Abstract

This review article examines the last decade of studies investigating solid, molten, and liquid particle interactions with one another and with walls in heterogeneous multiphase flows. Such flows are experienced in state-of-the-art and future-concept gas turbine engines, where particles from the environment, including volcanic ash, runway debris, dust clouds, and sand, are transported by a fluid carrier phase and undergo high-speed collisions with high-temperature engine components. Sand or volcanic ash ingestion in gas turbine engines is known to lead to power-loss and/or complete engine failure. The particle-wall interactions that occur in high-temperature sections of an engine involve physics and intrinsic conditions that are sufficiently complex that they result in highly disparate and transient outcomes. These particles, which often times are made up of glassy constituents called calcium–magnesium–alumino–silicate (CMAS), are susceptible to phase change at combustor temperatures (1650°), and can deposit on surfaces, undergo elastic and plastic deformation, rebound, and undergo breakup. Considerable research has been put into developing empirical and physics-based models and numerical strategies to address phase interactions. This article provides a detailed account of the conceptual foundation of physics-based models employed to understand the behavior of particle-wall interaction, the evolution of numerical methods utilized for modeling these interactions, and challenges associated with improving models of particle-particle and particle-wall interactions needed to better characterize multiphase flows. It also includes description of a testbed for acquiring canonical data for model validation studies.

References

1.
Guffanti
,
M.
,
Casadevall
,
T. J.
, and
Budding
,
K.
,
2010
, “
Encounters of Aircraft With Volcanic Ash Clouds; a Compilation of Known Incidents, 1953-2009
,” Tech. rep., U.S. Geological Survey Data Series 545, ver. 1.0.
2.
Seck
,
H. H.
,
2016
, “
Billows of Dust, a Sudden ‘Pop’ and an Osprey Falls From the Sky
,” accessed May 24, 2021, https://www.military.com/daily-news/2016/01/29/billows-of-dust-a-sudden-pop-and-an-osprey-falls-from-the-sky.html
3.
Bojdo
,
N.
, and
Filippone
,
A.
,
2019
, “
A Simple Model to Assess the Role of Dust Composition and Size on Deposition in Rotorcraft Engines
,”
Aerospace
,
6
(
4
), p.
44
.10.3390/aerospace6040044
4.
van Donkelaar
,
A.
,
Martin
,
R.
,
Brauer
,
M.
,
Kahn
,
R.
,
Levy
,
R.
,
Verduzco
,
C.
, and
Villeneuve
,
P.
,
2010
, “
Global Estimates of Ambient Fine Particulate Matter Concentrations From Satellite-Based Aerosol Optical Depth: Development and Application
,”
Environ. Health Perspectives
,
118
(
6
), pp.
847
855
.10.1289/ehp.0901623
5.
Hammer
,
M. S.
,
van Donkelaar
,
A.
,
Li
,
C.
,
Lyapustin
,
A.
,
Sayer
,
A. M.
,
Hsu
,
N. C.
,
Levy
,
R. C.
,
Garay
,
M. J.
,
Kalashnikova
,
O. V.
,
Kahn
,
R. A.
,
Brauer
,
M.
,
Apte
,
J. S.
,
Henze
,
D. K.
,
Zhang
,
L.
,
Zhang
,
Q.
,
Ford
,
B.
,
Pierce
,
J. R.
, and
Martin
,
R. V.
,
2020
, “
Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018)
,”
Environ. Sci. Technol.
,
54
(
13
), pp.
7879
7890
.10.1021/acs.est.0c01764
6.
Walock
,
M.
,
Barnett
,
B.
,
Ghoshal
,
A.
,
Murugan
,
M.
,
Swab
,
J.
,
Hopkins
,
M.
,
Gazonas
,
G.
,
Rowe
,
C.
, and
Kerner
,
K.
,
2017
, “
Micro-Scale Sand Particles Within the Hot Section of a Gas Turbine Engine,”
Mechanical Properties and Performance of Engineering Ceramics and Composites XI, J. Salem, D. Singh, M. Fukushima, and A. Gyekenyesi, eds., John Wiley & Sons, Hoboken, NJ, Vol. 37, pp.
159
170
.
7.
Neito
,
A.
,
Walock
,
M.
,
Ghoshal
,
A.
,
Zhu
,
D.
,
Gamble
,
W.
,
Barnett
,
B.
,
Murugan
,
M.
,
Pepi
,
M.
,
Rowe
,
C.
, and
Pegg
,
R.
,
2018
, “
Layered, Composite, and Doped Thermal Barrier Coatings Exposed to Sand Laden Flows Within a Gas Turbine Engine: Microstructural Evolution, Mechanical Properties, and CMAS Deposition
,”
Surf. Coat. Technol.
,
349
, pp.
1107
1116
.
8.
Ghoshal
,
A.
,
Murugan
,
M.
,
Walock
,
M. J.
,
Nieto
,
A.
,
Barnett
,
B. D.
,
Pepi
,
M. S.
,
Swab
,
J. J.
,
Zhu
,
D.
,
Kerner
,
K. A.
,
Rowe
,
C. R.
,
Shiao
,
C.-Y. (M. ).
,
Hopkins
,
D. A.
, and
Gazonas
,
G. A.
,
2018
, “
Molten Particulate Impact on Tailored Thermal Barrier Coatings for Gas Turbine Engine
,”
J. Eng. Gas Turbines Power
,
140
(
2
), p. 022601.10.1115/1.4037599
9.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M.
,
Barnett
,
B.
,
Pepi
,
M.
, and
Kerner
,
K.
,
2017
, “
Sand Particle Induced Deterioration of Thermal Barrier Coatings on Gas Turbine Blades
,”
Adv. Aircr. Spacecr. Sci.
,
4
(
1
), pp.
37
52
.10.12989/aas.2017.4.1.037
10.
Fehrenbacher
,
L.
,
Kroliczek
,
D.
,
Kutsch
,
J.
,
Vesnovsky
,
I.
,
Fehrenbacher
,
E.
,
Ghoshal
,
A.
,
Walock
,
M.
, and
Nieto
,
A.
,
2019
, “
Advanced Environmental Barrier Coatings for SiC CMCs
,”
Adv. Ceram. Environ., Funct., Struct., Energy Appl. II
,
26
, pp.
83
93
.
11.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
12.
Guha
,
A.
,
2008
, “
Transport and Deposition of Particles in Turbulent and Laminar Flow
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
311
341
.10.1146/annurev.fluid.40.111406.102220
13.
Hamed
,
A.
,
Tabakoff
,
W. C.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propuls. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
14.
Zhang
,
F.
,
Liu
,
Z.
,
Liu
,
Z.
, and
Diao
,
W.
,
2020
, “
Experimental Study of Sand Particle Deposition on a Film-Cooled Turbine Blade at Different Gas Temperatures and Angles of Attack
,”
Energies
,
13
(
4
), p.
811
.10.3390/en13040811
15.
Federal Aviation Administration
,
2016
,
Airplane Flying Handbook (FAA-H-8083-3B)
,
Skyhorse Publishing Inc
, New York.
16.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M.
,
Nieto
,
A.
,
Bravo
,
L.
,
Barnett
,
B.
,
Pepi
,
M.
,
Swab
,
J.
,
Pegg
,
R. T.
,
Rowe
,
C.
,
Zhu
,
D.
, and
Kerner
,
K.
,
2017
, “
Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades
,” ASME Paper No. GT2017-64051.10.1115/GT2017-64051
17.
Dunn
,
M. G.
,
Padova
,
C.
, and
Adams
,
R.
,
1987
, “
Operation of Gas Turbine Engines in Dust-Laden Environments
,” ASME. J. Turbomach. 134(5), p. 051001.
18.
Tabakoff
,
W.
,
1987
, “
Compressor Erosion and Performance Deterioration
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
297
306
.10.1115/1.3242664
19.
Chang
,
W.-R.
, and
Ling
,
F. F.
,
1992
, “
Normal Impact Model of Rough Surfaces
,”
ASME J. Tribol.
,
114
(
3
), pp.
439
447
.10.1115/1.2920903
20.
Wadley
,
H. N. G.
,
2013
, “
High Temperature Coatings
,” accessed May 26, 2021, https://www2.virginia.edu/ms/research/wadley/high-temp.html
21.
Dahneke
,
B.
,
1975
, “
Further Measurements of the Bouncing of Small Latex Spheres
,”
J. Colloid Interface Sci.
,
51
(
1
), pp.
58
65
.10.1016/0021-9797(75)90083-1
22.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1996
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
724
731
.10.1115/1.2816987
23.
Linden
,
D.
,
2018
, “
Know Your Turbomachinery's Operating Environment!
,” Houston, TX, accessed May 26, 2021, https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/175022/10_Linden.pdf?sequence=1&isAllowed=y
24.
Borom
,
M. P.
,
Johnson
,
C. A.
, and
Peluso
,
L. A.
,
1996
, “
Role of Environment Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
86–87
, pp.
116
126
.10.1016/S0257-8972(96)02994-5
25.
Jackson
,
R. W.
,
Zaleski
,
E. M.
,
Poerschke
,
D. L.
,
Hazel
,
B. T.
,
Begley
,
M. R.
, and
Levi
,
C. G.
,
2015
, “
Interaction of Molten Silicates With Thermal Barrier Coatings Under Temperature Gradients
,”
Acta Mater.
,
89
, pp.
396
407
.10.1016/j.actamat.2015.01.038
26.
Krämer
,
S.
,
Yang
,
J.
,
Levi
,
C. G.
, and
Johnson
,
C. A.
,
2006
, “
Thermochemical Interaction of Thermal Barrier Coatings With Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits
,”
J Am. Ceram. Soc.
,
89
(
10
), pp.
3167
3175
.10.1111/j.1551-2916.2006.01209.x
27.
Mercer
,
C.
,
Faulhaber
,
S.
,
Evans
,
A. G.
, and
Darolia
,
R.
,
2005
, “
A Delamination Mechanism for Thermal Barrier Coatings Subject to Calcium–Magnesium–Alumino-Silicate (CMAS) Infiltration
,”
Acta Mater.
,
53
(
4
), pp.
1029
1039
.10.1016/j.actamat.2004.11.028
28.
Evans
,
A.
,
Mumm
,
D.
,
Hutchinson
,
J.
,
Meier
,
G.
, and
Pettit
,
F.
,
2001
, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
(
5
), pp.
505
553
.10.1016/S0079-6425(00)00020-7
29.
Kharaz
,
A. H.
,
Gorham
,
D. A.
, and
Salman
,
A. D.
,
1999
, “
Accurate Measurement of Particle Impact Parameters
,”
Meas. Sci. Technol.
,
10
(
1
), pp.
31
35
.10.1088/0957-0233/10/1/009
30.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,” ASME J. Eng. Gas Turbines Power,115(3), pp.
641
651
.
31.
Schiller
,
L.
, and
Naumann
,
Z.
,
1933
, “
Über Die Grundlegende Berechnung Bei Der Schwerkraftaufbereitung
,”
Z. Des Vereins Deutscher Ingenieure
,
77
, pp.
318
320
.
32.
McKinley
,
G. H.
, and
Renardy
,
M.
,
2011
, “
Wolfgang Von Ohnesorge
,”
Phys. Fluids
,
23
(
12
), p.
127101
.10.1063/1.3663616
33.
Ruzicka
,
M.
,
2008
, “
On Dimensionless Numbers
,”
Chem. Eng. Res. Des.
,
86
(
8
), pp.
835
868
.10.1016/j.cherd.2008.03.007
34.
Wierzba
,
A.
,
1990
, “
Deformation and Breakup of Liquid Drops in at Nearly Critical Weber Numbers
,”
Exp. Fluids
,
9
(
1–2
), pp.
59
64
.10.1007/BF00575336
35.
Hannebique
,
G.
,
Sierra
,
P.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2013
, “
Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner
,”
Flow, Turbulence Combustion
,
90
(
2
), pp.
449
469
.10.1007/s10494-012-9416-x
36.
Jones
,
W.
,
Marquis
,
A.
, and
Vogiatzaki
,
K.
,
2014
, “
Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor
,”
Combust. Flame
,
161
(
1
), pp.
222
239
.10.1016/j.combustflame.2013.07.016
37.
Mattingly
,
J. D.
,
1996
,
Elements of Gas Turbine Propulsion
,
1
,
McGraw-Hill
,
New York
.
38.
Jain
,
N.
,
Bravo
,
L.
,
Bose
,
S.
,
Kim
,
D.
,
Murugan
,
M.
,
Ghoshal
,
A.
, and
Flatau
,
A.
,
2018
, “
Turbulent Multiphase Flow and Particle Deposition of Sand Ingestion for High-Temperature Turbine Blades
,” Studying Turbulence Usinng Numerical Simulation Dabases - XVII,
Proceedings of the 2018 Center for Turbulence Research Summer Program
, Stanford University Press, Palo Alto, CA.
39.
Li
,
B.
,
Chen
,
Z.
,
Zheng
,
H.
,
Li
,
G.
,
Li
,
H.
, and
Peng
,
P.
,
2019
, “
Wetting Mechanism of CMAS Melt on Ysz Surface at High Temperature: First-Principles Calculation
,”
Appl. Surf. Sci.
,
483
, pp.
811
818
.10.1016/j.apsusc.2019.04.009
40.
Cowherd
,
C.
