With Imperfect Bonding
,”
Int. J. Plasticity
,
4
(
2
), pp.
103
125
.10.1016/0749-6419(88)90016-2
375.
Aboudi
,
J.
,
1987
, “
Damage in Composites-Modeling of Imperfect Bonding
,”
Int. J. Eng. Sci.
,
28
(
2
), pp.
103
128
.10.1016/0266-3538(87)90093-5
376.
Takahashi
,
K.
, and
Chou
,
T. W.
,
1988
, “
Transverse Elastic Moduli of Unidirectional Fiber Composites With Interfacial Debonding
,”
Metall. Trans. A
,
19
(
1
), pp.
129
135
.10.1007/BF02669821
377.
Shan
,
H. Z.
, and
Chou
,
T. W.
,
1995
, “
Transverse Elastic Moduli of Unidirectional Fiber Composites With Fiber/Matrix Interfacial Debonding
,”
Compos. Sci. Technol.
,
53
(
4
), pp.
383
391
.10.1016/0266-3538(95)00026-7
378.
Karihaloo
,
B. L.
, and
Viswanathan
,
K.
,
1988
, “
A Partially Debonded Ellipsoidal Inclusion in an Elastic Medium: Part I—Stress and Displacement Fields
,”
Mech. Mater.
,
7
(
3
), pp.
191
197
.10.1016/0167-6636(88)90018-X
379.
Karihaloo
,
B. L.
, and
Viswanathan
,
K.
,
1988
, “
A Partially Debonded Ellipsoidal Inclusion in an Elastic Medium: Part II—Stress Intensity Factors and Debond Opening Displacement
,”
Mech. Mater.
,
7
(
3
), pp.
199
203
.10.1016/0167-6636(88)90019-1
380.
Hashin
,
Z.
,
1992
, “
Extremum Principles for Elastic Heterogenous Media With Imperfect Interfaces and Their Application to Bounding of Effective Moduli
,”
J. Mech. Phys. Solids
,
40
(
4
), pp.
767
781
.10.1016/0022-5096(92)90003-K
381.
Levy
,
A. J.
,
1991
, “
The Debonding of Elastic Inclusions and Inhomogeneities
,”
J. Mech. Phys. Solids
,
39
(
4
), pp.
477
505
.10.1016/0022-5096(91)90037-O
382.
Levy
,
A. J.
,
1996
, “
The Effective Dilatational Response of Fiber-Reinforced Composites With Nonlinear Interface
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
357
364
.10.1115/1.2788873
383.
Qu
,
J.
,
1993
, “
Eshelby Tensor for an Elastic Inclusion With Slightly Weakened Interface
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
1048
1050
.10.1115/1.2900974
384.
Gao
,
Z.
,
1995
, “
Circular Inclusion With Imperfect Interface: Eshelby's Tensor and Related Problems
,”
ASME J. Appl. Mech.
,
62
(
4
), pp.
860
866
.10.1115/1.2896012
385.
Lee
,
H. K.
, and
Pyo
,
S. H.
,
2008
, “
Multi-Level Modeling of Effective Elastic Behavior and Progressive Weakened Interface in Particulate Composites
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
387
397
.10.1016/j.compscitech.2007.06.026
386.
Ju
,
J. W.
, and
Chen
,
T. M.
,
1994
, “
Micromechanics and Effective Elastoplastic Behavior of Two-Phase Metal Matrix Composites
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
310
318
.10.1115/1.2904293
387.
Esteva
,
M.
, and
Spanos
,
P. D.
,
2009
, “
Effective Elastic Properties of Nanotube Reinforced Composites With Slightly Weakened Interfaces
,”
J. Mech. Mater. Struct.
,
4
(
5
), pp.
887
900
.10.2140/jomms.2009.4.887
388.
Othmani
,
Y.
,
Delannay
,
L.
, and
Doghri
,
I.
,
2011
, “
Equivalent Inclusion Solution Adapted to Particle Debonding With a Non-Linear Cohesive Law
,”
Int. J. Solids Struct.
,
48
(
24
), pp.
3326
3335
.10.1016/j.ijsolstr.2011.08.002
389.
Xu
,
B. X.
,
Mueller
,
R.
, and
Wang
,
M. Z.
,
2011
, “
The Eshelby Property of Sliding Inclusions
,”
Archive Appl. Mech.
,
81
(
1
), pp.
19
35
.10.1007/s00419-009-0391-1
390.
Yanase
,
K.
, and
Ju
,
J. W.
,
2012
, “
Effective Elastic Moduli of Spherical Particle Reinforced Composites Containing Imperfect Interfaces
,”
Int. J. Damage Mech.
,
21
(
1
), pp.
97
127
.10.1177/1056789510397076
391.
Hosseini Kordkheili
,
S. A.
, and
Toozandehjani
,
H.
,
2014
, “
Effective Mechanical Properties of Unidirectional Composites in the Presence of Imperfect Interface
,”
Arch. Appl. Mech.
,
84
(
6
), pp.
807
819
.10.1007/s00419-014-0834-1
392.
Lee
,
S.
,
Kim
,
Y.
,
Lee
,
J.
, and
Ryu
,
S.
,
2019
, “
Applicability of the Interface Spring Model for Micromechanical Analyses With Interfacial Imperfections to Predict the Modified Exterior Eshelby Tensor and Effective Modulus
,”
Math. Mech. Solids
,
24
(
9
), pp.
2944
2960
.10.1177/1081286519826343
393.
Lee
,
S.
,
Lee
,
J.
, and
Ryu
,
S.
,
2019
, “
Modified Eshelby Tensor for an Anisotropic Matrix With Interfacial Damage
,”
Math. Mech. Solids
,
24
(
6
), pp.
1749
1762
.10.1177/1081286518805521
394.
Qu
,
J.
,
1993
, “
The Effect of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials
,”
Mech. Mater.
,
14
(
4
), pp.
269
281
.10.1016/0167-6636(93)90082-3
395.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
, and
Geubelle
,
P. H.
,
2005
, “
The Mori-Tanaka Method for Composite Materials With Nonlinear Interface Debonding
,”
Int. J. Plasticity
,
21
(
10
), pp.
1890
1918
.10.1016/j.ijplas.2004.10.001
396.
Tan
,
H.
,
Liu
,
C.
,
Huang
,
Y.
, and
Geubelle
,
P. H.
,
2005
, “
The Cohesive Law for the Particle/Matrix Interfaces in High Explosives
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1892
1917
.10.1016/j.jmps.2005.01.009
397.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
,
Ravichandran
,
G.
, and
Paulino
,
G. H.
,
2007
, “
Constitutive Behaviors of Composites With Interface Debonding: The Extended Mori-Tanaka Method for Uniaxial Tension
,”
Int. J. Fract.
,
146
(
3
), pp.
139
148
.10.1007/s10704-007-9155-5
398.
Zhao
,
Y. H.
, and
Weng
,
G. J.
,
1997
, “
Transversely Isotropic Moduli of Two Partially Debonded Composites
,”
Int. J. Solids Struct.
,
34
(
4
), pp.
493
507
.10.1016/S0020-7683(96)00027-3
399.
Liu
,
H. T.
,
Sun
,
L. Z.
, and
Ju
,
J. W.
,
2004
, “
An Interfacial Debonding Model for Particle-Reinforced Composites
,”
Int. J. Damage Mech.
,
13
(
2
), pp.
163
185
.10.1177/1056789504041057
400.
Shao
,
L. H.
,
Luo
,
R. Y.
,
Bai
,
S. L.
, and
Wang
,
J.
,
2009
, “
Prediction of Effective Moduli of Carbon Nanotube-Reinforced Composites With Waviness and Debonding
,”
Compos. Struct.
,
87
(
3
), pp.
274
281
.10.1016/j.compstruct.2008.02.011
401.
Brassart
,
L.
,
Inglis
,
H. M.
,
Delannay
,
L.
,
Doghri
,
I.
, and
Geubelle
,
P. H.
,
2009
, “
An Extended Mori-Tanaka Homogenization Scheme for Finite Strain Modeling of Debonding in Particle-Reinforced Elastomers
,”
Comput. Mater. Sci.
,
45
(
3
), pp.
611
616
.10.1016/j.commatsci.2008.06.021
402.
Teng
,
H.
,
2010
, “
Stiffness Properties of Particulate Composites Containing Debonded Particles
,”
Int. J. Solids Struct.
,
47
(
17
), pp.
2191
2200
.10.1016/j.ijsolstr.2010.04.004
403.
Koyama
,
S.
,
Katano
,
S.
,
Saiki
,
I.
, and
Iwakuma
,
T.
,
2011
, “
A Modification of the Mori-Tanaka Estimate of Average Elastoplastic Behavior of Composites and Polycrystals With Interfacial Debonding
,”
Mech. Mater.
,
43
(
10
), pp.
538
555
.10.1016/j.mechmat.2011.06.010
404.
Nafar Dastgerdi
,
J.
,
Marquis
,
G.
, and
Salimi
,
M.
,
2014
, “
Micromechanical Modeling of Nanocomposites Considering Debonding and Waviness of Reinforcements
,”
Compos. Struct.
,
110
, pp.
1
6
.10.1016/j.compstruct.2013.11.017
405.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Luo
,
Z. Y.
,
2005
, “
Stress Concentration Tensors of Inhomogeneities With Interface Effects
,”
Mech. Mater.
,
37
(
7
), pp.
723
736
.10.1016/j.mechmat.2004.07.004
406.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects: Part I—Theoretical Framework
,”
Mech. Mater.
,
39
(
1
), pp.
81
93
.10.1016/j.mechmat.2006.02.009
407.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites With Interface Effects: Part II-Application and Scaling Laws
,”
Mech. Mater.
,
39
(
1
), pp.
94
103
.10.1016/j.mechmat.2006.02.010
408.
Shen
,
H.
,
Schiavone
,
P.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2000
, “
An Elliptic Inclusion With Imperfect Interface in Anti-Plane Shear H
,”
Int. J. Solids Struct.
,
37
(
33
), pp.
4557
4575
.10.1016/S0020-7683(99)00174-2
409.
Shen
,
H.
,
Schiavone
,
P.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2001
, “
Stress Analysis of an Elliptic Inclusion With Imperfect Interface in Plane Elasticity
,”
J. Elasticity
,
62
(
1
), pp.
25
46
.10.1023/A:1010911813697
410.
Ru
,
C. Q.
, and
Schiavone
,
P.
,
1997
, “
A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear
,”
Proc. R. Soc. A
,
453
(
1967
), pp.
2551
2572
.10.1098/rspa.1997.0136
411.
Sudak
,
L. J.
,
Ru
,
C. Q.
,
Schiavone
,
P.
, and
Mioduchowski
,
A.
,
1999
, “
Circular Inclusion With Inhomogeneously Imperfect Interface in Plane Elasticity
,”
J. Elasticity
,
55
(
1
), pp.
19
41
.10.1023/A:1007675401281
412.
Ru
,
C. Q.
,
1998
, “
Interface Design of Neutral Elastic Inclusions
,”
Int. J. Solids Struct.
,
35
(
7–8
), pp.
559
572
.10.1016/S0020-7683(97)00072-3
413.
Ru
,
C. Q.
,
1998
, “
A Circular Inclusion With Circumferentially Inhomogeneous Sliding Interface in Plane Elastostatics
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
30
38
.10.1115/1.2789042
414.
Pagano
,
N. J.
, and
Tandon
,
G. P.
,
1990
, “
Modeling of Imperfect Bonding in Fibre Reinforced Brittle Matrix
,”
Mech. Mater.
,
9
(
1
), pp.
49
64
.10.1016/0167-6636(90)90029-F
415.
Tandon
,
G. P.
, and
Pagano
,
N. J.
,
1996
, “
Effective Thermoelastic Moduli of a Unidirectional Fiber Composite Containing Interracial Arc Microcracks
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
210
217
.10.1115/1.2787200
416.
Teng
,
H.
,
1992
, “
On Stiffness Reduction of a Fiber-Reinforced Composite Containing Interfacial Cracks Under Longitudinal Shear
,”
Mech. Mater.
,
13
(
2
), pp.
175
183
.10.1016/0167-6636(92)90045-F
417.