,
2007
, “
Sandblaster 2 Support of See-Through Technologies for Particulate Brownout
,” Tech. Rep. 110565.1.005, Midwest Research Institute, Kansas City, MO, accessed May 26, 2021, https://apps.dtic.mil/sti/pdfs/ADA504965.pdf
41.
Sommerfeld
,
M.
,
2017
, “
Numerical Methods for Dispersed Multiphase Flows
,”
Particles in Flows
, Advances in Mathematical Fluid Mechanics,
T.
Bodnár
,
G.
Galdi
, and
Š.
Nečasová
,
Birkhäuser
, Cham, pp.
255
326
, Vol.
6
.
42.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.10.1007/BF00936835
43.
Prosperetti
,
A.
, and
Tryggvason
,
G.
,
2009
,
Computational Methods for Multiphase Flow
,
Cambridge University Press
, Cambridge, UK.
44.
Loth
,
E.
,
2000
, “
Numerical Approaches for Motion of Dispersed Particles, Droplets and Bubbles
,”
Prog. Energy Combustion Sci.
,
26
(
3
), pp.
161
223
.10.1016/S0360-1285(99)00013-1
45.
Kajishima
,
T.
,
2004
, “
Influence of Particle Rotation on the Interaction Between Particle Clusters and Particle-Induced Turbulence
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
721
728
.10.1016/j.ijheatfluidflow.2004.05.007
46.
Gore
,
R. A.
, and
Crowe
,
C. T.
,
1989
, “
Effect of Particle Size on Modulating Turbulent Intensity
,”
Int. J. Multiphase Flow
,
15
(
2
), pp.
279
285
.10.1016/0301-9322(89)90076-1
47.
Kulick
,
J. D.
,
Fessler
,
J. R.
, and
Eaton
,
J. K.
,
1994
, “
Particle Response and Turbulence Modification in Fully Developed Channel Flow
,”
J. Fluid Mech.
,
277
, pp.
109
134
.10.1017/S0022112094002703
48.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1990
, “
Particle Response and Turbulence Modification in Isotropic Turbulence
,”
Phys. Fluids A
,
2
(
7
), pp.
1191
1203
.10.1063/1.857620
49.
Reeks
,
M. W.
,
1983
, “
The Transport of Discrete Particles in Inhomogeneous Turbulence
,”
J. Aerosol Sci.
,
14
(
6
), pp.
729
739
.10.1016/0021-8502(83)90055-1
50.
Marchioli
,
C.
, and
Soldati
,
A.
,
2002
, “
Mechanisms for Particle Transfer and Segregation in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
468
, pp.
283
315
.10.1017/S0022112002001738
51.
Marchioli
,
C.
,
Giusti
,
A.
,
Salvetti
,
M. V.
, and
Soldati
,
A.
,
2003
, “
Direct Numerical Simulation of Particle Wall Transfer and Deposition in Upward Turbulent Pipe Flow
,”
Int. J. Multiphase Flow
,
29
(
6
), pp.
1017
1038
.10.1016/S0301-9322(03)00036-3
52.
Fong
,
K.
,
Amili
,
O.
, and
Coletti
,
F.
,
2019
, “
Velocity and Spatial Distribution of Inertial Particles in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
872
, pp.
367
406
.10.1017/jfm.2019.355
53.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
54.
Tenneti
,
S.
, and
Subramaniam
,
S.
,
2014
, “
Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
199
230
.10.1146/annurev-fluid-010313-141344
55.
Bagchi
,
P.
, and
Balachandar
,
S.
,
2003
, “
Effect of Turbulence on the Drag and Lift of a Particle
,”
Phys. Fluids
,
15
(
11
), pp.
3496
3513
.10.1063/1.1616031
56.
Burton
,
T. M.
, and
Eaton
,
J. K.
,
2005
, “
Fully Resolved Simulations of Particle-Turbulence Interaction
,”
J. Fluid Mech.
,
545
(
1
), pp.
67
111
.10.1017/S0022112005006889
57.
Vreman
,
A. W.
,
2016
, “
Particle-Resolved Direct Numerical Simulation of Homogeneous Isotropic Turbulence Modified by Small Fixed Spheres
,”
J. Fluid Mech.
,
796
, pp.
40
85
.10.1017/jfm.2016.228
58.
Koblitz
,
A. R.
,
Lovett
,
S.
,
Nikiforakis
,
N.
, and
Henshaw
,
W. D.
,
2017
, “
Direct Numerical Simulation of Particulate Flows With an Overset Grid Method
,”
J. Comput. Phys.
,
343
, pp.
414
431
.10.1016/j.jcp.2017.04.058
59.
Glowinski
,
R.
,
Pan
,
T. W.
,
Hesla
,
T. I.
,
Joseph
,
D. D.
, and
Périaux
,
J.
,
2001
, “
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
363
426
.10.1006/jcph.2000.6542
60.
Patankar
,
N. A.
,
Singh
,
P.
,
Joseph
,
D. D.
,
Glowinski
,
R.
, and
Pan
,
T. W.
,
2000
, “
A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
26
(
9
), pp.
1509
1524
.10.1016/S0301-9322(99)00100-7
61.
Shao
,
X.
,
Wu
,
T.
, and
Yu
,
Z.
,
2012
, “
Fully Resolved Numerical Simulation of Particle-Laden Turbulent Flow in a Horizontal Channel at a Low Reynolds Number
,”
J. Fluid Mech.
,
693
, pp.
319
344
.10.1017/jfm.2011.533
62.
Diaz-Goano
,
C.
,
Minev
,
P. D.
, and
Nandakumar
,
K.
,
2003
, “
A Fictitious Domain/Finite Element Method for Particulate Flows
,”
J. Comput. Phys.
,
192
(
1
), pp.
105
123
.10.1016/S0021-9991(03)00349-8
63.
Yu
,
Z.
,
Lin
,
Z.
,
Shao
,
X.
, and
Wang
,
L. P.
,
2016
, “
A Parallel Fictitious Domain Method for the Interface-Resolved Simulation of Particle-Laden Flows and Its Application to the Turbulent Channel Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
160
170
.10.1080/19942060.2015.1092268
64.
Kajishima
,
T.
, and
Takiguchi
,
S.
,
2002
, “
Interaction Between Particle Clusters and Particle-Induced Turbulence
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
639
646
.10.1016/S0142-727X(02)00159-5
65.
Haeri
,
S.
, and
Shrimpton
,
J. S.
,
2012
, “
On the Application of Immersed Boundary, Fictitious Domain and Body-Conformal Mesh Methods to Many Particle Multiphase Flows
,”
Int. J. Multiphase Flow
,
40
, pp.
38
55
.10.1016/j.ijmultiphaseflow.2011.12.002
66.
Uhlmann
,
M.
,
2008
, “
Interface-Resolved Direct Numerical Simulation of Vertical Particulate Channel Flow in the Turbulent Regime
,”
Phys. Fluids
,
20
(
5
), p.
053305
.10.1063/1.2912459
67.
Lucci
,
F.
,
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2010
, “
Modulation of Isotropic Turbulence by Particles of Taylor Length-Scale Size
,”
J. Fluid Mech.
,
650
, pp.
5
55
.10.1017/S0022112009994022
68.
Picano
,
F.
,
Breugem
,
W. P.
, and
Brandt
,
L.
,
2015
, “
Turbulent Channel Flow of Dense Suspensions of Neutrally Buoyant Spheres
,”
J. Fluid Mech.
,
764
, pp.
463
487
.10.1017/jfm.2014.704
69.
Mehrabadi
,
M.
,
Tenneti
,
S.
,
Garg
,
R.
, and
Subramaniam
,
S.
,
2015
, “
Pseudo-Turbulent Gas-Phase Velocity Fluctuations in Homogeneous Gas-Solid Flow: Fixed Particle Assemblies and Freely Evolving Suspensions
,”
J. Fluid Mech.
,
770
, pp.
210
246
.10.1017/jfm.2015.146
70.
Tschisgale
,
S.
,
Kempe
,
T.
, and
Fröhlich
,
J.
,
2017
, “
A Non-Iterative Immersed Boundary Method for Spherical Particles of Arbitrary Density Ratio
,”
J. Comput. Phys.
,
339
, pp.
432
452
.10.1016/j.jcp.2017.03.026
71.
Azis
,
M. H. A.
,
Evrard
,
F.
, and
van Wachem
,
B.
,
2019
, “
An Immersed Boundary Method for Flows With Dense Particle Suspensions
,”
Acta Mech.
,
230
(
2
), pp.
485
515
.10.1007/s00707-018-2296-y
72.
Kajishima
,
T.
,
2019
, “
Immersed Boundary/Solid Method for the Numerical Simulation of Particle-Laden Flows
,”
Fluid Dyn. Res.
,
51
(
5
), p.
051401
.10.1088/1873-7005/ab27e7
73.
Goza
,
A.
,
Liska
,
S.
,
Morley
,
B.
, and
Colonius
,
T.
,
2016
, “
Accurate Computation of Surface Stresses and Forces With Immersed Boundary Methods
,”
Phys. Comput. Fluids
,
321
, pp.
860
873
.
74.
Geneva
,
N.
,
Peng
,
C.
,
Li
,
X.
, and
Wang
,
L. P.
,
2017
, “
A Scalable Interface-Resolved Simulation of Particle-Laden Flow Using the Lattice Boltzmann Method
,”
Parallel Comput.
,
67
, pp.
20
37
.10.1016/j.parco.2017.07.005
75.
Ernst
,
M.
,
Dietzel
,
M.
, and
Sommerfeld
,
M.
,
2013
, “
A Lattice Boltzmann Method for Simulating Transport and Agglomeration of Resolved Particles
,”
Acta Mech.
,
224
(
10
), pp.
2425
2449
.10.1007/s00707-013-0923-1
76.
Derksen
,
J. J.
,
2012
, “
Direct Numerical Simulations of Aggregation of Monosized Spherical Particles in Homogeneous Isotropic Turbulence
,”
AICHE J.
,
58
(
8
), pp.
2589
2600
.10.1002/aic.12761
77.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2009
, “
Lattice Boltzmann Simulations to Determine Drag, Lift and Torque Acting on Non-Spherical Particles
,”
Comput. Fluids
,
38
(
3
), pp.
572
589
.10.1016/j.compfluid.2008.06.001
78.
Gupta
,
A.
,
Clercx
,
H.
, and
Toschi
,
F.
,
2018
, “
Simulation of Finite-Size Particles in Turbulent Flows Using the Lattice Boltzmann Method
,”
Commun. Comput. Phys.
,
23
(
3
), pp. 665–684.10.4208/cicp.OA-2016-0268
79.
Wang
,
L. P.
,
Peng
,
C.
,
Guo
,
Z.
, and
Yu
,
Z.
,
2016
, “
Lattice Boltzmann Simulation of Particle-Laden Turbulent Channel Flow
,”
Comput. Fluids
,
124
, pp.
226
236
.10.1016/j.compfluid.2015.07.008
80.
Peng
,
C.
, and
Wang
,
L. P.
,
2019
, “
Direct Numerical Simulations of Turbulent Pipe Flow Laden With Finite-Size Neutrally Buoyant Particles at Low Flow Reynolds Number
,”
Acta Mech.
,
230
(
2
), pp.
517
539
.10.1007/s00707-018-2268-2
81.
Ten Cate
,
A.
,
Derksen
,
J. J.
,
Portela
,
L. M.
, and
Van den Akker
,
H. E.
,
2004
, “
Fully Resolved Simulations of Colliding Monodisperse Spheres in Forced Isotropic Turbulence
,”
J. Fluid Mech.
,
519
, pp.
233
271
.10.1017/S0022112004001326
82.
Feng
,
Z. G.
, and
Michaelides
,
E. E.
,
2004
, “
The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid-Particles Interaction Problems
,”
J. Comput. Phys.
,
195
(
2
), pp.
602
628
.10.1016/j.jcp.2003.10.013
83.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.10.1063/1.864230
84.
Gatignol
,
R.
,
1983
, “
The Faxén Formulae for aRigid Particle in an Unsteady Non-Uniform Stokes Flow
,”
J. De Mec. Theorique, et Appliquee
,
2
, pp.
143
160
.
85.
Crowe
,
C.
,
Schwarzkopf
,
J.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
86.
Lovalenti
,
P. M.
, and
Brady
,
J. F.
,
1993
, “
The Hydrodynamic Force on a Rigid Particle Undergoing Arbitrary Time-Dependent Motion at Small Reynolds Number
,”
J. Fluid Mech.
,
256
(
29
), pp.
561
605
.10.1017/S0022112093002885
87.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2012
, “
Equation of Motion for a Sphere in Non-Uniform Compressible Flows
,”
J. Fluid Mech.
,
699
, pp.
352
375
.10.1017/jfm.2012.109
88.
Armenio
,
V.
, and
Fiorotto
,
V.
,
2001
, “
The Importance of the Forces Acting on Particles in Turbulent Flows
,”
Phys. Fluids
,
13
(
8
), pp.
2437
2440
.10.1063/1.1385390
89.
Horwitz
,
J. A.
, and
Mani
,
A.
,
2016
, “
Accurate Calculation of Stokes Drag for Point-Particle Tracking in Two-Way Coupled Flows
,”
J. Comput. Phys.
,
318
, pp.
85
109
.10.1016/j.jcp.2016.04.034
90.
Gualtieri
,
P.
,
Picano
,
F.
,
Sardina
,
G.
, and
Casciola
,
C. M.
,
2015
, “
Exact Regularized Point Particle Method for Multiphase Flows in the Two-Way Coupling Regime
,”
J. Fluid Mech.
,
773
, pp.
520
561
.10.1017/jfm.2015.258
91.
Ireland
,
P. J.
, and
Desjardins
,
O.
,
2017
, “
Improving Particle Drag Predictions in Euler-Lagrange Simulations With Two-Way Coupling
,”
J. Comput. Phys.
,
338
, pp.
405
430
.10.1016/j.jcp.2017.02.070
92.
Mehrabadi
,
M.
,
Horwitz
,
J. A.
,
Subramaniam
,
S.
, and
Mani
,
A.
,
2018
, “
A Direct Comparison of Particle-Resolved and Point-Particle Methods in Decaying Turbulence
,”
J. Fluid Mech.
,
850
, pp.
336
369
.10.1017/jfm.2018.442
93.
Wang
,
Q.
, and
Squires
,
K. D.
,
1996
, “
Large Eddy Simulation of Particle Deposition in a Vertical Turbulent Channel Flow
,”
Int. J. Multiphase Flow
,
22
(
4
), pp.
667
683
.10.1016/0301-9322(96)00007-9
94.
Uijttewaal
,
W. S.
, and
Oliemans
,
R. V.
,
1996
, “
Particle Dispersion and Deposition in Direct Numerical and Large Eddy Simulations of Vertical Pipe Flows
,”
Phys. Fluids
,
8
(
10
), pp.
2590
2604
.10.1063/1.869046
95.
Kuerten
,
J. G.
, and
Vreman
,
A. W.
,
2005
, “
Can Turbophoresis Be Predicted by Large-Eddy Simulation?
,”
Phys. Fluids
,
17
(
1
), pp.
011701
4
.10.1063/1.1824151
96.
Kuerten
,
J. G.
,
2016
, “
Point-Particle DNS and LES of Particle-Laden Turbulent Flow - A State-of-the-Art Review
,”
Flow Turbul. Combust.
,
97
(
3
), pp.
689
713
.10.1007/s10494-016-9765-y
97.
Capecelatro
,
J.
, and
Desjardins
,
O.
,
2013
, “
An Euler-Lagrange Strategy for Simulating Particle-Laden Flows
,”
J. Comput. Phys.
,
238
, pp.
1
31
.10.1016/j.jcp.2012.12.015
98.
Shotorban
,
B.
, and
Balachandar
,
S.
,
2006
, “
Particle Concentration in Homogeneous Shear Turbulence Simulated Via Lagrangian and Equilibrium Eulerian Approaches
,”
Phys. Fluids
,
18
(
6
), p.
065105
.10.1063/1.2204982
99.
Shotorban
,
B.
, and
Balachandar
,
S.
,
2007
, “
A Eulerian Model for Large-Eddy Simulation of Concentration of Particles With Small Stokes Numbers
,”
Phys. Fluids
,
19
(
11
), p.
118107
.10.1063/1.2804956
100.
Shotorban
,
B.
, and
Balachandar
,
S.
,
2009
, “
Two-Fluid Approach for Direct Numerical Simulation of Particle-Laden Turbulent Flows at Small Stokes Numbers
,”
Phys. Rev. E - Stat., Nonlinear, Soft Matter Phys.
,
79
(
5
), pp.
1
8
.10.1103/PhysRevE.79.056703
101.
Lindborg
,
H.
,
Lysberg
,
M.
, and
Jakobsen
,
H. A.
,
2007
, “
Practical Validation of the Two-Fluid Model Applied to Dense Gas-Solid Flows in Fluidized Beds
,”
Chem. Eng. Sci.
,
62
(
21
), pp.
5854
5869
.10.1016/j.ces.2007.06.011
102.
Ozel
,
A.
,
Fede
,
P.
, and
Simonin
,
O.
,
2013
, “
Development of Filtered Euler-Euler Two-Phase Model for Circulating Fluidised Bed: High Resolution Simulation, Formulation and a Priori Analyses
,”
Int. J. Multiphase Flow
,
55
, pp.
43
63
.10.1016/j.ijmultiphaseflow.2013.04.002
103.
Peirano
,
E.
,
Delloume
,
V.
,
Johnsson
,
F.
,
Leckner
,
B.
, and
Simonin
,
O.
,
2002
, “
Numerical Simulation of the Fluid Dynamics of a Freely Bubbling Fluidized Bed: Influence of the Air Supply System
,”
Powder Technol.
,
122
(
1
), pp.
69
82
.10.1016/S0032-5910(01)00393-X
104.
Cheung
,
S. C.
,
Yeoh
,
G. H.
,
Qi
,
F. S.
, and
Tu
,
J. Y.
,
2012
, “
Classification of Bubbles in Vertical Gas-Liquid Flow: Part 2 - a Model Evaluation
,”
Int. J. Multiphase Flow
,
39
, pp.
135
147
.10.1016/j.ijmultiphaseflow.2011.10.009
105.
Zeng
,
Z. X.
, and
Zhou
,
L. X.
,
2006
, “
A Two-Scale Second-Order Moment Particle Turbulence Model and Simulation of Dense Gas-Particle Flows in a Riser
,”
Powder Technol.
,
162
(
1
), pp.
27
32
.10.1016/j.powtec.2005.10.011
106.
Moreau
,
M.
,
Simonin
,
O.
, and
Bédat
,
B.
,
2010
, “
Development of Gas-Particle Euler-Euler LES Approach: A Priori Analysis of Particle Sub-Grid Models in Homogeneous Isotropic Turbulence
,”
Flow, Turbul. Combust.
,
84
(
2
), pp.
295
324
.10.1007/s10494-009-9233-z
107.
Masi
,
E.
,
Simonin
,
O.
,
Riber
,
E.
,
Sierra
,
P.
, and
Gicquel
,
L. Y.
,
2014
, “
Development of an Algebraic-Closure-Based Moment Method for Unsteady Eulerian Simulations of Particle-Laden Turbulent Flows in Very Dilute Regime
,”
Int. J. Multiphase Flow
,
58
, pp.
257
278
.10.1016/j.ijmultiphaseflow.2013.10.001
108.
Kartushinsky
,
A.
,
Tisler
,
S.
,
Oliveira
,
J. L.
, and
van der Geld
,
C. W.
,
2016
, “
Eulerian-Eulerian Modelling of Particle-Laden Two,” phase flow
,”.
Powder Technol.
,
301
, pp.
999
1007
.10.1016/j.powtec.2016.07.053
109.
Chen
,
X.
, and
Wang
,
J.
,
2014
, “
A Comparison of Two-Fluid Model, Dense Discrete Particle Model and CFD-DEM Method for Modeling Impinging Gas-Solid Flows
,”
Powder Technol.
,
254
, pp.
94
102
.10.1016/j.powtec.2013.12.056
110.
Meyer
,
C. J.
, and
Deglon
,
D. A.
,
2011
, “
Particle Collision modeling - A Review
,”
Miner. Eng.
,
24
(
8
), pp.
719
730
.10.1016/j.mineng.2011.03.015
111.
Davis
,
R.
,
Serayssol
,
J. M.
, and
Hinch
,
E.
,
1986
, “
The Elastohydrodynamic Collision of Two Spheres
,”
J. Fluid Mech.
,
163
, pp.
479
497
.10.1017/S0022112086002392
112.
Maw
,
N.
,
Barber
,
J. R.
, and
Fawcett
,
J. N.
,
1976
, “
The Oblique Impact of Elastic Spheres
,”
Wear
,
38
(
1
), pp.
101
114
.10.1016/0043-1648(76)90201-5
113.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tanaka
,
T.
,
Kajishima
,
T.
, and
Tsuji
,
Y.
,
2001
, “
Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel: Effect of Considering Inter-Particle Collisions
,”
J. Fluid Mech.
,
442
, pp.
303
334
.10.1017/S0022112001005092
114.
Barnocky
,
G.
, and
Davis
,
R. H.
,
1988
, “
Elastohydrodynamic Collision and Rebound of Spheres: Experimental Verification
,”
Phys. Fluids
,
31
(
6
), p.
1324
.10.1063/1.866725
115.
Gondret
,
P.
,
Lance
,
M.
, and
Petit
,
L.
,
2002
, “
Bouncing Motion of Spherical Particles in Fluids
,”
Phys. Fluids
,
14
(
2
), pp.
643
652
.10.1063/1.1427920
116.
Joseph
,
G. G.
,
Zenit
,
R.
,
Hunt
,
M. L.
, and
Rosenwinkel
,
A. M.
,
2001
, “
Particle-Wall Collisions in a Viscous Fluid
,”
J. Fluid Mech.
,
433
, pp.
329
346
.10.1017/S0022112001003470
117.
Joseph
,
G. G.
, and
Hunt
,
M. L.
,
2004
, “
Oblique Particle-Wall Collisions in a Liquid
,”
J. Fluid Mech.
,
510
(
510
), pp.
71
93
.10.1017/S002211200400919X
118.
Yang
,
F. L.
, and
Hunt
,
M. L.
,
2006
, “
Dynamics of Particle-Particle Collisions in a Viscous Liquid
,”
Phys. Fluids
,
18
(
12
), p.
121506
.10.1063/1.2396925
119.
Kempe
,
T.
, and
Fröhlich
,
J.
,
2012
, “
Collision Modelling for the Interface-Resolved Simulation of Spherical Particles in Viscous Fluids
,”
J. Fluid Mech.
,
709
, pp.
445
489
.10.1017/jfm.2012.343
120.
Brändle de Motta
,
J. C.
,
Breugem
,
W. P.
,
Gazanion
,
B.
,
Estivalezes
,
J. L.
,
Vincent
,
S.
, and
Climent
,
E.
,
2013
, “
Numerical Modelling of Finite-Size Particle Collisions in a Viscous Fluid
,”
Phys. Fluids
,
25
(
8
), p.
083302
.10.1063/1.4817382
121.
Qian
,
J.
, and
Law
,
C.
,
1997
, “
Regimes of Coalescence and Separation in Droplet Collision
,”
J. Fluid Mech.
,
331
, pp.
59
80
.10.1017/S0022112096003722
122.
Pan
,
K.-L.
,
Law
,
C. K.
, and
Zhou
,
B.
,
2008
, “
Experimental and Mechanistic Description of Merging and Bouncing in Head-on Binary Droplet Collision
,”
J. Appl. Phys.
,
103
(
6
), p.
064901
.10.1063/1.2841055
123.
Jia
,
X.
,
Yang
,
J.-C.
,
Zhang
,
J.
, and
Ni
,
M.-J.
,
2019
, “
An Experimental Investigation on the Collision Outcomes of Binary Liquid Metal Droplets
,”
Int. J. Multiphase Flow
,
116
, pp.
80
90
.10.1016/j.ijmultiphaseflow.2019.04.008
124.
Chen
,
X.
,
Ma
,
D.
,
Khare
,
P.
, and
Yang
,
V.
,
2011
, “
Energy and Mass Transfer During Binary Droplet Collision
,”
AIAA
Paper No.
2011
771
.
125.
Ganti
,
H.
,
Khare
,
P.
, and
Bravo
,
L.
,
2020
, “
Binary Collision of CMAS Droplets - Part i: Equal Sized Droplets
,”
J. Mater. Res.
,
35
(
17
), pp.
2260
2274
.10.1557/jmr.2020.138
126.
Ganti
,
H.
,
Khare
,
P.
, and
Bravo
,
L.
,
2020
, “
Binary Collision of CMAS Droplets - Part ii: Unequal Sized Droplets
,”
J. Mater. Res.
,
35
(
17
), pp.
2275
2287
.10.1557/jmr.2020.153
127.
Sommerfeld
,
M.
, and
Kuschel
,
M.
,
2016
, “
Modelling Droplet Collision Outcomes for Different Substances and Viscosities
,”
Exp. Fluids
,
57
(
12
), p.
187
.10.1007/s00348-016-2249-y
128.
Gotaas
,
C.
,
Havelka
,
P.
,
Jakobsen
,
H. A.
,
Svendsen
,
H. F.
,
Hase
,
M.
,
Roth
,
N.
, and
Weigand
,
B.
,
2007
, “
Effect of Viscosity on Droplet-Droplet Collision Outcome: Experimental Study and Numerical Comparison
,”
Phys. Fluids
,
19
(
10
), p.
102106
.10.1063/1.2781603
129.
Nasr
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
2009
, “
A DNS Study of Effects of Particleparticle Collisions and Two-Way Coupling on Particle Deposition and Phasic Fluctuations
,”
J. Fluid Mech.
,
640
, pp.
507
536
.10.1017/S0022112009992011
130.
Haddadi
,
H.
,
Shojaei-Zadeh
,
S.
, and
Morris
,
J. F.
,
2016
, “
Lattice-Boltzmann Simulation of Inertial Particle-Laden Flow Around an Obstacle
,”
Phys. Rev. Fluids
,
1
(
2
), pp.
1
17
.10.1103/PhysRevFluids.1.024201
131.
Troiano
,
M.
,
Solimene
,
R.
,
Salatino
,
P.
, and
Montagnaro
,
F.
,
2016
, “
Multiphase Flow Patterns in Entrained-Flow Slagging Gasifiers: Physical Modelling of Particle-Wall Impact at Near-Ambient Conditions
,”
Fuel Process. Technol.