Sudak
,
L. J.
, and
Mioduchowski
,
A.
,
2002
, “
A Three-Phase Circular Inhomogeneity With Imperfect Interface Under Thermomechanical Loadings in Plane Elasticity
,”
Acta Mech.
,
158
(
1–2
), pp.
43
56
.10.1007/BF01463168
418.
Sangani
,
A. S.
, and
Mo
,
G.
,
1997
, “
Elastic Interactions in Particulate Composites With Perfect as Well as Imperfect Interfaces
,”
J. Mech. Phys. Solids
,
45
(
11–12
), pp.
2001
2031
.10.1016/S0022-5096(97)00025-2
419.
Bigoni
,
D.
,
Serkov
,
S. K.
,
Valentini
,
M.
, and
Movchan
,
A. B.
,
1998
, “
Asymptotic Models of Dilute Composites With Imperfectly Bonded Inclusions
,”
Int. J. Solids Struct.
,
35
(
24
), pp.
3239
3258
.10.1016/S0020-7683(97)00366-1
420.
Sabina
,
F. J.
,
Guinovart-Díaz
,
R.
,
Rodriguez-Ramos
,
R.
,
López-Realpozo
,
J. C.
, and
Bravo-Castillero
,
J.
,
2012
, “
López-Realpozo, Overall Properties in Fibrous Elastic Composite With Imperfect Contact Condition
,”
Int. J. Eng. Sci.
,
61
, pp.
142
155
.10.1016/j.ijengsci.2012.06.017
421.
Artioli
,
E.
,
Bisegna
,
P.
, and
Maceri
,
F.
,
2010
, “
Effective Longitudinal Shear Moduli of Periodic Fibre-Reinforced Composites With Radially-Graded Fibres
,”
Int. J. Solids Struct.
,
47
(
3–4
), pp.
383
397
.10.1016/j.ijsolstr.2009.10.004
422.
Sevostianov
,
I.
,
Rodriguez-Ramos
,
R.
,
Guinovart-Diaz
,
R.
,
Bravo-Castillero
,
J.
, and
Sabina
,
F. J.
,
2012
, “
Connections Between Different Models Describing Imperfect Interfaces in Periodic Fiber-Reinforced Composites
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1518
1525
.10.1016/j.ijsolstr.2012.02.028
423.
Ghahremani
,
F.
,
1980
, “
Effect of Grain Boundary Sliding on Anelasticity of Polycrystals
,”
Int. J. Solids Struct.
,
16
(
9
), pp.
825
845
.10.1016/0020-7683(80)90052-9
424.
Mura
,
T.
,
Jasiuk
,
I.
, and
Tsuchida
,
B.
,
1985
, “
The Stress Field of a Sliding Inclusion
,”
Int. J. Solids Struct.
,
21
(
12
), pp.
1165
1179
.10.1016/0020-7683(85)90002-2
425.
Jasiuk
,
I.
,
Tsuchida
,
E.
, and
Mura
,
T.
,
1987
, “
The Sliding Inclusion Under Shear
,”
Int. J. Solids Struct.
,
23
(
10
), pp.
1373
1385
.10.1016/0020-7683(87)90003-5
426.
Mura
,
T.
, and
Furuhashi
,
R.
,
1984
, “
The Elastic Inclusion With a Sliding Interface
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
308
310
.10.1115/1.3167617
427.
Zhong
,
Z.
, and
Meguid
,
S. A.
,
1997
, “
On the Elastic Field of a Spherical Inhomogeneity With an Imperfectly Bonded Interface
,”
J. Elasticity
,
46
(
2
), pp.
91
113
.10.1023/A:1007342605107
428.
Furuhashi
,
R.
,
Huang
,
J.
, and
Mura
,
T.
,
1992
, “
Sliding Inclusions and Inhomogeneities With Frictional Interfaces
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
783
788
.10.1115/1.2894043
429.
Huang
,
J. H.
,
Furuhashi
,
R.
, and
Mura
,
T.
,
1993
, “
Frictional Sliding Inclusions
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
247
265
.10.1016/0022-5096(93)90008-4
430.
Lee
,
M.
,
Jasiuk
,
I.
, and
Tsuchida
,
E.
,
1992
, “
The Sliding Circular Inclusion in an Elastic Half-Plane
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S57
S64
.10.1115/1.2899508
431.
Kouris
,
D. A.
, and
Mura
,
T.
,
1989
, “
The Elastic Field of a Hemispherical Inhomogeneity at the Free Surface of an Elastic Half Space
,”
J. Mech. Phys. Solids
,
37
(
3
), pp.
365
379
.10.1016/0022-5096(89)90004-5
432.
Benveniste
,
Y.
, and
Aboudi
,
J.
,
1984
, “
A Continuum Model for Fiber Reinforced Materials With Debonding
,”
Int. J. Solids Struct.
,
20
(
11–12
), pp.
935
951
.10.1016/0020-7683(84)90082-9
433.
Shibata
,
S.
,
Jasiuk
,
I.
,
Mori
,
T.
, and
Mura
,
T.
,
1990
, “
Successive Iteration Method Applied to Composites Containing Sliding Inclusions: Effective Modulus and Anelasticity
,”
Mech. Mater.
,
9
(
3
), pp.
229
243
.10.1016/0167-6636(90)90005-Z
434.
Devries
,
F.
,
1991
, “
Constitutive Equations for Unidirectional Composites With Imperfect Bonding. The Case of Elastic, Viscous or Viscoelastic Slipping
,”
Compos. Eng.
,
1
(
5
), pp.
261
276
.10.1016/0961-9526(91)90008-G
435.
Devries
,
F.
,
1993
, “
Bounds on Elastic Moduli of Unidirectional Composites With Imperfect Bonding
,”
Compos. Eng.
,
3
(
4
), pp.
349
382
.10.1016/0961-9526(93)90066-S
436.
Jasiuk
,
I.
,
Chen
,
J.
, and
Thorpe
,
M. F.
,
1992
, “
Elastic Moduli of Composites With Rigid Sliding Inclusions
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
373
391
.10.1016/S0022-5096(05)80017-1
437.
Jun
,
S.
, and
Jasiuk
,
I.
,
1993
, “
Elastic Moduli of Two-Dimensional Composites With Sliding Inclusions-A Comparison of Effective Medium Theories
,”
Int. J. Solids Struct.
,
30
(
18
), pp.
2501
2523
.10.1016/0020-7683(93)90163-2
438.
Lubarda
,
V. A.
, and
Markenscoff
,
X.
,
1998
, “
On the Stress Field in Sliding Ellipsoidal Inclusions With Shear Eigenstrain
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
858
862
.10.1115/1.2791922
439.
Lubarda
,
V. A.
, and
Markenscoff
,
X.
,
1999
, “
Energies of Circular Inclusions: Sliding Versus Bonded Interfaces By
,”
Proc. R. Soc. A
,
455
(
1983
), pp.
961
974
.10.1098/rspa.1999.0344
440.
Königsberger
,
M.
,
Pichler
,
B.
, and
Hellmich
,
C.
,
2014
, “
Micromechanics of ITZ-Aggregate Interaction in Concrete Part I: Stress Concentration
,”
J. Am. Ceram. Soc.
,
97
(
2
), pp.
535
542
.10.1111/jace.12591
441.
Königsberger
,
M.
,
Pichler
,
B.
, and
Hellmich
,
C.
,
2014
, “
Micromechanics of ITZ-Aggregate Interaction in Concrete Part II: Strength Upscaling
,”
J. Am. Ceram. Soc.
,
97
(
2
), pp.
543
551
.10.1111/jace.12606
442.
Fritsch
,
A.
,
Dormieux
,
L.
,
Hellmich
,
C.
, and
Sanahuja
,
J.
,
2007
, “
Micromechanics of Crystal Interfaces in Polycrystalline Solid Phases of Porous Media: Fundamentals and Application to Strength of Hydroxyapatite Biomaterials
,”
J. Mater. Sci.
,
42
(
21
), pp.
8824
8837
.10.1007/s10853-007-1859-4
443.
He
,
L. H.
, and
Jiang
,
J.
,
2003
, “
Transient Mechanical Response of Laminated Elastic Strips With Viscous Interfaces in Cylindrical Bending
,”
Compos. Sci. Technol.
,
63
(
6
), pp.
821
828
.10.1016/S0266-3538(02)00284-1
444.
Funn
,
J. V.
, and
Dutta
,
I.
,
1998
, “
Creep Behavior of Interfaces in Fiber Reinforced Metal-Matrix Composites
,”
Acta Mater.
,
47
(
1
), pp.
149
164
.10.1016/S1359-6454(98)00327-9
445.
Qu
,
T.
,
Verma
,
D.
,
Shahidi
,
M.
,
Pichler
,
B.
,
Hellmich
,
C.
, and
Tomar
,
V.
,
2015
, “
Mechanics of Organic-Inorganic Biointerfaces-Implications for Strength and Creep Properties
,”
MRS Bull.
,
40
(
4
), pp.
349
358
.10.1557/mrs.2015.70
446.
He
,
L. H.
, and
Liu
,
Y. L.
,
2005
, “
Damping Behavior of Fibrous Composites With Viscous Interface Under Longitudinal Shear Loads
,”
Compos. Sci. Technol.
,
65
(
6
), pp.
855
860
.10.1016/j.compscitech.2004.09.003
447.
Shahidi
,
M.
,
Pichler
,
B.
, and
Hellmich
,
C.
,
2014
, “
Viscous Interfaces as Source for Material Creep: A Continuum Micromechanics Approach
,”
Eur. J. Mech., A/Solids
,
45
, pp.
41
58
.10.1016/j.euromechsol.2013.11.001
448.
Shahidi
,
M.
,
Pichler
,
B.
, and
Hellmich
,
C.
,
2016
, “
Interfacial Micromechanics Assessment of Classical Rheological Models: I—Single Interface Size and Viscosity
,”
J. Eng. Mech.
,
142
(
3
), p.
04015092
.10.1061/(ASCE)EM.1943-7889.0001012
449.
Shahidi
,
M.
,
Pichler
,
B.
, and
Hellmich
,
C.
,
2016
, “
Interfacial Micromechanics Assessment of Classical Rheological Models: II—Multiple Interface Sizes and Viscosities
,”
J. Eng. Mech.
,
142
(
3
), p.
04015093
.10.1061/(ASCE)EM.1943-7889.0001013
450.
Shahidi
,
M.
,
Pichler
,
B.
, and
Hellmich
,
C.
,
2016
, “
How Interface Size, Density, and Viscosity Affect Creep and Relaxation Functions of Matrix-Interface Composites: A Micromechanical Study
,”
Acta Mech.
,
227
(
1
), pp.
229
252
.10.1007/s00707-015-1429-9
451.
Eberhardsteiner
,
L.
,
Hellmich
,
C.
, and
Scheiner
,
S.
,
2014
, “
Layered Water in Crystal Interfaces as Source for Bone Viscoelasticity: Arguments From a Multiscale Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
1
), pp.
48
63
.10.1080/10255842.2012.670227
452.
Chaboche
,
J. L.
,
Feyel
,
F.
, and
Monerie
,
Y.
,
2001
, “
Interface Debonding Models: A Viscous Regularization With a Limited Rate Dependency
,”
Int. J. Solids Struct.
,
38
(
18
), pp.
3127
3160
.10.1016/S0020-7683(00)00053-6
453.
Nair
,
S. V.
,
Jakus
,
K.
, and
Lardner
,
T. J.
,
1991
, “
The Mechanics of Matrix Cracking in Fiber Reinforced Ceramic Composites Containing a Viscous Interface
,”
Mech. Mater.
,
12
(
3–4
), pp.
229
244
.10.1016/0167-6636(91)90020-Z
454.
Chen
,
W. Q.
, and
Lee
,
K. Y.
,
2004
, “
Time-Dependent Behaviors of Angle-Ply Laminates With Viscous Interfaces in Cylindrical Bending
,”
Eur. J. Mech., A/Solids
,
23
(
2
), pp.
235
245
.10.1016/j.euromechsol.2003.12.004
455.
Owen
,
D. R. J.
, and
Lyness
,
J. F.
,
1972
, “
Investigation of Bond Failure in Fiber-Reinforced Materials by the Finite Eleent Method
,”
Fibre Sci. Technol.