,
141
, pp.
106
116
.10.1016/j.fuproc.2015.06.018
132.
Johnson
,
P. L.
,
Bassenne
,
M.
, and
Moin
,
P.
,
2020
, “
Turbophoresis of Small Inertial Particles: Theoretical Considerations and Application to Wall-Modelled Large-Eddy Simulations
,”
J. Fluid Mech.
,
883
, pp.
1
38
.10.1017/jfm.2019.865
133.
Afkhami
,
M.
,
Hassanpour
,
A.
,
Fairweather
,
M.
, and
Njobuenwu
,
D. O.
,
2015
, “
Fully Coupled LES-DEM of Particle Interaction and Agglomeration in a Turbulent Channel Flow
,”
Comput. Chem. Eng.
,
78
, pp.
24
38
.10.1016/j.compchemeng.2015.04.003
134.
Sommerfeld
,
M.
,
2001
, “
Validation of a Stochastic Lagrangian Modelling Approach for Inter-Particle Collisions in Homogeneous Isotropic Turbulence
,”
Int. J. Multiphase Flow
,
27
(
10
), pp.
1829
1858
.10.1016/S0301-9322(01)00035-0
135.
Hoomans
,
B. P. B.
,
Kuipers
,
J. A.
,
Briels
,
W. J.
, and
Swaaij
,
W. P. M. V. A. N.
,
1996
, “
Discrete Particle Simulation of Bubble and Slug Formation in a 2D Gas-Fluidised Bed: A Hard-Sphere Approach
,”
Chem. Eng. Sci.
,
51
(
1
), pp.
99
118
.10.1016/0009-2509(95)00271-5
136.
Chen
,
M.
,
Kontomaris
,
K.
, and
McLaughlin
,
J. B.
,
1999
, “
Direct Numerical Simulation of Droplet Collisions in a Turbulent Channel Flow. Part I: Collision Algorithm
,”
Int. J. Multiphase Flow
,
24
(
7
), pp.
1079
1103
.10.1016/S0301-9322(98)00007-X
137.
Li
,
Y.
,
McLaughlin
,
J. B.
,
Kontomaris
,
K.
, and
Portela
,
L.
,
2001
, “
Numerical Simulation of Particle-Laden Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
10
), pp.
2957
2967
.10.1063/1.1396846
138.
Fede
,
P.
, and
Simonin
,
O.
,
2006
, “
Numerical Study of the Subgrid Fluid Turbulence Effects on the Statistics of Heavy Colliding Particles
,”
Phys. Fluids
,
18
(
4
), p.
045103
.10.1063/1.2189288
139.
Mallouppas
,
G.
, and
van Wachem
,
B.
,
2013
, “
Large Eddy Simulations of Turbulent Particle-Laden Channel Flow
,”
Int. J. Multiphase Flow
,
54
, pp.
65
75
.10.1016/j.ijmultiphaseflow.2013.02.007
140.
Cundall
,
P. A.
, and
Strack
,
O.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.10.1680/geot.1979.29.1.47
141.
Luo
,
K.
,
Wu
,
F.
,
Qiu
,
K.
,
Wang
,
Z.
, and
Fan
,
J.
,
2015
, “
Effects of Preferential Concentration on Collision and Erosion Between Solid Particles and Tube Bank in a Duct Flow
,”
Int. J. Heat Mass Transfer
,
83
, pp.
372
381
.10.1016/j.ijheatmasstransfer.2014.10.027
142.
Luo
,
K.
,
Tan
,
J.
,
Wang
,
Z.
, and
Fan
,
J.
,
2015
, “
Particle-Resolved Direct Numerical Simulation of Gas-Solid Dynamics in Experimental Fluidized Beds
,”
AICHE J.
,
61
(
3
), pp.
857
866
.
143.
Costa
,
P.
,
Boersma
,
B. J.
,
Westerweel
,
J.
, and
Breugem
,
W. P.
,
2015
, “
Collision Model for Fully Resolved Simulations of Flows Laden With Finite-Size Particles
,”
Phys. Rev. E - Stat., Nonlinear, Soft Mat. Phys.
,
92
(
5
), pp.
1
14
.10.1103/PhysRevE.92.053012
144.
Deen
,
N. G.
,
Van Sint Annaland
,
M.
,
Van der Hoef
,
M. A.
, and
Kuipers
,
J. A.
,
2007
, “
Review of Discrete Particle Modeling of Fluidized Beds
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
28
44
.10.1016/j.ces.2006.08.014
145.
Wiesner
,
V. L.
,
Vempati
,
U. K.
, and
Bansal
,
N. P.
,
2016
, “
High Temperature Viscosity of Calcium-Magnesium-Aluminosilicate Glass From Synthetic Sand
,”
Scr. Mater.
,
124
, pp.
189
192
.10.1016/j.scriptamat.2016.07.020
146.
Yarin
,
A.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.10.1146/annurev.fluid.38.050304.092144
147.
Moreira
,
A. L. N.
,
Moita
,
A. S.
, and
Panão
,
M. R.
,
2010
, “
Advances and Challenges in Explaining Fuel Spray Impingement: How Much of Single Droplet Impact Research is Useful?
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
554
580
.10.1016/j.pecs.2010.01.002
148.
Josserand
,
C.
, and
Thoroddsen
,
S.
,
2016
, “
Drop Impact on a Solid Surface
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
365
391
.10.1146/annurev-fluid-122414-034401
149.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Drop Impact on Heated Walls
,”
Int. J. Heat Mass Transfer
,
106
, pp.
103
126
.10.1016/j.ijheatmasstransfer.2016.10.031
150.
de Gennes
,
P. G.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
(
3
), pp.
827
863
.10.1103/RevModPhys.57.827
151.
Rioboo
,
R.
,
2001
, “
Impact de Gouttes Sur Surfaces Solides et Seches
,” These de doctorat, Paris 6, Jan.
152.
Xu
,
L.
,
2007
, “
Liquid Drop Splashing on Smooth, Rough, and Textured Surfaces
,”
Phys. Rev. E
,
75
(
5
), p.
056316
.10.1103/PhysRevE.75.056316
153.
Gao
,
M.
,
Kong
,
P.
,
Zhang
,
L.-X.
, and
Liu
,
J.-N.
,
2017
, “
An Experimental Investigation of Sessile Droplets Evaporation on Hydrophilic and Hydrophobic Heating Surface With Constant Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
262
268
.10.1016/j.icheatmasstransfer.2017.09.010
154.
Yun
,
S.
, and
Lim
,
G.
,
2014
, “
Ellipsoidal Drop Impact on a Solid Surface for Rebound Suppression
,”
J. Fluid Mech.
,
752
, pp.
266
281
.10.1017/jfm.2014.332
155.
Pumphrey
,
H. C.
, and
Elmore
,
P. A.
,
1990
, “
The Entrainment of Bubbles by Drop Impacts
,”
J. Fluid Mech.
,
220
, pp.
539
567
.10.1017/S0022112090003378
156.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London. Ser. A: Math. Phys. Sci.
,
432
(
1884
), pp.
13
41
.
157.
de Ruiter
,
J.
,
Mugele
,
F.
, and
van den Ende
,
D.
,
2015
, “
Air Cushioning in Droplet Impact. I. Dynamics of Thin Films Studied by Dual Wavelength Reflection Interference Microscopy
,”
Phys. Fluids
,
27
(
1
), p.
012104
.10.1063/1.4906114
158.
Kolinski
,
J. M.
,
Mahadevan
,
L.
, and
Rubinstein
,
S. M.
,
2014
, “
Drops Can Bounce From Perfectly Hydrophilic Surfaces
,”
EPL (Europhys. Lett.)
,
108
(
2
), p.
24001
.10.1209/0295-5075/108/24001
159.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
,
2002
, “
Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces
,”
Exp. Fluids
,
33
(
1
), pp.
112
124
.10.1007/s00348-002-0431-x
160.
Yarin
,
A. L.
, and
Weiss
,
D. A.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
, pp.
141
173
.10.1017/S0022112095002266
161.
Roisman
,
I. V.
,
Horvat
,
K.
, and
Tropea
,
C.
,
2006
, “
Spray Impact: Rim Transverse Instability Initiating Fingering and Splash, and Description of a Secondary Spray
,”
Phys. Fluids
,
18
(
10
), p.
102104
.10.1063/1.2364187
162.
Mao
,
T.
,
Kuhn
,
D. C. S.
, and
Tran
,
H.
,
1997
, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
AIChE J.
,
43
(
9
), pp.
2169
2179
.10.1002/aic.690430903
163.
Moita
,
A. S.
, and
Moreira
,
A. L. N.
,
2007
, “
Drop Impacts Onto Cold and Heated Rigid Surfaces: Morphological Comparisons, Disintegration Limits and Secondary Atomization
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
735
752
.10.1016/j.ijheatfluidflow.2006.10.004
164.
Driscoll
,
M. M.
,
Stevens
,
C. S.
, and
Nagel
,
S. R.
,
2010
, “
Thin Film Formation During Splashing of Viscous Liquids
,”
Phys. Rev. E
,
82
(
3
), p.
036302
.10.1103/PhysRevE.82.036302
165.
Xu
,
L.
,
Zhang
,
W. W.
, and
Nagel
,
S. R.
,
2005
, “
Drop Splashing on a Dry Smooth Surface
,”
Phys. Rev. Lett.
,
94
(
18
), p.
184505
.10.1103/PhysRevLett.94.184505
166.
Vander Wal
,
R. L.
,
Berger
,
G. M.
, and
Mozes
,
S. D.
,
2006
, “
The Combined Influence of a Rough Surface and Thin Fluid Film Upon the Splashing Threshold and Splash Dynamics of a Droplet Impacting Onto Them
,”
Exp. Fluids
,
40
(
1
), pp.
23
32
.10.1007/s00348-005-0043-3
167.
Tropea
,
C.
, and
Marengo
,
M.
,
1999
, “
The Impact of Drops on Walls Films
,”
Multiphase Sci. Technol.
,
11
(
1
), pp.
19
36
.10.1615/MultScienTechn.v11.i1.20
168.
Cossali
,
G. E.
,
Coghe
,
A.
, and
Marengo
,
M.
,
1997
, “
The Impact of a Single Drop on a Wetted Solid Surface
,”
Exp. Fluids
,
22
(
6
), pp.
463
472
.10.1007/s003480050073
169.
Liang
,
G.
,
Shen
,
S.
,
Guo
,
Y.
, and
Zhang
,
J.
,
2016
, “
Boiling From Liquid Drops Impact on a Heated Wall
,”
Int. J. Heat Mass Transfer
,
100
, pp.
48
57
.10.1016/j.ijheatmasstransfer.2016.04.061
170.
Makino
,
K.
, and
Michiyopshi
,
I.
,
1979
, “
Effects of the Initial Size of Water Droplet on Its Evaporation on Heated Surfaces
,”
Int. J. Heat Mass Transfer
,
22
(
6
), pp.
979
981
.
171.
Nishio
,
S.
, and
Hirata
,
M.
,
1978
, “
Direct Contact Phenomenon Between a Liquid Droplet and High Temperature Solid Surface
,”
6th International Heat Transfer Conference
, Toronto, ON, Canada, Aug. 7–11,
pp.
245
250
.
172.
Celata
,
G. P.
,
Cumo
,
M.
,
Mariani
,
A.
, and
Zummo
,
G.
,
2006
, “
Visualization of the Impact of Water Drops on a Hot Surface: Effect of Drop Velocity and Surface Inclination
,”
Heat Mass Transfer
,
42
(
10
), pp.
885
890
.10.1007/s00231-006-0139-1
173.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
2004
, “
A Leidenfrost Point Model for Impinging Droplets and Sprays
,”
ASME J. Heat Transfer
,
126
(
2
), pp.
272
278
.10.1115/1.1652045
174.
Rafaï
,
S.
,
Bonn
,
D.
, and
Boudaoud
,
A.
,
2004
, “
Spreading of non-Newtonian Fluids on Hydrophilic Surfaces
,”
J. Fluid Mech.
,
513
, pp.
77
85
.10.1017/S0022112004000278
175.
Bartolo
,
D.
,
Boudaoud
,
A.
,
Narcy
,
G.
, and
Bonn
,
D.
,
2007
, “
Dynamics of Non-Newtonian Droplets
,”
Phys. Rev. Lett.
,
99
(
17
), p.
174502
.10.1103/PhysRevLett.99.174502
176.
Moon
,
J. H.
,
Kim
,
D. Y.
, and
Lee
,
S. H.
,
2014
, “
Spreading and Receding Characteristics of a non-Newtonian Droplet Impinging on a Heated Surface
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
94
101
.10.1016/j.expthermflusci.2014.04.003
177.
Bergeron
,
V.
,
Bonn
,
D.
,
Martin
,
J. Y.
, and
Vovelle
,
L.
,
2000
, “
Controlling Droplet Deposition With Polymer Additives
,”
Nature
,
405
(
6788
), pp.
772
775
.10.1038/35015525
178.
Zang
,
D.
,
Zhang
,
W.
,
Song
,
J.
,
Chen
,
Z.
,
Zhang
,
Y.
,
Geng
,
X.
, and
Chen
,
F.
,
2014
, “
Rejuvenated Bouncing of non-Newtonian Droplet Via Nanoparticle Enwrapping
,”
Appl. Phys. Lett.
,
105
(
23
), p.
231603
.10.1063/1.4903490
179.
Han
,
Z.
,
Xu
,
Z.
, and
Trigui
,
N.
,
2000
, “
Spray/Wall Interaction Models for Multidimensional Engine Simulation
,”
Int. J. Engine Res.
,
1
(
1
), pp.
127
146
.10.1243/1468087001545308
180.
Cossali
,
G.
,
Marengo
,
M.
, and
Santini
,
M.
,
2004
, “
Drop Array Impacts on Heated Surfaces: Secondary Atomization Characteristics
,”
19th Annual Meeting of ILASS
, Nottingham, UK, 06-08/09/2004, ILASS Europe, pp.
1
8
.
181.
Barnes
,
H.
,
Hardalupas
,
Y.
,
Taylor
,
A.
,
Wilkins
,
J.
, et al
1999
, “
An Investigation of the Interaction Between Two Adjacent Impinging Droplets
,”
Proceedings of the 15th International Conference on Liquid Atomisation and Spray Systems (ILASS)
, Toulouse, pp.
1
7
.
182.
Moreira
,
A.
, and
Panao
,
M. O.
,
2011
, “
Spray-Wall Impact
,”
Handbook of Atomization and Sprays
,Springer Science and Business Media, LLC, Boston, MA, pp.
441
455
.
183.
Chaussonet
,
G.
,
Bravo
,
L.
,
Flatau
,
A.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2020
, “
Smoothed Particle Hydrodynamics Simulation of High Velocity Impact Dynamics of Molten Sand Particles
,”
Energies,
13(19), p. 5134.10.3390/en13195134
184.
Shikhmurzaev
,
Y. D.
,
1997
, “
Moving Contact Lines in Liquid/Liquid/Solid Systems
,”
J. Fluid Mech.
,
334
, pp.
211
249
.10.1017/S0022112096004569
185.
Haley
,
P. J.
, and
Miksis
,
M. J.
,
1991
, “
The Effect of the Contact Line on Droplet Spreading
,”
J. Fluid Mech.
,
223
(
1
), pp.
57
81
.10.1017/S0022112091001337
186.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
,
11
(
6
), pp.
1406
1417
.10.1063/1.870005
187.
Bussmann
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2000
, “
Modeling the Splash of a Droplet Impacting a Solid Surface
,”
Phys. Fluids
,
12
(
12
), pp.
3121
3132
.10.1063/1.1321258
188.
Mehdi-Nejad
,
V.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
2003
, “
Air Bubble Entrapment Under an Impacting Droplet
,”
Phys. Fluids
,
15
(
1
), pp.
173
183
.10.1063/1.1527044
189.
Šikalo
,
Š.
,
Wilhelm
,
H.-D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
062103
.10.1063/1.1928828
190.
Šikalo
,
Š.
,
Tropea
,
C.
, and
Ganić
,
E. N.
,
2005
, “
Impact of Droplets Onto Inclined Surfaces
,”
J. Colloid Interface Sci.
,
286
(
2
), pp.
661
669
.10.1016/j.jcis.2005.01.050
191.
Nikolopoulos
,
N.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
,
2005
, “
Normal Impingement of a Droplet Onto a Wall Film: A Numerical Investigation
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
119
132
.10.1016/j.ijheatfluidflow.2004.06.002
192.
Shetabivash
,
H.
,
Ommi
,
F.
, and
Heidarinejad
,
G.
,
2014
, “
Numerical Analysis of Droplet Impact Onto Liquid Film
,”
Phys. Fluids
,
26
(
1
), p.
012102
.10.1063/1.4861761
193.
Li
,
R.
,
Ninokata
,
H.
, and
Mori
,
M.
,
2011
, “
A Numerical Study of Impact Force Caused by Liquid Droplet Impingement Onto a Rigid Wall
,”
Prog. Nucl. Energy
,
53
(
7
), pp.
881
885
.10.1016/j.pnucene.2011.03.002
194.
Strotos
,
G.
,
Gavaises
,
M.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
,
2008
, “
Numerical Investigation of the Cooling Effectiveness of a Droplet Impinging on a Heated Surface
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4728
4742
.10.1016/j.ijheatmasstransfer.2008.02.036
195.
Kim
,
D.
,
Ivey
,
C.
,
Frank
,
H.
, and
Bravo
,
L.
,
2020
, “
An Efficient High-Resolution Volume-of-Fluid Method With Low Numerical Diffusion on Unstructured Grids
,”
J. Comput. Phys.
, epub.
196.
Sethian
,
J. A.
,
1996
, “
A Fast Marching Level Set Method for Monotonically Advancing Fronts
,”
Proc. Natl. Acad. Sci.
,
93
(
4
), pp.
1591
1595
.10.1073/pnas.93.4.1591
197.
Spelt
,
P. D. M.
,
2005
, “
A Level-Set Approach for Simulations of Flows With Multiple Moving Contact Lines With Hysteresis
,”
J. Comput. Phys.
,
207
(
2
), pp.
389
404
.10.1016/j.jcp.2005.01.016
198.
Caviezel
,
D.
,
Narayanan
,
C.
, and
Lakehal
,
D.
,
2008
, “
Adherence and Bouncing of Liquid Droplets Impacting on Dry Surfaces
,”
Microfluid. Nanofluid.
,
5
(
4
), pp.
469
478
.10.1007/s10404-007-0248-2
199.
Yokoi
,
K.
,
2011
, “
Numerical Studies of Droplet Splashing on a Dry Surface: Triggering a Splash With the Dynamic Contact Angle
,”
Soft Matter
,
7
(
11
), pp.
5120
5123
.10.1039/c1sm05336a
200.
Patil
,
N. D.
,
Gada
,
V. H.
,
Sharma
,
A.
, and
Bhardwaj
,
R.
,
2016
, “
On Dual-Grid Level-Set Method for Contact Line Modeling During Impact of a Droplet on Hydrophobic and Superhydrophobic Surfaces
,”
Int. J. Multiphase Flow
,
81
, pp.
54
66
.10.1016/j.ijmultiphaseflow.2016.01.005
201.
Shahmohammadi Beni
,
M.
,
Zhao
,
J.
, and
Yu
,
K. N.
,
2018
, “
Investigation of Droplet Behaviors for Spray Cooling Using Level Set Method
,”
Ann. Nucl. Energy
,
113
, pp.
162
170
.10.1016/j.anucene.2017.09.046
202.
Yokoi
,
K.
,
2008
, “
A Numerical Method for Free-Surface Flows and Its Application to Droplet Impact on a Thin Liquid Layer
,”
J. Sci. Comput.
,
35
(
2–3
), pp.
372
396
.10.1007/s10915-008-9202-z
203.
Selvam
,
R. P.
,
Lin
,
L.
, and
Ponnappan
,
R.
,
2006
, “
Direct Simulation of Spray Cooling: Effect of Vapor Bubble Growth and Liquid Droplet Impact on Heat Transfer
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4265
4278
.10.1016/j.ijheatmasstransfer.2006.05.009
204.
Ding
,
H.
, and
Spelt
,
P. D. M.
,
2007
, “
Inertial Effects in Droplet Spreading: A Comparison Between Diffuse-Interface and Level-Set Simulations
,”
J. Fluid Mech.
,
576
, pp.
287
296
.10.1017/S0022112007004910
205.
Selvam
,
R. P.
,
Bhaskara
,
S.
,
Balda
,
J. C.
,
Barlow
,
F.
, and
Elshabini
,
A.
,
2005
, “
Computer Modeling of Liquid Droplet Impact on Heat Transfer During Spray Cooling
,” pp.
179
188
.
206.
Chatzikyriakou
,
D.
,
Walker
,
S. P.
,
Hewitt
,
G. F.
,
Narayanan
,
C.
, and
Lakehal
,
D.
,
2009
, “
Comparison of Measured and Modelled Droplet–Hot Wall Interactions
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1398
1405
.10.1016/j.applthermaleng.2008.02.012
207.
Pournaderi
,
P.
, and
Pishevar
,
A. R.
,
2012
, “
A Numerical Investigation of Droplet Impact on a Heated Wall in the Film Boiling Regime
,”
Heat Mass Transfer
,
48
(
9
), pp.
1525
1538
.10.1007/s00231-012-0999-5
208.
Choi
,
M.
,
Son
,
G.
, and
Shim
,
W.
,
2017
, “
Numerical Simulation of Droplet Impact and Evaporation on a Porous Surface
,”
Int. Commun. Heat Mass Transfer
,
80
, pp.
18
29
.10.1016/j.icheatmasstransfer.2016.11.002
209.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
210.
Guo
,
Y.
,
Wei
,
L.
,
Liang
,
G.
, and
Shen
,
S.
,
2014
, “
Simulation of Droplet Impact on Liquid Film With CLSVOF
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
26
33
.10.1016/j.icheatmasstransfer.2014.02.006
211.
Liang
,
G.
,
Mu
,
X.
,
Guo
,
Y.
, and
Shen
,
S.
,
2016
, “
Flow and Heat Transfer During a Single Drop Impact on a Liquid Film
,”
Numer. Heat Transfer, Part B: Fundam.
,
69
(
6
), pp.
575
582
.10.1080/10407790.2016.1173496
212.
Hong
,
W.
, and
Wang
,
Y.
,
2017
, “
A Coupled Level Set and Volume-of-Fluid Simulation for Heat Transfer of the Double Droplet Impact on a Spherical Liquid Film
,”
Numer. Heat Transfer, Part B: Fundam.
,
71
(
4
), pp.
359
371
.10.1080/10407790.2017.1293960
213.
Li
,
D.
,
Duan
,
X.
,
Zheng
,
Z.
, and
Liu
,
Y.
,
2018
, “
Dynamics and Heat Transfer of a Hollow Droplet Impact on a Wetted Solid Surface
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1014
1023
.10.1016/j.ijheatmasstransfer.2018.02.017
214.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.10.1103/PhysRevE.47.1815
215.
Swift
,
M. R.
,
Orlandini
,
E.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
,
1996
, “
Lattice Boltzmann Simulations of Liquid-Gas and Binary Fluid Systems
,”
Phys. Rev. E
,
54
(
5
), pp.
5041
5052
.10.1103/PhysRevE.54.5041
216.
He
,
X.
,
Chen
,
S.
, and
Zhang
,
R.
,
1999
, “
A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability
,”
J. Comput. Phys.
,
152
(
2
), pp.
642
663
.10.1006/jcph.1999.6257
217.
Chen
,
L.
,
Kang
,
Q.
,
Mu
,
Y.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2014
, “
A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications
,”
Int. J. Heat Mass Transfer
,
76
, pp.
210
236
.10.1016/j.ijheatmasstransfer.2014.04.032
218.
Liang
,
H.
,
Li
,
Y.
,
Chen
,
J.
, and
Xu
,
J.
,
2019
, “
Axisymmetric Lattice Boltzmann Model for Multiphase Flows With Large Density Ratio
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1189
1205
.10.1016/j.ijheatmasstransfer.2018.09.050
219.
Mukherjee
,
S.
, and
Abraham
,
J.
,
2007
, “
Investigations of Drop Impact on Dry Walls With a lattice-Boltzmann Model
,”
J. Colloid Interface Sci.
,
312
(
2
), pp.
341
354
.10.1016/j.jcis.2007.03.004
220.
Hao
,
L.
, and
Cheng
,
P.
,
2009
, “
Lattice Boltzmann Simulations of Liquid Droplet Dynamic Behavior on a Hydrophobic Surface of a Gas Flow Channel
,”
J. Power Sources
,
190
(
2
), pp.
435
446
.10.1016/j.jpowsour.2009.01.029
221.
Gupta
,
A.
, and
Kumar
,
R.
,
2010
, “
Droplet Impingement and Breakup on a Dry Surface
,”
Comput. Fluids
,
39
(
9
), pp.
1696
1703
.10.1016/j.compfluid.2010.06.006
222.
Shen
,
S.
,
Bi
,
F.
, and
Guo
,
Y.
,
2012
, “
Simulation of Droplets Impact on Curved Surfaces With Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6938
6943
.10.1016/j.ijheatmasstransfer.2012.07.007
223.
Zhang
,
D.
,
Papadikis
,
K.
, and
Gu
,
S.
,
2014
, “
Three-Dimensional Multi-Relaxation Time lattice-Boltzmann Model for the Drop Impact on a Dry Surface at Large Density Ratio
,”
Int. J. Multiphase Flow
,
64
, pp.
11
18
.10.1016/j.ijmultiphaseflow.2014.04.005
224.
Raman
,
K. A.
,
Jaiman
,
R. K.
,
Lee
,
T.-S.
, and
Low
,
H.-T.
,
2016
, “
Lattice Boltzmann Simulations of Droplet Impact Onto Surfaces With Varying Wettabilities
,”
Int. J. Heat Mass Transfer
,
95
, pp.
336
354
.10.1016/j.ijheatmasstransfer.2015.11.088
225.
Raman
,
K.
,
Jaiman
,
R.
,
Lee
,
T.
, and
Low
,
H.
,
2015
, “
On the Dynamics of Crown Structure in Simultaneous Two Droplets Impact Onto Stationary and Moving Liquid Film
,”
Comput. Fluids
,
107
, pp.
285
300
.10.1016/j.compfluid.2014.11.007
226.