,
5
(
2
), pp.
129
141
.10.1016/0015-0568(72)90004-8
456.
Lene
,
F.
, and
Leguillon
,
D.
,
1982
, “
Homogenized Constitutive Law for a Partially Cohesive Composite Material
,”
Int. J. Solids Struct.
,
18
(
5
), pp.
443
458
.10.1016/0020-7683(82)90082-8
457.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
458.
Steif
,
P. S.
, and
Hoysan
,
F.
,
1987
, “
An Energy Method for Calculating the Stiffness of Aligned Short-Fiber Composites
,”
Mech. Mater.
,
6
(
3
), pp.
197
210
.10.1016/0167-6636(87)90011-1
459.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.10.1016/0022-5096(94)90003-5
460.
Bisegna
,
P.
, and
Luciano
,
R.
,
1998
, “
Bounds on the Overall Properties of Composites With Debonded Frictionless Interfaces
,”
Mech. Mater.
,
28
(
1–4
), pp.
23
32
.10.1016/S0167-6636(97)00046-X
461.
Wriggers
,
P.
,
Zavarise
,
G.
, and
Zohdi
,
T. I.
,
1998
, “
A Computational Study of Interfacial Debonding Damage in Fibrous Composite Materials
,”
Comput. Mater. Sci.
,
12
(
1
), pp.
39
56
.10.1016/S0927-0256(98)00025-1
462.
Würkner
,
M.
,
Berger
,
H.
, and
Gabbert
,
U.
,
2014
, “
Numerical Investigations of Effective Properties of Fiber Reinforced Composites With Parallelogram Arrangements and Imperfect Interface
,”
Compos. Struct.
,
116
, pp.
388
394
.10.1016/j.compstruct.2014.05.012
463.
Würkner
,
M.
,
Berger
,
H.
, and
Gabbert
,
U.
,
2013
, “
Numerical Study of Effective Elastic Properties of Fiber Reinforced Composites With Rhombic Cell Arrangements and Imperfect Interface
,”
Int. J. Eng. Sci.
,
63
, pp.
1
9
.10.1016/j.ijengsci.2012.10.002
464.
Zheng
,
S. F.
,
Denda
,
M.
, and
Weng
,
G. J.
,
2000
, “
Interfacial Partial Debonding and Its Influence on the Elasticity of a Two-Phase Composite
,”
Mech. Mater.
,
32
(
12
), pp.
695
709
.10.1016/S0167-6636(00)00041-7
465.
Caporale
,
A.
,
Luciano
,
R.
, and
Sacco
,
E.
,
2006
, “
Micromechanical Analysis of Interfacial Debonding in Unidirectional Fiber-Reinforced Composites
,”
Comput. Struct.
,
84
(
31–32
), pp.
2200
2211
.10.1016/j.compstruc.2006.08.023
466.
Achenbach
,
J. D.
, and
Zhu
,
H.
,
1989
, “
Effect of Interfacial Zone on Mechanical Behavior and Failure of Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
,
37
(
3
), pp.
381
393
.10.1016/0022-5096(89)90005-7
467.
Achenbach
,
J. D.
, and
Zhu
,
H.
,
1990
, “
Effect of Interphase on Micro and Macromechanical Behavior of Hexagonal-Array Fiber Composites
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
956
963
.10.1115/1.2897667
468.
Zhu
,
Q. Z.
,
Gu
,
S. T.
,
Yvonnet
,
J.
,
Shao
,
J. F.
, and
He
,
Q. C.
,
2011
, “
Three-Dimensional Numerical Modelling by XFEM of Spring-Layer Imperfect Curved Interfaces With Applications to Linearly Elastic Composite Materials
,”
Int. J. Numer. Methods Eng.
,
88
(
4
), pp.
307
328
.10.1002/nme.3175
469.
Fritzen
,
F.
, and
Leuschner
,
M.
,
2015
, “
Nonlinear Reduced Order Homogenization of Materials Including Cohesive Interfaces
,”
Comput. Mech.
,
56
(
1
), pp.
131
151
.10.1007/s00466-015-1163-0
470.
Leuschner
,
M.
, and
Fritzen
,
F.
,
2017
, “
Reduced Order Homogenization for Viscoplastic Composite Materials Including Dissipative Imperfect Interfaces
,”
Mech. Mater.
,
104
, pp.
121
138
.10.1016/j.mechmat.2016.10.008
471.
Koutsawa
,
Y.
,
2018
, “
Overall Properties of Piezoelectric Composites With Spring-Type Imperfect Interfaces Using the Mechanics of Structure Genome
,”
Compos. Part B
,
153
, pp.
337
345
.10.1016/j.compositesb.2018.08.107
472.
Nairn
,
J. A.
,
2007
, “
Numerical Implementation of Imperfect Interfaces
,”
Comput. Mater. Sci.
,
40
(
4
), pp.
525
536
.10.1016/j.commatsci.2007.02.010
473.
Yeh
,
J. R.
,
1992
, “
The Effect of Interface on the Transverse Properties of Composites
,”
Int. J. Solids Struct.
,
29
(
20
), pp.
2493
2502
.10.1016/0020-7683(92)90005-E
474.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.10.1016/0020-7683(95)00255-3
475.
De-Andrés
,
A.
,
Pérez
,
J. L.
, and
Ortiz
,
M.
,
1999
, “
Elastoplastic Finite Element Analysis of Three-Dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading
,”
Int. J. Solids Struct.
,
36
(
15
), pp.
2231
2258
.10.1016/S0020-7683(98)00059-6
476.
Ortiz
,
M.
, and
Pandolfi
,
A.
,
1999
, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1267
1282
.10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
477.
Alfano
,
G.
, and
Crisfield
,
M. A.
,
2001
, “
Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1701
1736
.10.1002/nme.93
478.
Mi
,
Y.
,
Crisfield
,
M. A.
,
Davies
,
G. A. O.
, and
Hellweg
,
H. B.
,
1998
, “
Progressive Delamination Using Interface Elements
,”
J. Compos. Mater.
,
32
(
14
), pp.
1246
1272
.10.1177/002199839803201401
479.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2003
, “
Geometrically Non-Linear and Consistently Linearized Embedded Strong Discontinuity Models for 3D Problems With an Application to the Dissection Analysis of Soft Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
47–48
), pp.
5059
5098
.10.1016/j.cma.2003.06.001
480.
Mergheim
,
J.
, and
Steinmann
,
P.
,
2006
, “
A Geometrically Nonlinear FE Approach for the Simulation of Strong and Weak Discontinuities
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
37–40
), pp.
5037
5052
.10.1016/j.cma.2005.05.057
481.
Hansbo
,
A.
, and
Hansbo
,
P.
,
2002
, “
An Unfitted Finite Element Method, Based on Nitsche's Method, for Elliptic Interface Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
47–48
), pp.
5537
5552
.10.1016/S0045-7825(02)00524-8
482.
Hansbo
,
A.
, and
Hansbo
,
P.
,
2004
, “
A Finite Element Method for the Simulation of Strong and Weak Discontinuities in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
33–35
), pp.
3523
3540
.10.1016/j.cma.2003.12.041
483.
van den Bosch
,
M. J.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2008
, “
On the Development of a 3D Cohesive Zone Element in the Presence of Large Deformations
,”
Comput. Mech.
,
42
(
2
), pp.
171
180
.10.1007/s00466-007-0184-8
484.
van den Bosch
,
M. J.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2006
, “
An Improved Description of the Exponential Xu and Needleman Cohesive Zone Law for Mixed-Mode Decohesion
,”
Eng. Fract. Mech.
,
73
(
9
), pp.
1220
1234
.10.1016/j.engfracmech.2005.12.006
485.
van den Bosch
,
M. J.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2007
, “
A Cohesive Zone Model With a Large Displacement Formulation Accounting for Interfacial Fibrilation
,”
Eur. J. Mech., A/Solids
,
26
(
1
), pp.
1
19
.10.1016/j.euromechsol.2006.09.003
486.
Vossen
,
B. G.
,
Schreurs
,
P. J. G.
,
van der Sluis
,
O.
, and
Geers
,
M. G. D.
,
2013
, “
On the Lack of Rotational Equilibrium in Cohesive Zone Elements
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
146
153
.10.1016/j.cma.2012.10.004
487.
Ottosen
,
N. S.
,
Ristinmaa
,
M.
, and
Mosler
,
J.
,
2015
, “
Fundamental Physical Principles and Cohesive Zone Models at Finite Displacements—Limitations and Possibilities
,”
Int. J. Solids Struct.
,
53
, pp.
70
79
.10.1016/j.ijsolstr.2014.10.020
488.
Ottosen
,
N. S.
,
Ristinmaa
,
M.
, and
Mosler
,
J.
,
2016
, “
Framework for Non-Coherent Interface Models at Finite Displacement Jumps and Finite Strains
,”
J. Mech. Phys. Solids
,
90
, pp.
124
141
.10.1016/j.jmps.2016.02.034
489.
Heitbreder
,
T.
,
Ottosen
,
N. S.
,
Ristinmaa
,
M.
, and
Mosler
,
J.
,
2017
, “
Consistent Elastoplastic Cohesive Zone Model at Finite Deformations—Variational Formulation
,”
Int. J. Solids Struct.
,
106–107
, pp.
284
293
.10.1016/j.ijsolstr.2016.10.027
490.
Heitbreder
,
T.
,
Ottosen
,
N. S.
,
Ristinmaa
,
M.
, and
Mosler
,
J.
,
2018
, “
On Damage Modeling of Material Interfaces: Numerical Implementation and Computational Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
1
27
.10.1016/j.cma.2018.03.023
491.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concrete Res.
,
6
(
6
), pp.
773
781
.10.1016/0008-8846(76)90007-7
492.
Ghosh
,
S.
,
Ling
,
Y.
,
Majumdar
,
B.
, and
Kim
,
R.
,
2000
, “
Interfacial Debonding Analysis in Multiple Fiber Reinforced Composites
,”
Mech. Mater.
,
32
(
10
), pp.
561
591
.10.1016/S0167-6636(00)00030-2
493.
Wells
,
G. N.
, and
Sluys
,
L. J.
,
2001
, “
A New Method for Modelling Cohesive Cracks Using Finite Elements
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2667
2682
.10.1002/nme.143
494.
Guo
,
R.
,
Shi
,
H. J.
, and
Yao
,
Z. H.
,
2003
, “
Modeling of Interfacial Debonding Crack in Particle Reinforced Composites Using Voronoi Cell Finite Element Method
,”
Comput. Mech.
,
32
(
1–2
), pp.
52
59
.10.1007/s00466-003-0461-0
495.
Segurado
,
J.
, and
LLorca
,
J.
,
2004
, “
A New Three-Dimensional Interface Finite Element to Simulate Fracture in Composites
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
2977
2993
.10.1016/j.ijsolstr.2004.01.007
496.
Aghdam
,
M. M.
, and
Falahatgar
,
S. R.
,
2004
, “
Micromechanical Modeling of Interface Damage of Metal Matrix Composites Subjected to Transverse Loading
,”
Compos. Struct.
,
66
(
1–4
), pp.
415
420
.10.1016/j.compstruct.2004.04.063
497.
Raghavan
,
P.
, and
Ghosh
,
S.
,
2005
, “
A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding
,”
Mech. Mater.
,
37
, pp.
955
979
.
498.
Fagerström
,
M.
, and
Larsson
,
R.
,
2006
, “
Theory and Numerics for Finite Deformation Fracture Modelling Using Strong Discontinuities
,”
Int. J. Numer. Methods Eng.
,
66
(
6
), pp.
911
948
.10.1002/nme.1573
499.
Charlotte
,
M.
,
Laverne
,
J.
, and
Marigo
,
J. J.
,
2006
, “
Initiation of Cracks With Cohesive Force Models: A Variational Approach
,”
Eur. J. Mech., A/Solids
,
25
(
4
), pp.
649
669
.10.1016/j.euromechsol.2006.05.002
500.
Ghosh
,
S.
,
Bai
,
J.
, and
Raghavan
,
P.
,
2007
, “
Concurrent Multi-Level Model for Damage Evolution in Microstructurally Debonding Composites
,”
Mech. Mater.
,
39
(
3
), pp.
241
266
.10.1016/j.mechmat.2006.05.004
501.
Aymerich
,
F.
,
Dore
,
F.
, and
Priolo
,
P.
,
2009
, “
Simulation of Multiple Delaminations in Impacted Cross-Ply Laminates Using a Finite Element Model Based on Cohesive Interface Elements
,”
Compos. Sci. Technol.
,
69
(
11–12
), pp.
1699
1709
.10.1016/j.compscitech.2008.10.025
502.
Paggi
,
M.
, and
Wriggers
,
P.
,
2011
, “
A Nonlocal Cohesive Zone Model for Finite Thickness Interfaces—Part I: Mathematical Formulation and Validation With Molecular Dynamics
,”
Comput. Mater. Sci.
,
50
(
5
), pp.
1625
1633
.10.1016/j.commatsci.2010.12.024
503.
Paggi
,
M.
, and
Wriggers
,
P.
,
2011
, “
A Nonlocal Cohesive Zone Model for Finite Thickness Interfaces—Part II: FE Implementation and Application to Polycrystalline Materials
,”
Comput. Mater. Sci.
,
50
(
5
), pp.
1634
1643
.10.1016/j.commatsci.2010.12.021
504.
Bouhala
,
L.
,
Makradi
,
A.
,
Belouettar
,
S.
,
Kiefer-Kamal
,
H.
, and
Fréres
,
P.
,
2013
, “
Modelling of Failure in Long Fibres Reinforced Composites by X-FEM and Cohesive Zone Model
,”
Compos. Part B
,
55
, pp.
352
361
.10.1016/j.compositesb.2012.12.013
505.
Wang
,
X.
,
Zhang
,
J.
,
Wang
,
Z.
,
Liang
,
W.
, and
Zhou
,
L.
,
2013
, “
Finite Element Simulation of the Failure Process of Single Fiber Composites Considering Interface Properties
,”
Compos. Part B
,
45
(
1
), pp.
573
582
.10.1016/j.compositesb.2012.07.051
506.
Tu
,
W.
, and
Pindera
,
M. J.
,
2014
, “
Cohesive Zone-Based Damage Evolution in Periodic Materials Via Finite Volume Homogenization
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101005
.10.1115/1.4028103
507.
Pike
,
M. G.
, and
Oskay
,
C.
,
2015
, “
XFEM Modeling of Short Microfiber Reinforced Composites With Cohesive Interfaces
,”
Finite Elem. Anal. Des.
,
106
, pp.
16
31
.10.1016/j.finel.2015.07.007
508.
Wu
,
C.
,
Gowrishankar
,
S.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2016
, “
On Determining Mixed-Mode Traction-Separation Relations for Interfaces
,”
Int. J. Fract.
,
202
(
1
), pp.
1
19
.10.1007/s10704-016-0128-4
509.
Rezaei
,
S.
,
Jaworek
,
D.
,
Mianroodi
,
J. R.
,
Wulfinghoff
,
S.
, and
Reese
,
S.
,
2019
, “
Atomistically Motivated Interface Model to Account for Coupled Plasticity and Damage at Grain Boundaries
,”
J. Mech. Phys. Solids
,
124
, pp.
325
349
.10.1016/j.jmps.2018.10.015
510.
Rezaei
,
S.
,
Mianroodi
,
J. R.
,
Khaledi
,
K.
, and
Reese
,
S.
,
2020
, “
A Nonlocal Method for Modeling Interfaces: Numerical Simulation of Decohesion and Sliding at Grain Boundaries
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112836
.10.1016/j.cma.2020.112836
511.
Bayat
,
H. R.
,
Rezaei
,
S.
,
Brepols
,
T.
, and
Reese
,
S.
,
2020
, “
Locking-Free Interface Failure Modeling by a Cohesive Discontinuous Galerkin Method for Matching and Nonmatching Meshes
,”
Int. J. Numer. Methods Eng.
,
121
(
8
), pp.
1762
1790
.10.1002/nme.6286
512.
Cammarata
,
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin Films
,”
Prog. Surf. Sci.
,
46
(
1
), pp.
1
38
.10.1016/0079-6816(94)90005-1
513.
Cammarata
,
R. C.
,
Sieradzki
,
K.
, and
Spaepen
,
F.
,
2000
, “
Simple Model for Interface Stresses With Application to Misfit Dislocation Generation in Epitaxial Thin Films
,”
J. Appl. Phys.
,
87
(
3
), pp.
1227
1234
.10.1063/1.372001
514.
Cammarata
,
R. C.
,
2009
, “
Generalized Thermodynamics of Surfaces With Applications to Small Solid Systems
,”
Solid State Phys.
,
61
, pp.
1
75
.10.1016/S0081-1947(09)00001-0
515.
Cammarata
,
R. C.
,
1997
, “
Surface and Interface Stress Effects on Interfacial and Nanostructured Materials
,”
Mater. Sci. Eng. A
,
237
(
2
), pp.
180
184
.10.1016/S0921-5093(97)00128-7
516.
Shuttleworth
,
R.
,
1950
, “
The Surface Tension of Solids
,”
Proc. Phys. Soc. A
,
63
(
5
), pp.
444
457
.10.1088/0370-1298/63/5/302
517.
Chen
,
T.
,
Chiu
,
M. S.
, and
Weng
,
C. N.
,
2006
, “
Derivation of the Generalized Young-Laplace Equation of Curved Interfaces in Nanoscaled Solids
,”
J. Appl. Phys.
,
100
(
7
), p.
074308
.10.1063/1.2356094
518.
Povstenko
,
Y. Z.
,
1993
, “
Theoretical Investigation of Phenomena Caused by Heterogeneous Surface Tension in Solids
,”
J. Mech. Phys. Solids
,
41
(
9
), pp.
1499
1514
.10.1016/0022-5096(93)90037-G
519.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.10.1007/BF00261375
520.
Murdoch
,
A. I.
,
1976
, “
A Thermodynamical Theory of Elastic Material Interfaces
,”
Q. J. Mech. Appl. Math.
,
29
(
3
), pp.
245
275
.10.1093/qjmam/29.3.245
521.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.10.1016/0020-7683(78)90008-2
522.
Cahn
,
J. W.
, and
Lärché
,
F.
,
1982
, “
Surface Stress and the Chemical Equilibrium of Small Crystals-II. Solid Particles Embedded in a Solid Matrix
,”
Acta Metall.
,
30
(
1
), pp.
51
56
.10.1016/0001-6160(82)90043-8
523.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
An Atomistic Interpretation of Interface Stress
,”
Scr. Mater.
,
39
(
12
), pp.
1653
1661
.10.1016/S1359-6462(98)00352-2
524.
Gao
,
X.
,
Huang
,
Z.
,
Qu
,
J.
, and
Fang
,
D.
,
2014
, “
A Curvature-Dependent Interfacial Energy-Based Interface Stress Theory and Its Applications to Nano-Structured Materials: (I) General Theory
,”
J. Mech. Phys. Solids
,
66
, pp.
59
77
.10.1016/j.jmps.2014.01.010
525.
Gao
,
X.
,
Huang
,
Z.
, and
Fang
,
D.
,
2017
, “
Curvature-Dependent Interfacial Energy and Its Effects on the Elastic Properties of Nanomaterials
,”
Int. J. Solids Struct.
,
113–114
, pp.
100
107
.10.1016/j.ijsolstr.2017.01.021
526.
Caillerie
,
D.
,
1978
, “
Sur le Comportement Limite D'une Inclusion Mince de Grande Rigidite
,”
C. R. L'Acad. Sci. Série 1
,
287
, pp.
675
678
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7930159628
527.
Lemrabet
,
K.
, and
Lions
,
J. L. R.
,
1987
, “
Le Problème de Ventcel Pour le Système de L'élasticité Dans un Domaine de IR3
,”
Comptes Rendus de L'Académie Des Sciences. Série 1 Mathématique
,
304
, pp.
151
154
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8082724
528.
Rubin
,
M. B.
, and
Benveniste
,
Y.
,
2004
, “
A Cosserat Shell Model for Interphases in Elastic Media
,”
J. Mech. Phys. Solids
,
52
(
5
), pp.
1023
1052
.10.1016/j.jmps.2003.09.030
529.
Rizzoni
,
R.
,
Dumont
,
S.
,
Lebon
,
F.
, and
Sacco
,
E.
,
2014
, “
Higher Order Model for Soft and Hard Elastic Interfaces
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4137
4148
.10.1016/j.ijsolstr.2014.08.005
530.
Fried
,
E.
, and
Todres
,
R. E.
,
2005
, “
Mind the Gap: The Shape of the Free Surface of a Rubber-Like Material in Proximity to a Rigid Contactor
,”
J. Elasticity
,
80
(
1–3
), pp.
97
151
.10.1007/s10659-005-9019-z
531.
Fried
,
E.
, and
Gurtin
,
M. E.
,
2007
, “
Thermomechanics of the Interface Between a Body and Its Environment
,”
Contin. Mech. Thermodyn.
,
19
(
5
), pp.
253
271
.10.1007/s00161-007-0053-x
532.
Dingreville
,
R.
, and
Qu
,
J.
,
2008
, “
Interfacial Excess Energy, Excess Stress and Excess Strain in Elastic Solids: Planar Interfaces
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1944
1954
.10.1016/j.jmps.2007.11.003
533.
Dingreville
,
R.
, and
Qu
,
J.
,
2007
, “
A Semi-Analytical Method to Compute Surface Elastic Properties
,”
Acta Mater.
,
55
(
1
), pp.
141
147
.10.1016/j.actamat.2006.08.007
534.
Dingreville
,
R.
,
Hallil
,
A.
, and
Berbenni
,
S.
,
2014
, “
From Coherent to Incoherent Mismatched Interfaces: A Generalized Continuum Formulation of Surface Stresses
,”
J. Mech. Phys. Solids
,
72
, pp.
40
60
.10.1016/j.jmps.2014.08.003
535.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.10.1016/j.jmps.2005.02.012
536.
Dumont
,
S.
,
Rizzoni
,
R.
,
Lebon
,
F.
, and
Sacco
,
E.
,
2018
, “
Soft and Hard Interface Models for Bonded Elements
,”
Compos. Part B
,
153
, pp.
480
490
.10.1016/j.compositesb.2018.08.076
537.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.10.1063/1.1539929
538.
Sharma
,
P.
,
2004
, “
Size-Dependent Elastic Fields of Embedded Inclusions in Isotropic Chiral Solids
,”
Int. J. Solids Struct.
,
41
(
22–23
), pp.
6317
6333
.10.1016/j.ijsolstr.2004.05.004
539.
Yang
,
F.
,
2004
, “
Size-Dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations
,”
J. Appl. Phys.
,
95
(
7
), pp.
3516
3520
.10.1063/1.1664030
540.
Sun
,
L.
,
Wu
,
Y.
,
Huang
,
Z.
, and
Wang
,
J.
,
2004
, “
Interface Effect on the Effective Bulk Modulus of a Particle-Reinforced Composite
,”
Acta Mech. Sin.
,
20
, pp.
676
679
.10.1007/BF02485873
541.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Eshelby Formalism for Nano-Inhomogeneities
,”
Proc. R. Soc. A
,
461
(
2062
), pp.
3335
3353
.10.1098/rspa.2005.1520
542.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.10.1016/j.jmps.2005.02.009
543.
Duan
,
H. L.
,
Wang
,
J.
, and
Karihaloo
,
B. L.
,
2009
,
Theory of Elasticity at the Nanoscale
, Vol.
42
,
Elsevier
, Amsterdam, The Netherlands.10.1016/S0065-2156(08)00001-X
544.
Huang
,
Z. P.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(
3–4
), pp.
195
210
.10.1007/s00707-005-0286-3
545.
Monteiro
,
E.
,
He
,
Q. C.
, and
Yvonnet
,
J.
,
2011
, “
Hyperelastic Large Deformations of Two-Phase Composites With Membrane-Type Interface
,”
Int. J. Eng. Sci.
,
49
(
9
), pp.
985
1000
.10.1016/j.ijengsci.2011.05.011
546.
Huang
,
Z. P.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(
1–4
), pp.