Taghilou
,
M.
, and
Rahimian
,
M. H.
,
2014
, “
Lattice Boltzmann Model for Thermal Behavior of a Droplet on the Solid Surface
,”
Int. J. Therm. Sci.
,
86
, pp.
1
11
.10.1016/j.ijthermalsci.2014.06.006
227.
Shadloo
,
M. S.
,
Oger
,
G.
, and
Le Touzé
,
D.
,
2016
, “
Smoothed Particle Hydrodynamics Method for Fluid Flows, Towards Industrial Applications: Motivations, Current State, and Challenges
,”
Comput. Fluids
,
136
, pp.
11
34
.10.1016/j.compfluid.2016.05.029
228.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
229.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2010
, “
A New Surface-Tension Formulation for Multi-Phase SPH Using a Reproducing Divergence Approximation
,”
J. Comput. Phys.
,
229
(
13
), pp.
5011
5021
.10.1016/j.jcp.2010.03.022
230.
Barcarolo
,
D. A.
,
Le Touzé
,
D.
,
Oger
,
G.
, and
de Vuyst
,
F.
,
2014
, “
Adaptive Particle Refinement and Derefinement Applied to the Smoothed Particle Hydrodynamics Method
,”
J. Comput. Phys.
,
273
, pp.
640
657
.10.1016/j.jcp.2014.05.040
231.
Li
,
D.
,
Bai
,
L.
,
Li
,
L.
, and
Zhao
,
M.
,
2014
, “
SPH Modeling of Droplet Impact on Solid Boundary
,”
Trans. Tianjin Univ.
,
20
(
2
), pp.
112
117
.10.1007/s12209-014-2179-9
232.
Shigorina
,
E.
,
Kordilla
,
J.
, and
Tartakovsky
,
A. M.
,
2017
, “
Smoothed Particle Hydrodynamics Study of the Roughness Effect on Contact Angle and Droplet Flow
,”
Phys. Rev. E
,
96
(
3
), p.
033115
.10.1103/PhysRevE.96.033115
233.
Xu
,
X.
,
Ouyang
,
J.
,
Jiang
,
T.
, and
Li
,
Q.
,
2014
, “
Numerical Analysis of the Impact of Two Droplets With a Liquid Film Using an Incompressible SPH Method
,”
J. Eng. Math.
,
85
(
1
), pp.
35
53
.10.1007/s10665-013-9634-9
234.
Ma
,
T.
,
Zhang
,
F.
,
Liu
,
H.
, and
Yao
,
M.
,
2017
, “
Modeling of Droplet/Wall Interaction Based on SPH Method
,”
Int. J. Heat Mass Transfer
,
105
, pp.
296
304
.10.1016/j.ijheatmasstransfer.2016.09.103
235.
Yang
,
X.
,
Dai
,
L.
, and
Kong
,
S.-C.
,
2017
, “
Simulation of Liquid Drop Impact on Dry and Wet Surfaces Using SPH Method
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2393
2399
.10.1016/j.proci.2016.07.031
236.
Yang
,
X.
, and
Kong
,
S.-C.
,
2018
, “
3D Simulation of Drop Impact on Dry Surface Using SPH Method
,”
Int. J. Comput. Methods
,
15
(
3
), p.
1850011
.10.1142/S0219876218500111
237.
Ray
,
M.
,
Yang
,
X.
,
Kong
,
S.
,
Bravo
,
L.
, and
Kweon
,
C.
,
2016
, “
High Fidelity Simulation of Drop Collision and Vapor-Liquid Equilibrium of Van Der Waals Fluids
,”
Proc. Combust. Inst.
,
36
, pp.
2385
2392
.
238.
Yang
,
X.
,
Ray
,
M.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2019
, “
SPH Simulation of Fuel Drop Impact on Heated Surfaces
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3279
3286
.10.1016/j.proci.2018.07.078
239.
Jiang
,
T.
,
Ouyang
,
J.
,
Yang
,
B.
, and
Ren
,
J.
,
2010
, “
The SPH Method for Simulating a Viscoelastic Drop Impact and Spreading on an Inclined Plate
,”
Comput. Mech.
,
45
(
6
), pp.
573
583
.10.1007/s00466-010-0471-7
240.
Xu
,
X.
,
Ouyang
,
J.
,
Jiang
,
T.
, and
Li
,
Q.
,
2012
, “
Numerical Simulation of 3D-Unsteady Viscoelastic Free Surface Flows by Improved Smoothed Particle Hydrodynamics Method
,”
J. Non-Newtonian Fluid Mech.
,
177–178
, pp.
109
120
.10.1016/j.jnnfm.2012.04.006
241.
Mirjalili
,
S.
,
Jain
,
S. S.
, and
Dodd
,
M.
,
2017
, “
Interface-Capturing Methods for Two-Phase Flows: An Overview and Recent Developments
,”
Cent. Turbul. Res. Annu. Res. Briefs
,
2017
, pp.
117
135
.
242.
Ding
,
H.
,
Spelt
,
P. D.
, and
Shu
,
C.
,
2007
, “
Diffuse Interface Model for Incompressible Two-Phase Flows With Large Density Ratios
,”
J. Comput. Phys.
,
226
(
2
), pp.
2078
2095
.10.1016/j.jcp.2007.06.028
243.
Mirjalili
,
S.
,
Ivey
,
C. B.
, and
Mani
,
A.
,
2016
, “
Cost and Accuracy Comparison Between the Diffuse Interface Method and the Geometric Volume of Fluid Method for Simulating Two-Phase Flows
,”
APS Division of Fluid Dynamics Meeting Abstracts
, American Physical Society 69th Annual Division of Fluid Dynamics Annual Meeting, Portland, OR, Nov. 20–22, pp.
R29
008
.
244.
Mirjalili
,
S.
, and
Mani
,
A.
,
2021
, “
Consistent, Energy-Conserving Momentum Transport for Simulations of Two-Phase Flows Using the Phase Field Equations
,”
J. Comput. Phys.
,
426
, p.
109918
.10.1016/j.jcp.2020.109918
245.
Zhang
,
Q.
,
Qian
,
T.-Z.
, and
Wang
,
X.-P.
,
2016
, “
Phase Field Simulation of a Droplet Impacting a Solid Surface
,”
Phys. Fluids
,
28
(
2
), p.
022103
.10.1063/1.4940995
246.
Shen
,
M.
,
Li
,
B. Q.
,
Yang
,
Q.
,
Bai
,
Y.
,
Wang
,
Y.
,
Zhu
,
S.
,
Zhao
,
B.
,
Li
,
T.
, and
Hu
,
Y.
,
2019
, “
A Modified Phase-Field Three-Dimensional Model for Droplet Impact With Solidification
,”
Int. J. Multiphase Flow
,
116
, pp.
51
66
.10.1016/j.ijmultiphaseflow.2019.04.004
247.
Ahmadi-Befrui
,
B.
,
Uchil
,
N.
,
Gosman
,
A. D.
, and
Issa
,
R. I.
,
1996
, “
Modeling and Simulation of Thin Liquid Films Formed by Spray-Wall Interaction
,”
SAE
Paper No. 960627.
248.
Bai
,
C.
, and
Gosman
,
A. D.
,
1995
, “
Development of Methodology for Spray Impingement Simulation
,”
SAE
Paper No. 950283.
249.
Stanton
,
D. W.
, and
Rutland
,
C. J.
,
1996
, “
Modeling Fuel Film Formation and Wall Interaction in Diesel Engines
,”
SAE
Paper No. 960628.
250.
O'Rourke
,
P.
, and
Amsden
,
A. A.
,
1996
, “
A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines
,”
SAE
Paper No. 961961.
251.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE
Paper No. 2000-01-0271.
252.
Zhang
,
Y.
,
Jia
,
M.
,
Liu
,
H.
,
Xie
,
M.
,
Wang
,
T.
, and
Zhou
,
L.
,
2014
, “
Development of a New Spray/Wall Interaction Model for Diesel Spray Under PCCI-Engine Relevant Conditions
,”
Atomization Sprays
,
24
(
1
), pp.
41
80
.10.1615/AtomizSpr.2013008287
253.
Ma
,
T.
,
Feng
,
L.
,
Wang
,
H.
,
Liu
,
H.
, and
Yao
,
M.
,
2017
, “
A Numerical Study of Spray/Wall Impingement Based on Droplet Impact Phenomenon
,”
Int. J. Heat Mass Transfer
,
112
, pp.
401
412
.10.1016/j.ijheatmasstransfer.2017.04.110
254.
Chaussonnet
,
G.
,
2014
, “
Modeling of Liquid Film and Breakup Phenomena in Large-Eddy Simulations of Aeroengines Fueled by Airblast Atomizers
,” Ph.D. thesis,
Institut National Polytechnique
, Toulouse, France.
255.
Milanez
,
M.
, and
Naterer
,
G. F.
,
2005
, “
Eulerian Cross-Phase Diffusive Effects on Impinging Droplets and Phase Change Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
286
295
.10.1016/j.icheatmasstransfer.2004.07.005
256.
Honsek
,
R.
,
Habashi
,
W. G.
, and
Aubé
,
M. S.
,
2008
, “
Eulerian Modeling of in-Flight Icing Due to Supercooled Large Droplets
,”
J. Aircr.
,
45
(
4
), pp.
1290
1296
.10.2514/1.34541
257.
Bilodeau
,
D. R.
,
Habashi
,
W. G.
,
Fossati
,
M.
, and
Baruzzi
,
G. S.
,
2015
, “
Eulerian Modeling of Supercooled Large Droplet Splashing and Bouncing
,”
J. Aircr.
,
52
(
5
), pp.
1611
1624
.10.2514/1.C033023
258.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.10.1016/0301-9322(94)00069-V
259.
Rosa
,
N. G.
,
Villedieu
,
P.
,
Dewitte
,
J.
, and
Lavergne
,
G.
,
2006
, “
A New Droplet-Wall Interaction Model
,”
Proceedings of the 10th International Conference on Liquid Atomization and Spray Systems
, pp.
29
32
. Tokyo, Japan, Vol.
27
.
260.
Staat
,
H. J. J.
,
Tran
,
T.
,
Geerdink
,
B.
,
Riboux
,
G.
,
Sun
,
C.
,
Gordillo
,
J. M.
, and
Lohse
,
D.
,
2015
, “
Phase Diagram for Droplet Impact on Superheated Surfaces
,”
J. Fluid Mech.
,
779
, p.
R3
.10.1017/jfm.2015.465
261.
Wachters
,
L. H. J.
, and
Westerling
,
N. A. J.
,
1966
, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
,
21
(
11
), pp.
1047
1056
.10.1016/0009-2509(66)85100-X
262.
Wang
,
A.-B.
,
Chen
,
C.-C.
, and
Hwang
,
W.-C.
,
2002
, “
On Some New Aspects of Splashing Impact of Drop-Liquid Surface Interactions
,”
Drop-Surface Interactions
,
M.
Rein, ed.
,
CISM International Centre for Mechanical Sciences, Springer
, Vienna, Austria, pp.
303
306
.
263.
Chen
,
R.-H.
,
Chiu
,
S.-L.
, and
Lin
,
T.-H.
,
2007
, “
On the Collision Behaviors of a Diesel Drop Impinging on a Hot Surface
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
587
595
.10.1016/j.expthermflusci.2007.07.002
264.
Pan
,
K. L.
, and
Law
,
C. K.
,
2007
, “
Dynamics of Droplet–Film Collision
,”
J. Fluid Mech.
,
587
, pp.
1
22
.10.1017/S002211200700657X
265.
Madejski
,
J.
,
1976
, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
19
(
9
), pp.
1009
1013
.10.1016/0017-9310(76)90183-6
266.
Yang
,
W. J.
,
1975
, “
Theory on Vaporization and Combustion of Liquid Drops of Pure Substances and Binary Mixtures on Heated Surfaces
,” Instiute of Space and Aeronautical Science, University of Tokyo, Report No. 535, pp.
423
455
.
267.
Pasandideh-Fard
,
M.
,
Qiao
,
Y. M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1996
, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
,
8
(
3
), pp.
650
659
.10.1063/1.868850
268.
Vadillo
,
D. C.
,
Soucemarianadin
,
A.
,
Delattre
,
C.
, and
Roux
,
D. C. D.
,
2009
, “
Dynamic Contact Angle Effects Onto the Maximum Drop Impact Spreading on Solid Surfaces
,”
Phys. Fluids
,
21
(
12
), p.
122002
.10.1063/1.3276259
269.
Roisman
,
I. V.
,
2009
, “
Inertia Dominated Drop Collisions. II. An Analytical Solution of the Navier–Stokes Equations for a Spreading Viscous Film
,”
Phys. Fluids
,
21
(
5
), p.
052104
.10.1063/1.3129283
270.
Scheller
,
B. L.
, and
Bousfield
,
D. W.
,
1995
, “
Newtonian Drop Impact With a Solid Surface
,”
AIChE J.
,
41
(
6
), pp.
1357
1367
.10.1002/aic.690410602
271.
Seo
,
J.
,
Lee
,
J. S.
,
Kim
,
H. Y.
, and
Yoon
,
S. S.
,
2015
, “
Empirical Model for the Maximum Spreading Diameter of Low-Viscosity Droplets on a Dry Wall
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
121
129
.10.1016/j.expthermflusci.2014.10.019
272.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1998
, “
On the Modeling of Liquid Sprays Impinging on Surfaces
,”
Atomization Sprays
,
8
(
6
), pp.