151
163
.10.1007/s00707-006-0381-0
547.
He
,
L. H.
,
2006
, “
Self-Strain of Solids With Spherical Nanovoids
,”
Appl. Phys. Lett.
,
88
(
15
), p.
151909
.10.1063/1.2195097
548.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
,
2006
, “
Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5055
5065
.10.1016/j.ijsolstr.2005.08.007
549.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Yu
,
C. C.
,
2007
, “
Size-Dependent Elastic Properties of Unidirectional Nano-Composites With Interface Stresses
,”
Acta Mech.
,
188
(
1–2
), pp.
39
54
.10.1007/s00707-006-0371-2
550.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Yu
,
C. C.
,
2007
, “
Solids Containing Spherical Nano-Inclusions With Interface Stresses: Effective Properties and Thermal-Mechanical Connections
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
941
955
.10.1016/j.ijsolstr.2006.05.030
551.
Mi
,
C.
, and
Kouris
,
D.
,
2006
, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
,
1
(
4
), pp.
763
791
.10.2140/jomms.2006.1.763
552.
Mi
,
C.
, and
Kouris
,
D.
,
2017
, “
Surface Mechanics Implications for a Nanovoided Metallic Thin-Plate Under Uniform Boundary Loading
,”
Math. Mech. Solids
,
22
(
3
), pp.
401
419
.10.1177/1081286515595262
553.
Mi
,
C.
,
2017
, “
Surface Mechanics Induced Stress Disturbances in an Elastic Half-Space Subjected to Tangential Surface Loads
,”
Eur. J. Mech., A/Solids
,
65
, pp.
59
69
.10.1016/j.euromechsol.2017.03.006
554.
Le Quang
,
H.
, and
He
,
Q. C.
,
2007
, “
Size-Dependent Effective Thermoelastic Properties of Nanocomposites With Spherically Anisotropic Phases
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1899
1931
.10.1016/j.jmps.2007.02.005
555.
Le Quang
,
H.
, and
He
,
Q. C.
,
2008
, “
Variational Principles and Bounds for Elastic Inhomogeneous Materials With Coherent Imperfect Interfaces
,”
Mech. Mater.
,
40
(
10
), pp.
865
884
.10.1016/j.mechmat.2008.04.003
556.
Le Quang
,
H.
, and
He
,
Q. C.
,
2009
, “
Estimation of the Effective Thermoelastic Moduli of Fibrous Nanocomposites With Cylindrically Anisotropic Phases
,”
Archive Appl. Mech.
,
79
(
3
), pp.
225
248
.10.1007/s00419-008-0223-8
557.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
.10.1016/j.jmps.2008.01.001
558.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Stolarski
,
H. K.
, and
Benusiglio
,
A.
,
2010
, “
Equivalent Inhomogeneity Method for Evaluating the Effective Elastic Properties of Unidirectional Multi-Phase Composites With Surface/Interface Effects
,”
Int. J. Solids Struct.
,
47
(
3–4
), pp.
407
418
.10.1016/j.ijsolstr.2009.10.007
559.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
La Grotta
,
A.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Transverse Overall Elastic Behavior of Unidirectional Nano-Composites
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
427
434
.10.1016/j.compscitech.2009.11.012
560.
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2012
, “
On Maxwells Concept of Equivalent Inhomogeneity: When Do the Interactions Matter?
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
391
417
.10.1016/j.jmps.2011.12.008
561.
Jammes
,
M.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2009
, “
Multiple Circular Nano-Inhomogeneities and/or Nano-Pores in One of Two Joined Isotropic Elastic Half-Planes
,”
Eng. Anal. Bound. Elem.
,
33
(
2
), pp.
233
248
.10.1016/j.enganabound.2008.03.010
562.
Kushch
,
V. I.
,
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2011
, “
Elastic Interaction of Spherical Nanoinhomogeneities With Gurtin-Murdoch Type Interfaces
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1702
1716
.10.1016/j.jmps.2011.06.004
563.
Kushch
,
V. I.
,
Mogilevskaya
,
S. G.
,
Stolarski
,
H. K.
, and
Crouch
,
S. L.
,
2013
, “
Elastic Fields and Effective Moduli of Particulate Nanocomposites With the Gurtin-Murdoch Model of Interfaces
,”
Int. J. Solids Struct.
,
50
(
7–8
), pp.
1141
1153
.10.1016/j.ijsolstr.2012.12.016
564.
Kushch
,
V. I.
,
Sevostianov
,
I.
, and
Chernobai
,
V. S.
,
2014
, “
Effective Conductivity of Composite With Imperfect Contact Between Elliptic Fibers and Matrix: Maxwell's Homogenization Scheme
,”
Int. J. Eng. Sci.
,
83
, pp.
146
161
.10.1016/j.ijengsci.2014.03.006
565.
Muskhelishvili
,
N. I.
,
2013
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
566.
Kushch
,
V. I.
, and
Sevostianov
,
I.
,
2016
, “
The “Rigorous” Maxwell Homogenization Scheme in 2D Elasticity: Effective Stiffness Tensor of Composite With Elliptic Inhomogeneities
,”
Mech. Mater.
,
103
, pp.
44
54
.10.1016/j.mechmat.2016.09.006
567.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2007
, “
Soft Neutral Elastic Inhomogeneities With Membrane-Type Interface Conditions
,”
J. Elasticity
,
88
(
2
), pp.
87
111
.10.1007/s10659-007-9115-3
568.
Dormieux
,
L.
, and
Kondo
,
D.
,
2010
, “
An Extension of Gurson Model Incorporating Interface Stresses Effects
,”
Int. J. Eng. Sci.
,
48
(
6
), pp.
575
581
.10.1016/j.ijengsci.2010.01.004
569.
Dormieux
,
L.
, and
Kondo
,
D.
,
2013
, “
Non Linear Homogenization Approach of Strength of Nanoporous Materials With Interface Effects
,”
Int. J. Eng. Sci.
,
71
, pp.
102
110
.10.1016/j.ijengsci.2013.04.006
570.
Brach
,
S.
,
Dormieux
,
L.
,
Kondo
,
D.
, and
Vairo
,
G.
,
2017
, “
Strength Properties of Nanoporous Materials: A 3-Layered Based Non-Linear Homogenization Approach With Interface Effects
,”
Int. J. Eng. Sci.
,
115
, pp.
28
42
.10.1016/j.ijengsci.2017.03.001
571.
Kushch
,
V. I.
,
2018
, “
Stress Field and Effective Elastic Moduli of Periodic Spheroidal Particle Composite With Gurtin-Murdoch Interface
,”
Int. J. Eng. Sci.
,
132
, pp.
79
96
.10.1016/j.ijengsci.2018.08.001
572.
Sharma
,
P.
, and
Wheeler
,
L. T.
,
2007
, “
Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
447
454
.10.1115/1.2338052
573.
Yang
,
F.
,
2006
, “
Effect of Interfacial Stresses on the Elastic Behavior of Nanocomposite Materials
,”
J. Appl. Phys.
,
99
(
5
), p.
054306
.10.1063/1.2179140
574.
Chen
,
T.
, and
Dvorak
,
G. J.
,
2006
, “
Fibrous Nanocomposites With Interface Stress: Hill's and Levin's Connections for Effective Moduli
,”
Appl. Phys. Lett.
,
88
(
21
), p.
211912
.10.1063/1.2206132
575.
Chen
,
T.
,
2008
, “
Exact Size-Dependent Connections Between Effective Moduli of Fibrous Piezoelectric Nanocomposites With Interface Effects
,”
Acta Mech.
,
196
(
3–4
), pp.
205
217
.10.1007/s00707-007-0477-1
576.
Chen
,
H.
,
Liu
,
X.
, and
Hu
,
G.
,
2008
, “
Overall Plasticity of Micropolar Composites With Interface Effect
,”
Mech. Mater.
,
40
(
9
), pp.
721
728
.10.1016/j.mechmat.2008.03.005
577.
Fischer
,
F. D.
, and
Svoboda
,
J.
,
2010
, “
Stresses in Hollow Nanoparticles
,”
Int. J. Solids Struct.
,
47
(
20
), pp.
2799
2805
.10.1016/j.ijsolstr.2010.06.008
578.
Brisard
,
S.
,
Dormieux
,
L.
, and
Kondo
,
D.
,
2010
, “
Hashin-Shtrikman Bounds on the Shear Modulus of a Nanocomposite With Spherical Inclusions and Interface Effects
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
403
410
.10.1016/j.commatsci.2010.08.032
579.
Li
,
P.
,
Wang
,
Q.
, and
Shi
,
S.
,
2011
, “
Differential Scheme for the Effective Elastic Properties of Nano-Particle Composites With Interface Effect
,”
Comput. Mater. Sci.
,
50
(
11
), pp.
3230
3237
.10.1016/j.commatsci.2011.06.006
580.
Dong
,
C. Y.
,
2012
, “
An Integral Equation Formulation of Two- and Three-Dimensional Nanoscale Inhomogeneities
,”
Comput. Mech.
,
49
(
3
), pp.
309
318
.10.1007/s00466-011-0640-3
581.
Javili
,
A.
,
Ottosen
,
N. S.
,
Ristinmaa
,
M.
, and
Mosler
,
J.
,
2018
, “
Aspects of Interface Elasticity Theory
,”
Math. Mech. Solids
,
23
(
7
), pp.
1004
1024
.10.1177/1081286517699041
582.
Javili
,
A.
,
2012
, “
Thermomechanics of Solids Accounting for Surfaces and Interfaces
,” Ph.D. thesis, Erlangen, Germany.
583.
Nazarenko
,
L.
,
Bargmann
,
S.
, and
Stolarski
,
H.
,
2014
, “
Influence of Interfaces on Effective Properties of Nanomaterials With Stochastically Distributed Spherical Inclusions
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
954
966
.10.1016/j.ijsolstr.2013.11.024
584.
Chatzigeorgiou
,
G.
,
Chemisky
,
Y.
, and
Meraghni
,
F.
,
2015
, “
Computational Micro to Macro Transitions for Shape Memory Alloy Composites Using Periodic Homogenization
,”
Smart Mater. Struct.
,
24
(
3
), p.
035009
.10.1088/0964-1726/24/3/035009
585.
Nazarenko
,
L.
,
Stolarski
,
H.
, and
Altenbach
,
H.
,
2016
, “
Effective Properties of Short-Fiber Composites With Gurtin-Murdoch Model of Interphase
,”
Int. J. Solids Struct.
,
97–98
, pp.
75
88
.10.1016/j.ijsolstr.2016.07.041
586.
Nazarenko
,
L.
,
Bargmann
,
S.
, and
Stolarski
,
H.
,
2017
, “
Closed-Form Formulas for the Effective Properties of Random Particulate Nanocomposites With Complete Gurtin-Murdoch Model of Material Surfaces
,”
Contin. Mech. Thermodyn.
,
29
(
1
), pp.
77
96
.10.1007/s00161-016-0521-2
587.
Dai
,
M.
,
Li
,
M.
, and
Schiavone
,
P.
,
2018
, “
Plane Deformations of an Inhomogeneity-Matrix System Incorporating a Compressible Liquid Inhomogeneity and Complete Gurtin-Murdoch Interface Model
,”
ASME J. Appl. Mech.
,
85
(
2
), p.
121010
.10.1115/1.4041469
588.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plane Deformations of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. A
,
453
(
1959
), pp.
853
877
.10.1098/rspa.1997.0047
589.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface - Substrate Interactions
,”
Proc. R. Soc. London A
,
455
(
1982
), pp.
437
474
.10.1098/rspa.1999.0320
590.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
.10.1016/j.jmps.2011.06.007
591.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018
, “
On Spherical Inhomogeneity With Steigmann–Ogden Interface
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121009
.10.1115/1.4041499
592.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018
, “
Circular Inhomogeneity With Steigmann–Ogden Interface: Local Fields, Neutrality, and Maxwell's Type Approximation Formula
,”
Int. J. Solids Struct.
,
135
, pp.
85
98
.10.1016/j.ijsolstr.2017.11.012
593.
Han
,
Z.
,
Mogilevskaya
,
S. G.
, and
Schillinger
,
D.
,
2018
, “
Local Fields and Overall Transverse Properties of Unidirectional Composite Materials With Multiple Nanofibers and Steigmann–Ogden Interfaces
,”
Int. J. Solids Struct.
,
147
, pp.
166
182
.10.1016/j.ijsolstr.2018.05.019
594.
Ban
,
Y.
, and
Mi
,
C.
,
2020
, “
Analytical Solutions of a Spherical Nanoinhomogeneity Under Far-Field Unidirectional Loading Based on Steigmann-Ogden Surface Model
,”
Math. Mech. Solids
,
25
(
10
), pp.
1904
1923
.10.1177/1081286520915259
595.
Le
,
T. T.
,
2020
, “
Probabilistic Investigation of the Effect of Stochastic Imperfect Interfaces in Nanocomposites
,”
Mech. Mater.
,
151
, p.
103608
.10.1016/j.mechmat.2020.103608
596.
Le
,
T. T.
,
2020
, “
Multiscale Analysis of Elastic Properties of Nano-Reinforced Materials Exhibiting Surface Effects. Application for Determination of Effective Shear Modulus
,”
J. Compos. Sci.
,
4
(
4
), p.
172
.10.3390/jcs4040172
597.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
,
2007
, “
Elastic Field of an Isotropic Matrix With a Nanoscale Elliptical Inhomogeneity
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7988
8005
.10.1016/j.ijsolstr.2007.05.019
598.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
,
2007
, “
Analytical Solution for Size-Dependent Elastic Field of a Nanoscale Circular Inhomogeneity
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
568
574
.10.1115/1.2424242
599.
Yvonnet
,
J.
,
He
,
Q. C.
, and
Toulemonde
,
C.
,
2008
, “
Numerical Modelling of the Effective Conductivities of Composites With Arbitrarily Shaped Inclusions and Highly Conducting Interface
,”
Compos. Sci. Technol.
,
68
(
13
), pp.
2818
2825
.10.1016/j.compscitech.2008.06.008
600.
Dong
,
C. Y.
, and
Pan
,
E.
,
2011
, “
Boundary Element Analysis of Nanoinhomogeneities of Arbitrary Shapes With Surface and Interface Effects
,”
Eng. Anal. Boundary Elem.
,
35
(
8
), pp.
996
1002
.10.1016/j.enganabound.2011.03.004
601.
Dai
,
M.
,
Schiavone
,
P.
, and
Gao
,
C. F.
,
2016
, “
Prediction of the Stress Field and Effective Shear Modulus of Composites Containing Periodic Inclusions Incorporating Interface Effects in Anti-Plane Shear
,”
J. Elasticity
,
125
(
2
), pp.
217
230
.10.1007/s10659-016-9577-2
602.
Javili
,
A.
,
McBride
,
A. T.
, and
Steinmann
,
P.
,
2013
, “
Numerical Modelling of Thermomechanical Solids With Highly Conductive Energetic Interfaces
,”
Int. J. Numer. Methods Eng.
,
93
(
5
), pp.
551
574
.10.1002/nme.4402
603.
Javili
,
A.
,
Chatzigeorgiou
,
G.
,
McBride
,
A. T.
,
Steinmann
,
P.
, and
Linder
,
C.
,
2015
, “
Computational Homogenization of Nano-Materials Accounting for Size Effects Via Surface Elasticity
,”
GAMM Mitteilungen
,
38
(
2
), pp.
285
312
.10.1002/gamm.201510016
604.
Javili
,
A.
,
McBride
,
A.
,
Steinmann
,
P.
, and
Reddy
,
B. D.
,
2014
, “
A Unified Computational Framework for Bulk and Surface Elasticity Theory: A Curvilinear-Coordinate-Based Finite Element Methodology
,”
Comput. Mech.
,
54
(
3
), pp.
745
762
.10.1007/s00466-014-1030-4
605.
Koutsawa
,
Y.
,
Tiem
,
S.
,
Yu
,
W.
,
Addiego
,
F.
, and
Giunta
,
G.
,
2017
, “
A Micromechanics Approach for Effective Elastic Properties of Nano-Composites With Energetic Surfaces/Interfaces
,”
Compos. Struct.
,
159
, pp.
278
287
.10.1016/j.compstruct.2016.09.066
606.
Chen
,
Q.
,
Wang
,
G.
, and
Pindera
,
M. J.
,
2018
, “
Finite Volume Homogenization and Localization of Nanoporous Materials With Cylindrical Voids. Part 1: Theory and Validation
,”
Eur. J. Mech., A/Solids
,
70
, pp.
141
155
.10.1016/j.euromechsol.2018.02.004
607.
Chen
,
Q.
,
Sun
,
Y.
,
Wang
,
G.
, and
Pindera
,
M. J.
,
2019
, “
Finite Volume Homogenization and Localization of Nanoporous Materials With Cylindrical Voids. Part 2: New Results
,”
Eur. J. Mech., A/Solids
,
73
, pp.
331
348
.10.1016/j.euromechsol.2018.09.008
608.
Chen
,
Q.
, and
Pindera
,
M. J.
,
2020
, “
Homogenization and Localization of Elastic-Plastic Nanoporous Materials With Gurtin-Murdoch Interfaces: An Assessment of Computational Approaches
,”
Int. J. Plasticity
,
124
, pp.
42
70
.10.1016/j.ijplas.2019.08.004
609.
Dong
,
C. Y.
, and
Lo
,
S. H.
,
2013
, “
Boundary Element Analysis of an Elastic Half-Plane Containing Nanoinhomogeneities
,”
Comput. Mater. Sci.
,
73
, pp.
33
40
.10.1016/j.commatsci.2013.02.014
610.
Dong
,
C. Y.
, and
Zhang
,
G. L.
,
2013
, “
Boundary Element Analysis of Three Dimensional Nanoscale Inhomogeneities
,”
Int. J. Solids Struct.
,
50
(
1
), pp.
201
208
.10.1016/j.ijsolstr.2012.09.012
611.
Zhao
,
X.
,
Bordas
,
S. P. A.
, and
Qu
,
J.
,
2013
, “
A Hybrid Smoothed Extended Finite Element/Level Set Method for Modeling Equilibrium Shapes of Nano-Inhomogeneities
,”
Comput. Mech.
,
52
(
6
), pp.
1417
1428
.10.1007/s00466-013-0884-1
612.
Gao
,
W.
,
Yu
,
S.
, and
Huang
,
G.
,
2006
, “
Finite Element Characterization of the Size-Dependent Mechanical Behaviour in Nanosystems
,”
Nanotechnology
,
17
, pp.
1118
1122
.10.1088/0957-4484/17/4/045
613.
Farsad
,
M.
,
Vernerey
,
F. J.
, and
Park
,
H. S.
,
2010
, “
An Extended Finite Element/Level Set Method to Study Surface Effects on the Mechanical Behavior and Properties of Nanomaterials
,”
Int. J. Numer. Methods Eng.
,
84
(
12
), pp.
1466
1489
.10.1002/nme.2946
614.
Parvanova
,
S. L.
,
Vasilev
,
G. P.
,
Dineva
,
P. S.
, and
Manolis
,
G. D.
,
2016
, “
Dynamic Analysis of Nano-Heterogeneities in a Finite-Sized Solid by Boundary and Finite Element Methods
,”
Int. J. Solids Struct.
,
80
, pp.
1
18
.10.1016/j.ijsolstr.2015.10.016
615.
Liu
,
W.
,
Liu
,
Y.
,
Su
,
X.
, and
Li
,
Z.
,
2014
, “
Finite Element Analysis of the Interface/Surface Effect on the Elastic Wave Band Structure of Two-Dimensional Nanosized Phononic Crystals
,”
Int. J. Appl. Mech.
,
06
(
01
), p.
1450005
.10.1142/S1758825114500057
616.
Hashin
,
Z.
,
2002
, “
Thin Interphase/Imperfect Interface in Elasticity With Application to Coated Fiber Composites
,”
J. Mech. Phys. Solids
,
50
(
12
), pp.
2509
2537
.10.1016/S0022-5096(02)00050-9
617.
Benveniste
,
Y.
,
2006
, “
A General Interface Model for a Three-Dimensional Curved Thin Anisotropic Interphase Between Two Anisotropic Media
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
708
734
.10.1016/j.jmps.2005.10.009
618.
Benveniste
,
Y.
,
2013
, “
Models of Thin Interphases With Variable Moduli in Plane-Strain Elasticity
,”
Math. Mech. Solids
,
18
(
2
), pp.
119
134
.10.1177/1081286512462186
619.
Benveniste
,
Y.
,
2013
, “
Models of Thin Interphases and the Effective Medium Approximation in Composite Media With Curvilinearly Anisotropic Coated Inclusions
,”
Int. J. Eng. Sci.
,
72
, pp.
140
154
.10.1016/j.ijengsci.2013.07.003
620.
Bövik
,
P.
,
1994
, “
On the Modelling of Thin Interface Layers in Elastic and Acoustic Scattering Problems
,”
Q. J. Mech. Appl. Math.
,
47
(
1
), pp.
17
42
.10.1093/qjmam/47.1.17
621.
Monchiet
,
V.
, and
Bonnet
,
G.
,
2010
, “
Interfacial Models in Viscoplastic Composites Materials
,”
Int. J. Eng. Sci.
,
48
(
12
), pp.
1762
1768
.10.1016/j.ijengsci.2010.09.024
622.
Gu
,
S. T.
, and
He
,
Q. C.
,
2011
, “
Interfacial Discontinuity Relations for Coupled Multifield Phenomena and Their Application to the Modeling of Thin Interphases as Imperfect Interfaces
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1413
1426
.10.1016/j.jmps.2011.04.004
623.
Gu
,
S. T.
,
Monteiro
,
E.
, and
He
,
Q. C.
,
2011
, “
Coordinate-Free Derivation and Weak Formulation of a General Imperfect Interface Model for Thermal Conduction in Composites
,”
Compos. Sci. Technol.
,
71
(
9
), pp.
1209
1216
.10.1016/j.compscitech.2011.04.001
624.
Gu
,
S. T.
,
Liu
,
J. T.
, and
He
,
Q. C.
,
2014
, “
Size-Dependent Effective Elastic Moduli of Particulate Composites With Interfacial Displacement and Traction Discontinuities
,”
Int. J. Solids Struct.
,
51
(
13
), pp.
2283
2296
.10.1016/j.ijsolstr.2014.02.033
625.
Serpilli
,
M.
,
Rizzoni
,
R.
,
Lebon
,
F.
, and
Dumont
,
S.
,
2019
, “
An Asymptotic Derivation of a General Imperfect Interface Law for Linear Multiphysics Composites
,”
Int. J. Solids Struct.
,
180–181
, pp.
97
107
.10.1016/j.ijsolstr.2019.07.014
626.
Wang
,
M.
, and
Ye
,
W.
,
2020
, “
Size-Dependent Elastic Field of Nano-Inhomogeneity: From Interface Effect to Interphase Effect
,”
Archive Appl. Mech.
,
90
(
10
), pp.
2319
2333
.10.1007/s00419-020-01722-2
627.
Xu
,
Y.
,
He
,
Q. C.
, and
Gu
,
S. T.
,
2016
, “
Effective Elastic Moduli of Fiber-Reinforced Composites With Interfacial Displacement and Stress Jumps
,”
Int. J. Solids Struct.
,
80
, pp.
146
157
.10.1016/j.ijsolstr.2015.10.031
628.
Firooz
,
S.
,
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
, and
Javili
,
A.
,
2019
, “
Homogenization Accounting for Size Effects in Particulate Composites Due to General Interfaces
,”
Mech. Mater.
,
139
, p.
103204
.10.1016/j.mechmat.2019.103204
629.
Firooz
,
S.
,
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
, and
Javili
,
A.
,
2020
, “
Bounds on Size Effects in Composites Via Homogenization Accounting for General Interfaces
,”
Contin. Mech. Thermodyn.
,
32
(
1
), pp.
173
206
.10.1007/s00161-019-00796-w
630.
Chatzigeorgiou
,
G.
,
Meraghni
,
F.
, and
Javili
,
A.
,
2017
, “
Generalized Interfacial Energy and Size Effects in Composites
,”
J. Mech. Phys. Solids
,
106
, pp.