625
652
.10.1615/AtomizSpr.v8.i6.20
273.
Samenfink
,
W.
,
Elsäßer
,
A.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
1999
, “
Droplet Interaction With Shear-Driven Liquid Films: Analysis of Deposition and Secondary Droplet Characteristics
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
462
469
.10.1016/S0142-727X(99)00035-1
274.
Senda
,
J.
, and
Fujimoto
,
H. G.
,
1999
, “
Multidimensional Modeling of Impinging Sprays on the Wall in Diesel Engines
,”
ASME Appl. Mech. Rev.
,
52
(
4
), pp.
119
138
.10.1115/1.3098930
275.
Bai
,
C. X.
,
Rusche
,
H.
, and
Gosman
,
A. D.
,
2002
, “
Modeling of Gasoline Spray Impingement
,”
Atomization Sprays
,
12
(
1–3
), pp.
1
3
.10.1615/AtomizSpr.v12.i123.10
276.
Kuhnke
,
D.
,
2004
, “
Spray/wall interaction modelling by dimensionless data analysis
,”. Ph.D. thesis,
Techn. Univ
., Darmstadt, Germany.
277.
Kalantari
,
D.
, and
Tropea
,
C.
,
2007
, “
Spray Impact Onto Flat and Rigid Walls: Empirical Characterization and Modelling
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
525
544
.10.1016/j.ijmultiphaseflow.2006.09.008
278.
Eckhause
,
J. E.
, and
Reitz
,
R. D.
,
1995
, “
Modeling Heat Transfer to Impinging Fuel Spray in Direct-Injection Engines
,”
Atomization Sprays
,
5
(
2
), pp.
213
242
.10.1615/AtomizSpr.v5.i2.60
279.
Rybicki
,
J. R.
, and
Mudawar
,
I.
,
2006
, “
Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
5
16
.10.1016/j.ijheatmasstransfer.2005.07.040
280.
Arcoumanis
,
C.
, and
Chang
,
J. C.
,
1993
, “
Heat Transfer Between a Heated Plate and an Impinging Transient Diesel Spray
,”
Exp. Fluids
,
16
(
2
), pp.
105
119
.10.1007/BF00944912
281.
Panão
,
M. R. O.
, and
Moreira
,
A. L. N.
,
2007
, “
Interpreting the Influence of Fuel Spray Impact on Mixture Preparation for HCCI Combustion With Port-Fuel Injection
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2205
2213
.10.1016/j.proci.2006.07.050
282.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Murugan
,
D. M.
,
1996
, “
Effect of Target Materials on the Particle Restitution Characteristics for Turbomachinery Application
,”
J. Propuls. Power
,
12
(
2
), pp.
260
266
.10.2514/3.24022
283.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME
Paper No. GT2006-90067.
284.
Zagnoli
,
D.
,
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2015
, “
Numerical Study of Deposition in a Full Turbine Stage Using Steady and Unsteady Methods
,”
ASME
Paper No. GT2015-43613.10.1115/GT2015-43613
285.
Ghoshal
,
A.
,
Walock
,
M. J.
,
Murugan
,
M.
,
Hofmeister-Mock
,
C.
,
Bravo
,
L.
,
Pepi
,
M.
,
Nieto
,
A.
,
Wright
,
A.
,
Luo
,
J.
,
Jain
,
N.
,
Flatau
,
A.
, and
Frehenbacher
,
L.
,
2019
, “
Governing Parameters Influencing CMAS Adhesion and Infiltration Into Environmental/Thermal Barrier Coatings in Gas Turbine Engines
,”
ASME
Paper No. GT2019-92000.10.1115/GT2019-92000
286.
Bravo
,
L.
,
Jain
,
N.
,
Khare
,
P.
,
Murugan
,
M.
,
Ghoshal
,
A.
, and
Flatau
,
A.
,
2020
, “
Physical Aspects of CMAS Particle Dynamics and Deposition in Gas Turbine Engines
,”
J. Mater. Res.
, 35, pp.
2249
2259
.
287.
Hamed
,
A.
, and
Kuhn
,
T. P.
,
1995
, “
Effects of Variational Particle Restitution Characteristics on Turbomachinery Erosion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
432
440
.10.1115/1.2814115
288.
Hamed
,
A.
,
Jun
,
Y. D.
, and
Yeuan
,
J. J.
,
1995
, “
Particle Dynamics Simulations in Inlet Separator With an Experimentally Based Bounce Model
,”
J. Propuls. Power
,
11
(
2
), pp.
230
235
.10.2514/3.51415
289.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.10.1080/02786829208959537
290.
Lawrence
,
M.
,
Casaday
,
B.
,
Lageman
,
D.
,
Bons
,
J.
, and
Whitaker
,
S.
,
2013
, “
Computational Modeling of High Temperature Deposition in Gas Turbine Engines With Experimental Validation
,”
AIAA
Paper No. AIAA 2013-1112.10.2514/6.2013-1112
291.
Barker
,
B. J.
,
2010
, “
Simulation of Coal Ash Deposition on Modern Turbine Nozzle Guide Vanes
,” M.S. thesis,
The Ohio State University
, Columbus, OH.
292.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2012
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,” ASME
J. Turbomach
,
134
(
4
), p. 041020.
293.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane
,”
ASME
Paper No. GT2010-23655.10.1115/GT2010-23655
294.
Giordano
,
D.
,
Russell
,
J. K.
, and
Dingwell
,
D. B.
,
2008
, “
Viscosity of Magmatic Liquids: A Model
,”
Earth Planet. Sci. Lett.
,
271
(
1–4
), pp.
123
134
.10.1016/j.epsl.2008.03.038
295.
Fluegel
,
A.
,
2007
, “
Glass Viscosity Calculation Based on a Global Statistical Modelling Approach
,”
Glass Technol.
,
48
(
1
), p.
18
.
296.
Bale
,
C. W.
,
Bélisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Hack
,
K.
,
Jung
,
I. H.
,
Kang
,
Y. B.
,
Melançon
,
J.
,
Pelton
,
A. D.
,
Robelin
,
C.
, and
Petersen
,
S.
,
2009
, “
FactSage Thermochemical Software and Databases — Recent Developments
,”
Calphad
,
33
(
2
), pp.
295
311
.10.1016/j.calphad.2008.09.009
297.
N'dala
,
I.
,
Cambier
,
F.
,
Anseau
,
M. R.
, and
Urbain
,
G.
,
1984
, “
Viscosity of Liquid Feldspars. Part I: Viscosity Measurements
,”
Trans. J. Br. Ceram. Soc.
,
83
, pp.
108
112
.
298.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy Fuels
,
9
(
2
), pp.
277
283
.10.1021/ef00050a010
299.
Singh
,
S.
, and
Tafti
,
D. K.
,
2016
, “
Prediction of Sand Transport and Deposition in a Two-Pass Internal Cooling Duct
,” ASME
J. Eng. Gas Turbines Power
,
138
(
7
), p.
72606
.
300.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.10.1016/j.ijheatfluidflow.2014.11.008
301.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.10.1115/1.1866166
302.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach
,
135
(
2
), pp.
021033
1
021033-9
.10.1115/1.4006571
303.
Yu
,
K.
, and
Tafti
,
D.
,
2016
, “
Impact Model for Micrometer-Sized Sand Particles
,”
Powder Technol.
,
294
, pp.
11
21
.10.1016/j.powtec.2016.02.014
304.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2016
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
084009
.
305.
Barker
,
B.
,
Hsu
,
K.
,
Varney
,
B.
,
Boulanger
,
A.
,
Hutchinson
,
J.
, and
Ng
,
W. F.
,
2017
, “
An Experiment-Based Sticking Model for Heated Sand
,”
ASME
Paper No. GT2017-64421.10.1115/GT2017-64421
306.
Gislason
,
S. R.
,
Hassenkam
,
T.
,
Nedel
,
S.
,
Bovet
,
N.
,
Eiriksdottir
,
E. S.
,
Alfredsson
,
H. A.
,
Hem
,
C. P.
,
Balogh
,
Z. I.
,
Dideriksen
,
K.
,
Oskarsson
,
N.
,
Sigfusson
,
B.
,
Larsen
,
G.
, and
Stipp
,
S. L. S.
,
2011
, “
Characterization of Eyjafjallajökull Volcanic Ash Particles and a Protocol for Rapid Risk Assessment
,”
PNAS
,
108
(
18
), pp.
7307
7312
.10.1073/pnas.1015053108
307.
Taylor
,
H. E.
, and
Lichte
,
F. E.
,
1980
, “
Chemical Composition of Mount St. Helens Volcanic Ash
,”
Geophys. Res. Lett.
,
7
(
11
), pp.
949
952
.10.1029/GL007i011p00949
308.
Power Technologies Inc.
,
2012
, “
Arizona Test Dust MSDS
,” Power Technologies Inc., Arden Hills, MN, accessed May 26, 2021, https://www.powdertechnologyinc.com/msds/arizona-test-dust/
309.
Wood
,
C. A.
,
Slater
,
S. L.
,
Zonneveldt
,
M.
,
Thornton
,
J.
,
Armstrong
,
N.
, and
Antoniou
,
R. A.
,
2017
, “
Characterisation of Dirt, Dust and Volcanic Ash: A Study on the Potential for Gas Turbine Engine Degradation, Dst-Group-tr-3367
,” Tech. rep., Aerospace Division, Defence Science Technology Group, Australian Government Department of Defense.
310.
Levi
,
C. G.
,
Hutchinson
,
J. W.
,
Vidal-Sétif
,
M.-H.
, and
Johnson
,
C. A.
,
2012
, “
Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits
,”
MRS Bull.
,
37
(
10
), pp.
932
941
.10.1557/mrs.2012.230
311.
Braue
,
W.
,
2009
, “
Environmental Stability of the YSZ Layer and the YSZ/TGO Interface of an in-Service EB-PVD Coated High-Pressure Turbine Blade
,”
J Mater Sci
,
44
(
7
), pp.
1664
1675
.10.1007/s10853-008-3215-8
312.
Mechnich
,
P.
, and
Braue
,
W.
,
2015
, “
Solid-State CMAS Corrosion of an EB-PVD YSZ Coated Turbine Blade: Zr4+ Partitioning and Phase Evolution
,”
J. Am. Ceram. Soc.
,
98
(
1
), pp.
296
302
.10.1111/jace.13241
313.
Zaleski
,
E. M.
,
Ensslen
,
C.
, and
Levi
,
C. G.
,
2015
, “
Melting and Crystallization of Silicate Systems Relevant to Thermal Barrier Coating Damage
,”
J. Am. Ceram. Soc.
,
98
(
5
), pp.
1642
1649
.10.1111/jace.13478
314.
Schön
,
J.
,
2011
,
Physical Properties of Rocks: A Workbook
,
Elsevier
, The Netherlands.
315.
Munro
,
R. G.
,
2002
, “
Elastic Moduli Data for Polycrystalline Oxide Ceramics
,” NIST Interagency/Internal Report (NISTIR 6853), National Institute of Standards and Technology, Gaithersburg, MD, accessed July 14, 2021, https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir6853.pdf
316.
Chicot
,
D.
,
Mendoza
,
J.
,
Zaoui
,
A.
,
Louis
,
G.
,
Lepingle
,
V.
,
Roudet
,
F.
, and
Lesage
,
J.
,
2011
, “
Mechanical Properties of Magnetite (Fe3O4), Hematite (α-Fe2O3) and Goethite (α-FeO·OH) by Instrumented Indentation and Molecular Dynamics Analysis
,”
Mater. Chem. Phys.
,
129
(
3
), pp.
862
870
.10.1016/j.matchemphys.2011.05.056
317.
Collaboration: Authors and Editors of the Volumes III/17B-22A-41B
,
1999
, “
Calcium Oxide (CaO) Young's, Shear and Bulk Modulus, Poisson's Ratio
,”
II-VI and I-VII Compounds; Semimagnetic Compounds
,
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
, eds., 41B,
Springer-Verlag
,
Berlin/Heidelberg
, pp.
1
2
.
318.
Pabst
,
W.
, and
Gregorová
,
E.
,
2013
, “
Elastic Properties of Silica Polymorphs – A Review
,”
Ceram. Silikaty
,
53
, pp.
167
184
.
319.
Lakshtanov
,
D. L.
,
Sinogeikin
,
S. V.
, and
Bass
,
J. D.
,
2006
, “
High-Temperature Phase Transitions and Elasticity of Silica Polymorphs
,”
Phys Chem Miner.
,
34
(
1
), pp.
11
22
.10.1007/s00269-006-0113-y
320.
Lorenz
,
J.
,
Haas
,
J. L.
,
Clynne
,
M. A.
,
Schafer
,
C. M.
,
Potter
,
R. W.
,
Schafer
,
C. M.
,
Tomkins
,
R. P. T.
,
Shakoor
,
A.
,
Hume
,
H. R.
,
Yang
,
J. M.
,
Li
,
H. H.
, and
Matula
,
R. A.
,
1981
, “
Physical Properties Data for Rock Salt
,” accessed May 26, 2021, https://digital.library.unt.edu/ark:/67531/metadc13196/
321.
Rao
,
A. S. M.
,
Narender
,
K.