257
282
.10.1016/j.jmps.2017.06.002
631.
Gu
,
S. T.
,
Liu
,
J. T.
, and
He
,
Q. C.
,
2014
, “
The Strong and Weak Forms of a General Imperfect Interface Model for Linear Coupled Multifield Phenomena
,”
Int. J. Eng. Sci.
,
85
, pp.
31
46
.10.1016/j.ijengsci.2014.07.007
632.
Javili
,
A.
,
Steinmann
,
P.
, and
Mosler
,
J.
,
2017
, “
Micro-to-Macro Transition Accounting for General Imperfect Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
274
317
.10.1016/j.cma.2016.12.025
633.
Javili
,
A.
,
Kaessmair
,
S.
, and
Steinmann
,
P.
,
2014
, “
General Imperfect Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
275
, pp.
76
97
.10.1016/j.cma.2014.02.022
634.
Kaessmair
,
S.
,
Javili
,
A.
, and
Steinmann
,
P.
,
2014
, “
Thermomechanics of Solids With General Imperfect Coherent Interfaces
,”
Archive Appl. Mech.
,
84
(
9–11
), pp.
1409
1426
.10.1007/s00419-014-0870-x
635.
Javili
,
A.
,
2018
, “
Variational Formulation of Generalized Interfaces for Finite Deformation Elasticity
,”
Math. Mech. Solids
,
23
(
9
), pp.
1303
1322
.10.1177/1081286517719938
636.
Saeb
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2019
, “
Designing Tunable Composites With General Interfaces
,”
Int. J. Solids Struct.
,
171
, pp.
181
188
.10.1016/j.ijsolstr.2019.04.006
637.
Saeb
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2018
, “
Bounds on Size-Dependent Behaviour of Composites
,”
Philos. Mag.
,
98
(
6
), pp.
437
463
.10.1080/14786435.2017.1408967
638.
Saeb
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2019
, “
On Effective Behavior of Microstructures Embedding General Interfaces With Damage
,”
Comput. Mech.
,
64
(
6
), pp.
1473
1494
.10.1007/s00466-019-01727-x
639.
Firooz
,
S.
, and
Javili
,
A.
,
2019
, “
Understanding the Role of General Interfaces in the Overall Behavior of Composites and Size Effects
,”
Comput. Mater. Sci.
,
162
, pp.
245
254
.10.1016/j.commatsci.2019.02.042
640.
Firooz
,
S.
,
2019
, “
Homogenization of Composites Embedding General Imperfect Interfaces
,” Master's thesis,
Bilkent University
, Ankara, Turkey.
641.
Shih
,
G. C.
, and
Ebert
,
L. J.
,
1987
, “
Theoretical Modelling of the Effect of the Interfacial Shear Strength on the Longitudinal Tensile Strength of Unidirectional Composites
,”
J. Compos. Mater.
,
21
(
3
), pp.
207
224
.10.1177/002199838702100302
642.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1993
, “
The Influence of Plasticity on Mixed Mode Interface Toughness
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
1119
1135
.10.1016/0022-5096(93)90057-M
643.
Y.
,
Wei
,
J. W.
, and
Hutchinson
,
1999
, “
Models of Interface Separation Accompanied by Plastic Dissipation at Multiple Scales
,”
Int. J. Fract.
,
95
(
1/4
), pp.
1
17
.10.1023/A:1018627712739
644.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2009
, “
A Unified Potential-Based Cohesive Model of Mixed-Mode Fracture
,”
J. Mech. Phys. Solids
,
57
(
6
), pp.
891
908
.10.1016/j.jmps.2008.10.003
645.
Chandra
,
N.
,
2002
, “
Evaluation of Interfacial Fracture Toughness Using Cohesive Zone Model
,”
Compos. Part A
,
33
(
10
), pp.
1433
1447
.10.1016/S1359-835X(02)00173-2
646.
Li
,
S.
,
Thouless
,
M. D.
,
Waas
,
A. M.
,
Schroeder
,
J. A.
, and
Zavattieri
,
P. D.
,
2005
, “
Use of mode-I Cohesive-Zone Models to Describe the Fracture of an Adhesively-Bonded Polymer-Matrix Composite
,”
Compos. Sci. Technol.
,
65
(
2
), pp.
281
293
.10.1016/j.compscitech.2004.07.009
647.
Sun
,
C. T.
, and
Jin
,
Z. H.
,
2006
, “
Modeling of Composite Fracture Using Cohesive Zone and Bridging Models
,”
Compos. Sci. Technol.
,
66
(
10
), pp.
1297
1302
.10.1016/j.compscitech.2005.10.013
648.
Park
,
K.
, and
Paulino
,
G. H.
,
2011
, “
Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces
,”
ASME Appl. Mech. Rev.
,
64
(
6
), p.
060802
.10.1115/1.4023110
649.
Klarbring
,
A.
,
1991
, “
Derivation of a Model of Adhesively Bonded Joints by the Asymptotic Expansion Method
,”
Int. J. Eng. Sci.
,
29
(
4
), pp.
493
512
.10.1016/0020-7225(91)90090-P
650.
Klarbring
,
A.
, and
Movchan
,
A. B.
,
1998
, “
Asymptotic Modelling of Adhesive Joints
,”
Mech. Mater.
,
28
(
1–4
), pp.
137
145
.10.1016/S0167-6636(97)00045-8
651.
Geymonat
,
G.
,
Krasucki
,
F.
, and
Lenci
,
S.
,
1999
, “
Mathematical Analysis of a Bonded Joint With a Soft Thin Adhesive
,”
Math. Mech. Solids
,
4
(
2
), pp.
201
225
.10.1177/108128659900400204
652.
Xu
,
C.
,
Siegmund
,
T.
, and
Ramani
,
K.
,
2003
, “
Rate-Dependent Crack Growth in Adhesives: I. Modeling Approach
,”
Int. J. Adhes. Adhes.
,
23
(
1
), pp.
9
13
.10.1016/S0143-7496(02)00062-3
653.
Zhang
,
L.
, and
Wang
,
J.
,
2009
, “
A Generalized Cohesive Zone Model of the Peel Test for Pressure-Sensitive Adhesives
,”
Int. J. Adhes. Adhes.
,
29
(
3
), pp.
217
224
.10.1016/j.ijadhadh.2008.05.002
654.
Alfano
,
M.
,
Furgiuele
,
F.
,
Leonardi
,
A.
,
Maletta
,
C.
, and
Paulino
,
G. H.
,
2009
, “
Mode I Fracture of Adhesive Joints Using Tailored Cohesive Zone Models
,”
Int. J. Fract.
,
157
(
1–2
), pp.
193
204
.10.1007/s10704-008-9293-4
655.
Mubashar
,
A.
,
Ashcroft
,
I. A.
,
Critchlow
,
G. W.
, and
Crocombe
,
A. D.
,
2011
, “
Strength Prediction of Adhesive Joints After Cyclic Moisture Conditioning Using a Cohesive Zone Model
,”
Eng. Fract. Mech.
,
78
(
16
), pp.
2746
2760
.10.1016/j.engfracmech.2011.07.010
656.
Campilho
,
R. D. S. G.
,
Banea
,
M. D.
,
Neto
,
J. A. B. P.
, and
Da Silva
,
L. F. M.
,
2013
, “
Modelling Adhesive Joints With Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer
,”
Int. J. Adhes. Adhes.
,
44
, pp.
48
56
.10.1016/j.ijadhadh.2013.02.006
657.
Espinosa
,
H. D.
,
Dwivedi
,
S.
, and
Lu
,
H. C.
,
2000
, “
Modeling Impact Induced Delamination of Woven Fiber Reinforced Composites With Contact/Cohesive Laws
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
), pp.
259
290
.10.1016/S0045-7825(99)00222-4
658.
Hu
,
N.
,
Zemba
,
Y.
,
Okabe
,
T.
,
Yan
,
C.
,
Fukunaga
,
H.
, and
Elmarakbi
,
A. M.
,
2008
, “
A New Cohesive Model for Simulating Delamination Propagation in Composite Laminates Under Transverse Loads
,”
Mech. Mater.
,
40
(
11
), pp.
920
935
.10.1016/j.mechmat.2008.05.003
659.
Aymerich
,
F.
,
Dore
,
F.
, and
Priolo
,
P.
,
2008
, “
Prediction of Impact-Induced Delamination in Cross-Ply Composite Laminates Using Cohesive Interface Elements
,”
Compos. Sci. Technol.
,
68
(
12
), pp.
2383
2390
.10.1016/j.compscitech.2007.06.015
660.
Liu
,
P. F.
, and
Islam
,
M. M.
,
2013
, “
A Nonlinear Cohesive Model for Mixed-Mode Delamination of Composite Laminates
,”
Compos. Struct.
,
106
, pp.
47
56
.10.1016/j.compstruct.2013.05.049
661.
Parrinello
,
F.
,
Marannano
,
G.
, and
Borino
,
G.
,
2016
, “
A Thermodynamically Consistent Cohesive-Frictional Interface Model for Mixed Mode Delamination
,”
Eng. Fract. Mech.
,
153
, pp.
61
79
.10.1016/j.engfracmech.2015.12.001
662.
Reinoso
,
J.
,
Paggi
,
M.
, and
Blázquez
,
A.
,
2017
, “
A Nonlinear Finite Thickness Cohesive Interface Element for Modeling Delamination in Fibre-Reinforced Composite Laminates
,”
Compos. Part B
,
109
, pp.
116
128
.10.1016/j.compositesb.2016.10.042
663.
England
,
A. H.
,
1966
, “
An Arc Around a Circular Elastic Inclusion
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
637
640
.10.1115/1.3625132
664.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1996
, “
Effect of Strain-Dependent Cohesive Zone Model on Predictions of Crack Growth Resistance
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
3297
3308
.10.1016/0020-7683(95)00261-8
665.
Yang
,
B.
,
Mall
,
S.
, and
Ravi-Chandar
,
K.
,
2001
, “
A Cohesive Zone Model for Fatigue Crack Growth in Quasibrittle Materials
,”
Int. J. Solids Struct.
,
38
(
22–23
), pp.
3927
3944
.10.1016/S0020-7683(00)00253-5
666.
Roe
,
K. L.
, and
Siegmund
,
T.
,
2003
, “
An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation
,”
Eng. Fract. Mech.
,
70
(
2
), pp.
209
232
.10.1016/S0013-7944(02)00034-6
667.
Bouvard
,
J. L.
,
Chaboche
,
J. L.
,
Feyel
,
F.
, and
Gallerneau
,
F.
,
2009
, “
A Cohesive Zone Model for Fatigue and Creep-Fatigue Crack Growth in Single Crystal Superalloys
,”
Int. J. Fatigue
,
31
(
5
), pp.
868
879
.10.1016/j.ijfatigue.2008.11.002
668.
Kawashita
,
L. F.
, and
Hallett
,
S. R.
,
2012
, “
A Crack Tip Tracking Algorithm for Cohesive Interface Element Analysis of Fatigue Delamination Propagation in Composite Materials
,”
Int. J. Solids Struct.
,
49
(
21
), pp.
2898
2913
.10.1016/j.ijsolstr.2012.03.034
669.
Ingraffea
,
A. R.
,
Gerstk
,
W. H.
,
Gergely
,
P.
, and
Saouma
,
V.
,
1984
, “
Fracture Mechanics of Bond in Reinforced Concrete
,”
J. Struct. Eng.
,
110
(
4
), pp.
871
890
.10.1061/(ASCE)0733-9445(1984)110:4(871)
670.
Huang
,
N. C.
, and
Korobeinik
,
M. Y.
,
2001
, “
Interfacial Debonding of a Spherical Inclusion Embedded in an Infinite Medium Under Remote Stress
,”
Int. J. Fract.
,
107
(
1
), pp.
11
30
.10.1023/A:1026500321333
671.
Fan
,
H.
, and
Wang
,
G. F.
,
2003
, “
Screw Dislocation Interacting With Imperfect Interface
,”
Mech. Mater.
,
35
(
10
), pp.
943
953
.10.1016/S0167-6636(02)00309-5
672.
Mori
,
T.
, and
Mura
,
T.
,
1987
, “
Blocking Effect of Inclusions on Grain Boundary Sliding; Spherical Grain Approximation
,”
J. Mech. Phys. Solids
,
35
(
5
), pp.
631
641
.10.1016/0022-5096(87)90020-2
673.
Pezzotta
,
M.
,
Zhang
,
Z. L.
,
Jensen
,
M.
,
Grande
,
T.
, and
Einarsrud
,
M. A.
,
2008
, “
Cohesive Zone Modeling of Grain Boundary Microcracking Induced by Thermal Anisotropy in Titanium Diboride Ceramics
,”
Comput. Mater. Sci.
,
43
(
3
), pp.
440
449
.10.1016/j.commatsci.2007.12.011
674.
Wulfinghoff
,
S.
,
2017
, “
A Generalized Cohesive Zone Model and a Grain Boundary Yield Criterion for Gradient Plasticity Derived From Surface- and Interface-Related Arguments
,”
Int. J. Plasticity
,
92
, pp.
57
78
.10.1016/j.ijplas.2017.02.006
675.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1998
, “
Interface Strength, Work of Adhesion and Plasticity in the Peel Test
,”
Recent Advances in Fracture Mechanics
,
Springer
, Dordrecht, The Netherlands, pp.
315
333
.
676.
Hashin
,
Z.
,
1972
, “
Theory of Fiber Reinforced Materials
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA CR-1974.
677.
Takahashi
,
K.
,
Ikeda
,
M.
,
Harakawa
,
K.
,
Tanaka
,
K.
, and
Sakai
,
T.
,
1978
, “
Analysis of the Effect of Interfacial Slippage on the Elastic Moduli of a Particle-Filled Polymer
,”
J. Polym. Sci.
,
16
(
3
), pp.
415
425
.10.1002/pol.1978.180160305
678.
Asaro
,
R. J.
,
1975
, “
Somigliana Dislocations and Internal Stresses; With Application to Second Phase Hardening
,”
Int. J. Eng. Sci.
,
13
(
3
), pp.
271
286
.10.1016/0020-7225(75)90035-X
679.
He
,
L. H.
,
2001
, “
Transient Stress Relaxation Around Spherical Inclusions by Interfacial Diffusion and Sliding
,”
Acta Mech.
,
149
(
1–4
), pp.
115
133
.10.1007/BF01261667
680.
Toya
,
M.
,
1974
, “
A Crack Along the Interface of a Circular Inclusion Embedded in an Infinite Solid
,”
J. Mech. Phys. Solids
,
22
(
5
), pp.
325
348
.10.1016/0022-5096(74)90002-7
681.
Ju
,
J. W.
,
1991
, “
A Micromechanical Damage Model for Uniaxially Reinforced Composites Weakened by Interfacial Arc Microcracks
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
923
930
.10.1115/1.2897709
682.
Javili
,
A.
,
2019
, “
A Note on Traction Continuity Across an Interface in a Geometrically Non-Linear Framework
,”
Math. Mech. Solids
,
24
(
8
), pp.
2478
2496
.10.1177/1081286518766980
683.
Moeckel
,
G. P.
,
1975
, “
Thermodynamics of an Interface
,”
Arch. Rational Mech. Anal.
,
57
(
3
), pp.
255
280
.10.1007/BF00280158
684.
Dell'isola
,
F.
, and
Romano
,
A.
,
1987
, “
On the Derivation of Thermodynamical Balance Equations for Continuous Systems With a Nanomaterial Interface
,”
Int. J. Eng. Sci.
,
25
(
11–12
), pp.
1459
1468
.10.1016/0020-7225(87)90023-1
685.
Leo
,
P. H.
, and
Sekerka
,
R. F.
,
1989
, “
The Effect of Surface Stress on Crystal-Melt and Crystal-Crystal Equilibrium
,”
Acta Metall.
,
37
(
12
), pp.
3119
3138
.10.1016/0001-6160(89)90184-3
686.
Weissmüller
,
J.
, and
Cahn
,
J. W.
,
1997
, “
Mean Stresses in Microstructures Due to Interface Stresses: A Generalization of a Capillary Equation for Solids
,”
Acta Mater.
,
45
(
5
), pp.
1899
1906
.10.1016/S1359-6454(96)00314-X
687.
Exadaktylos
,
G. E.
, and
Vardoulakis
,
I.
,
1998
, “
Surface Instability in Gradient Elasticity With Surface Energy
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2251
2281
.10.1016/S0020-7683(97)89945-3
688.
Exadaktylos
,
G.
,
1998
, “
Gradient Elasticity With Surface Energy: Mode-I Crack Problem
,”
Int. J. Solids Struct.
,
35
(
5–6
), pp.
421
456
.10.1016/S0020-7683(97)00036-X
689.
Forest
,
S.
, and
Sievert
,
R.
,
2003
, “
Elastoviscoplastic Constitutive Frameworks for Generalized Continua
,”
Acta Mech.
,
160
(
1–2
), pp.
71
111
.10.1007/s00707-002-0975-0
690.
Müller
,
P.
, and
Saúl
,
A.
,
2004
, “
Elastic Effects on Surface Physics
,”
Surf. Sci. Rep.
,
54
, pp.
157
258
.10.1016/j.surfrep.2004.05.001
691.
Wang
,
Z. Q.
,
Zhao
,
Y. P.
, and
Huang
,
Z. P.
,
2010
, “
The Effects of Surface Tension on the Elastic Properties of Nano Structures
,”
Int. J. Eng. Sci.
,
48
(
2
), pp.
140
150
.10.1016/j.ijengsci.2009.07.007
692.
Šilhavý
,
M.
,
2011
, “
Equilibrium of Phases With Interfacial Energy: A Variational Approach
,”
J. Elasticity
,
105
(
1–2
), pp.
271
303
.10.1007/s10659-011-9341-6
693.
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2011
, “
On the Shell Theory on the Nanoscale With Surface Stresses
,”
Int. J. Eng. Sci.
,
49
(
12
), pp.
1294
1301
.10.1016/j.ijengsci.2011.03.011
694.
Javili
,
A.
,
Mcbride
,
A.
,
Mergheim
,
J.
,
Steinmann
,
P.
, and
Schmidt
,
U.
,
2013
, “
Micro-to-Macro Transitions for Continua With Surface Structure at the Microscale
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2561
2572
.10.1016/j.ijsolstr.2013.03.022
695.
Davydov
,
D.
,
Javili
,
A.
, and
Steinmann
,
P.
,
2013
, “
On Molecular Statics and Surface-Enhanced Continuum Modeling of Nano-Structures
,”
Comput. Mater. Sci.
,
69
, pp.
510
519
.10.1016/j.commatsci.2012.11.053
696.
Mi
,
C.
, and
Kouris
,
D.
,
2013
, “
Stress Concentration Around a Nanovoid Near the Surface of an Elastic Half-Space
,”
Int. J. Solids Struct.
,
50
(
18
), pp.
2737
2748
.10.1016/j.ijsolstr.2013.04.029
697.
Zhang
,
W. X.
, and
Wang
,
T. J.
,
2007
, “
Effect of Surface Energy on the Yield Strength of Nanoporous Materials
,”
Appl. Phys. Lett.
,
90
(
6
), p.
063104
.10.1063/1.2459115
698.
Duan
,
H. L.
,
Karihaloo
,
B. L.
,
Wang
,
J.
, and
Yi
,
X.
,
2006
, “
Effective Conductivities of Heterogeneous Media Containing Multiple Inclusions With Various Spatial Distributions
,”
Phys. Rev. B
,
73
(
17
), p.
174203
.10.1103/PhysRevB.73.174203
699.
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2002
, “
A Galerkin Boundary Integral Method for Multiple Circular Elastic Inclusions With Homogeneously Imperfect Interfaces
,”
Int. J. Solids Struct.
,
39
(
18
), pp.
4723
4746
.10.1016/S0020-7683(02)00374-8
700.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
,
2007
, “
Finite Element Modelling of Nanoscale Inhomogeneities in an Elastic Matrix
,”
Comput. Mater. Sci.
,
41
(
1
), pp.
44
53
.10.1016/j.commatsci.2007.02.013
701.
Nitsche
,
J.
,
1971
, “
Über Ein Variationsprinzip Zur Lösung Von Dirichlet-Problemen Bei Verwendung Von Teilräumen, Die Keinen Randbedingungen Unterworfen Sind
,”
Abhandlungen Aus Dem Mathematischen Seminar Der Universität Hamburg
,
36
(
1
), pp.
9
15
.10.1007/BF02995904
702.
Mosler
,
J.
, and
Scheider
,
I.
,
2011
, “
A Thermodynamically and Variationally Consistent Class of Damage-Type Cohesive Models
,”
J. Mech. Phys. Solids
,
59
(
8
), pp.
1647
1668
.10.1016/j.jmps.2011.04.012
703.
Saeb
,
S.
,
Firooz
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2021
, “
Generalized Interfaces Via Weighted Averages for Application to Graded Interphases at Large Deformations
,”
J. Mech. Phys. Solids
,
149
, p.
104234
.10.1016/j.jmps.2020.104234
704.
Spring
,
D. W.
, and
Paulino
,
G. H.
,
2015
, “
Computational Homogenization of the Debonding of Particle Reinforced Composites: The Role of Interphases in Interfaces
,”
Comput. Mater. Sci.
,
109
, pp.
209
224
.10.1016/j.commatsci.2015.07.012
705.
Hashemi
,
R.
,
Spring
,
D. W.
, and
Paulino
,
G. H.
,
2015
, “
On Small Deformation Interfacial Debonding in Composite Materials Containing Multi-Coated Particles
,”
J. Compos. Mater.
,
49
(
27
), pp.
3439
3455
.10.1177/0021998314565431
706.
Gitman
,
I. M.
,
Askes
,
H.
, and
Sluys
,
L. J.
,
2007
, “
Representative Volume: Existence and Size Determination
,”
Eng. Fract. Mech.
,
74
(
16
), pp.
2518
2534
.10.1016/j.engfracmech.2006.12.021
707.
Charalambakis
,
N.
,
Chatzigeorgiou
,
G.
,
Chemisky
,
Y.
, and
Meraghni
,
F.
,
2018
, “
Mathematical Homogenization of Inelastic Dissipative Materials: A Survey and Recent Progress
,”
Contin. Mech. Thermodyn.
,
30
(
1
), pp.
1
51
.10.1007/s00161-017-0587-5
708.
Pindera
,
M. J.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Bansal
,
Y.
,
2009
, “
Micromechanics of Spatially Uniform Heterogeneous Media: A Critical Review and Emerging Approaches
,”
Compos. Part B
,
40
(
5
), pp.
349
378
.10.1016/j.compositesb.2009.03.007
709.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
,
Matouš
,
K.
, and
Yvonnet
,
J.
,
2017
,
Homogenization Methods and Multiscale Modeling: Nonlinear Problems
,
Encyclopedia of Computational Mechanics
2nd ed., Wiley Online Library, pp.
1
34
.10.1002/9781119176817.ecm2107
710.
Rajagopal
,
K. R.
,
2007
, “
The Elasticity of Elasticity
,”
Z. Angew. Math. Phys.
,
58
(
2
), pp.
309
317
.10.1007/s00033-006-6084-5
711.
Yvonnet
,
J.
,
Mitrushchenkov
,
A.
,
Chambaud
,
G.
, and
He
,
Q. C.
,
2011
, “
Finite Element Model of Ionic Nanowires With Size-Dependent Mechanical Properties Determined by ab Initio Calculations
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
5–8
), pp.
614
625
.10.1016/j.cma.2010.09.007
712.
Park
,
H. S.
,
Klein
,
P. A.
, and
Wagner
,
G. J.
,
2006
, “
A Surface Cauchy-Born Model for Nanoscale Materials
,”
Int. J. Numer. Methods Eng.
,
68
(
10
), pp.
1072
1095
.10.1002/nme.1754
713.
Park
,
H. S.
, and
Klein
,
P. A.
,
2007
, “
Surface Cauchy-Born Analysis of Surface Stress Effects on Metallic Nanowires
,”
Phys. Rev. B
,
75
(
8
), p.
085408
.10.1103/PhysRevB.75.085408
You do not currently have access to this content.