,
Rao
,
K. G. K.
, and
Krishna
,
N. G.
,
2013
, “
Thermophysical Properties of NaCl, NaBr and NaF by γ-Ray Attenuation Technique
,”
JMP
,
4
(
2
), pp.
208
214
.10.4236/jmp.2013.42029
322.
Meille
,
S.
, and
Garboczi
,
E. J.
,
2001
, “
Linear Elastic Properties of 2D and 3D Models of Porous Materials Made From Elongated Objects
,”
Modell. Simul. Mater. Sci. Eng.
,
9
(
5
), pp.
371
390
.10.1088/0965-0393/9/5/303
323.
Singh
,
S.
,
Tafti
,
D.
,
Reagle
,
C.
,
Delimont
,
J.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2014
, “
Sand Transport in a Two Pass Internal Cooling Duct With Rib Turbulators
,”
Int. J. Heat Fluid Flow
,
46
, pp.
158
167
.10.1016/j.ijheatfluidflow.2014.01.006
324.
Richardson
,
J. H.
, and
Sallee
,
G. P.
, and
Smakula
,
F.
,
1979
, “
Causes of High Pressure Compressor Deterioration in Service
,”
ASME
Paper No. ▪.
325.
Lundgreen
,
R.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2016
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,”
ASME
Paper No. GT2016-57560.10.1115/GT2016-57560
326.
Laycock
,
R.
, and
Fletcher
,
T. H.
,
2015
, “
Independent Effects of Surface and Gas Temperature on Coal Fly Ash Deposition in Gas Turbines at Temperatures Up to 1400C
,”
ASME J. Eng. Gas Turbines Power, 138(2), p. 021402.
327.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W. G.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,” ASME
J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.
328.
Reagle
,
C. J.
,
Delimont
,
J. M.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2013
, “
Study of Microparticle Rebound Characteristics Under High Temperature Conditions
,”
ASME
Paper No. GT2013-95083.10.1115/GT2013-95083
329.
Bons
,
J. P.
,
Blunt
,
R.
, and
Whitaker
,
S.
,
2015
, “
A Comparison of Techniques for Particle Rebound Measurement in Gas Turbine Applications
,”
ASME
Paper No. GT2015-43766.10.1115/GT2015-43766
330.
Whitaker
,
S. M.
, and
Bons
,
J. P.
,
2015
, “
Evaluation of Elastic-Plastic Rebound Properties of Coal Fly Ash Particles for Use in a Universal Turbine Deposition Model
,”
ASME
Paper No. GT2015-43765.10.1115/GT2015-43765
331.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2017
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,”
ASME
Paper No. GTP-17-1475.
332.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.10.1115/1.2906754
333.
Schneider
,
O.
,
Dohmen
,
H. J.
,
Benra
,
F.-K.
, and
Brillert
,
D.
,
2009
, “
Investigations of Dust Separation in the Internal Cooling Air System of Gas Turbines
,”
ASME
Paper No. GT2003-38293.
334.
Vetere
,
F.
,
Behrens
,
H.
,
Holtz
,
F.
,
Vilardo
,
G.
, and
Ventura
,
G.
,
2010
, “
Viscosity of Crystal-Bearing Melts and Its Implication for Magma Ascent
,”
J. Mineralogical Petrological Sci.
,
105
(
3
), pp.
151
163
.10.2465/jmps.090402
335.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
336.
Ganti
,
H.
, and
Khare
,
P.
,
2020
, “
Data-Driven Surrogate Modeling of Multiphase Flows Using Machine Learning Techniques
,”
Comput. Fluids
,
211
, p.
104626
.10.1016/j.compfluid.2020.104626
337.
Ganti
,
H.
,
Kamin
,
M.
, and
Khare
,
P.
,
2020
, “
Design Space Exploration of Turbulent Multiphase Flows Using Machine Learning-Based Surrogate Model
,”
Energies
,
13
(
17
), p.
4565
.10.3390/en13174565
338.
Zhu
,
Y.
, and
Zabaras
,
N.
,
2018
, “
Bayesian Deep Convolutional Encoder–Decoder Networks for Surrogate Modeling and Uncertainty Quantification
,”
J. Comput. Phys.
,
366
, pp.
415
447
.10.1016/j.jcp.2018.04.018
339.
Wang
,
X.
,
Yeh
,
S.-T.
,
Chang
,
Y.-H.
, and
Yang
,
V.
,
2018
, “
A High-Fidelity Design Methodology Using Les-Based Simulation and Pod-Based Emulation: A Case Study of Swirl Injectors
,”
Chin. J. Aeronautics
,
31
(
9
), pp.
1855
1869
.10.1016/j.cja.2018.07.004
340.
Lye
,
K. O.
,
Mishra
,
S.
, and
Ray
,
D.
,
2020
, “
Deep Learning Observables in Computational Fluid Dynamics
,”
J. Comput. Phys.
,
410
, p.
109339
.10.1016/j.jcp.2020.109339
341.
Raissi
,
M.
, and
Karniadakis
,
G. E.
,
2018
, “
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
357
, pp.
125
141
.10.1016/j.jcp.2017.11.039
342.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
343.
Yang
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
B-Pinns: Bayesian Physics-Informed Neural Networks for Forward and Inverse Pde Problems With Noisy Data
,”
J. Comput. Phys.
,
425
, p.
109913
.10.1016/j.jcp.2020.109913
344.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P.-S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
, pp.
56
81
.10.1016/j.jcp.2019.05.024
345.
Sen
,
B. A.
, and
Menon
,
S.
,
2010
, “
Linear Eddy Mixing Based Tabulation and Artificial Neural Networks for Large Eddy Simulations of Turbulent Flames
,”
Combust. Flame
,
157
(
1
), pp.
62
74
.10.1016/j.combustflame.2009.06.005
346.
Owoyele
,
O.
,
Kundu
,
P.
,
Ameen
,
M. M.
,
Echekki
,
T.
, and
Som
,
S.
,
2020
, “
Application of Deep Artificial Neural Networks to Multi-Dimensional Flamelet Libraries and Spray Flames
,”
Int. J. Engine Res.
,
21
(
1
), pp.
151
168
.10.1177/1468087419837770
347.
Bhalla
,
S.
,
Yao
,
M.
,
Hickey
,
J.-P.
, and
Crowley
,
M.
,
2020
, “
Compact Representation of a Multi-Dimensional Combustion Manifold Using Deep Neural Networks
,”
Machine Learning and Knowledge Discovery in Databases
,
U.
Brefeld
,
E.
Fromont
,
A.
Hotho
,
A.
Knobbe
,
M.
Maathuis
, and
C.
Robardet
, eds.,
Springer International Publishing
, Berlin, pp.
602
617
.
348.
Pawar
,
S.
,
San
,
O.
,
Rasheed
,
A.
, and
Vedula
,
P.
,
2020
, “
A Priori Analysis on Deep Learning of Subgrid-Scale Parameterizations for Kraichnan Turbulence
,”
Theor. Comput. Fluid Dyn.
,
34
(
4
), pp.
429
455
.10.1007/s00162-019-00512-z
349.
Wang
,
Z.
,
Luo
,
K.
,
Li
,
D.
,
Tan
,
J.
, and
Fan
,
J.
,
2018
, “
Investigations of Data-Driven Closure for Subgrid-Scale Stress in Large-Eddy Simulation
,”
Phys. Fluids
,
30
(
12
), p.
125101
.10.1063/1.5054835
350.
Yao
,
S.
,
Wang
,
B.
,
Kronenburg
,
A.
, and
Stein
,
O. T.
,
2020
, “
Modeling of Sub-Grid Conditional Mixing Statistics in Turbulent Sprays Using Machine Learning Methods
,”
Phys. Fluids
,
32
(
11
), p.
115124
.10.1063/5.0027524
351.
Xie
,
C.
,
Yuan
,
Z.
, and
Wang
,
J.
,
2020
, “
Artificial Neural Network-Based Nonlinear Algebraic Models for Large Eddy Simulation of Turbulence
,”
Phys. Fluids
,
32
(
11
), p.
115101
.10.1063/5.0025138
352.
Hasslberger
,
J.
,
Engelmann
,
L.
,
Kempf
,
A.
, and
Klein
,
M.
,
2021
, “
Robust Dynamic Adaptation of the Smagorinsky Model Based on a Sub-Grid Activity Sensor
,”
Phys. Fluids
,
33
(
1
), p.
015117
.10.1063/5.0032117
353.
Nikolaou
,
Z.
,
Chrysostomou
,
C.
,
Minamoto
,
Y.
, and
Vervisch
,
L.
,
2021
, “
Evaluation of a Neural Network-Based Closure for the Unresolved Stresses in Turbulent Premixed v-Flames
,”
Flow, Turbul. Combust.
,
106
(
2
), pp.
331
356
.10.1007/s10494-020-00170-w
354.
Zhu
,
L.
,
Zhang
,
W.
,
Sun
,
X.
,
Liu
,
Y.
, and
Yuan
,
X.
,
2021
, “
Turbulence Closure for High Reynolds Number Airfoil Flows by Deep Neural Networks
,”
Aerosp. Sci. Technol.
,
110
, p.
106452
.10.1016/j.ast.2020.106452
355.
Siddani
,
B.
,
Balachandar
,
S.
,
Moore
,
W. C.
,
Yang
,
Y.
, and
Fang
,
R.
,
2020
, “
Machine Learning for Physics-Informed Generation of Dispersed Multiphase Flow Using Generative Adversarial Networks
,” arXiv e-Prints, May, p. arXiv:2005.05363
356.
Tropea
,
C.
, and
Roisman
,
I. V.
,
2000
, “
Modeling of Spray Impact on Solid Surfaces
,”
Atomization Sprays
,
10
(
3–5
), pp.
387
408
.10.1615/AtomizSpr.v10.i3-5.80
357.
Santini
,
M.
,
Cossali
,
G.
, and
Marengo
,
M.
,
2005
, “
Single-Drop Empirical Models for Spray Impact on Solid Walls: A Review
,”
Atomization Sprays
,
15
(
6
), pp.
699
736
.10.1615/AtomizSpr.v15.i6.50
358.
Khare
,
P.
, and
Yang
,
V.
,
2015
, “
Newtonian and Non-Newtonian Liquid Droplet Breakup: Child Droplet Statistics
,”
13th International Conference on Liquid Atomization and Spray Systems, ICLASS 2015,
Tainan, Taiwan, Aug.
23
27
.
359.
Khare
,
P.
,
2014
, “
Breakup of liquid droplets
,”. Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
360.
Laval
,
J.
,
Dubrulle
,
B.
, and
Nazarenko
,
S.
,
2001
, “
Nonlocality and Intermittency in Three Dimensional Turbulence
,”
Phys. Fluids
,
13
(
7
), pp.
1995
868
.10.1063/1.1373686
361.
Egolk
,
P. W.
, and
Hutter
,
K.
,
2013
, “
Nonlinear
,”
Nonlocal Fractional Turbulence
,
Springer Nature
,
Switzerland
, Vol.
86
, pp.
835
868
.
362.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and Cabot, W. H.,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
835
868
.
363.
Samiee
,
M.
,
Akhavan-Safaei
,
A.
, and
Zayernouri
,
M.
,
2020
, “
A Fractional Subgrid Scale Model for Turbulent Flows: Theoretical Formulation and a-Priori Study
,”
Phys. Fluids
,
32
(
5
), pp.
055102
868
.10.1063/1.5128379
364.
Mehta
,
P. P.
,
Pang
,
G.
,
Fangying
,
S.
, and
Karniadakis
,
G. E.
,
2019
, “
Discovering a Universal Variable-Order Fractional Model for Turbulent Couette Flow Using Physics-Informed Nueral Network
,”
Fractional Calculus Appl. Anal.
,
22
(
6
), pp.
1675
1688
.10.1515/fca-2019-0086
365.
Mao
,
Z.
,
Li
,
Z.
, and
Karniadakis
,
G. E.
,
2019
, “
Nonlocal Flocking Dynamics: Learning the Fractional Order of Pdes From Particle Simulations
,”
Commun. Appl. Math. Computation
,
1
(
4
), pp.
597
619
.10.1007/s42967-019-00031-y
366.
Leoni
,
D.
,
Patricio
,
C.
,
Zaki
,
T. A.
,
Karniadakis
,
G. E.
, and
Meneveau
,
C.
,
2020
, “
Two-Point Stress-Strain Rate Correlation Structure and Non-Local Eddy Viscosity in Turbulent Flows
,”
J. Fluid Mech.
,
1
, epub.
367.
Chen
,
W.
,
2006
, “
A Speculative Study of 2/3-Order Fractional Laplacian Modeling of Turbulence: Some Thoughts and Conjectures
,”
Chaos
,
16
(
2
), pp.
023126
868
.10.1063/1.2208452
368.
Song
,
F.
, and
Karniadakis
,
G.
,
2018
, “
A Universal Fractional Model of Wall-Turbulence
,”
Phys. Fluids
,
16
(
2
), pp.
835
868
.
369.
Liang
,
B.
, and
Mahadevan
,
S.
,
2011
, “
Error and Uncertainty Quantification and Sensitivity Analysis in Mechanics
,”
Int. J. Uncertainty Quantif.
,
1
(
2
), pp.
147
161
.10.1615/IntJUncertaintyQuantification.v1.i2.30
370.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
964
979
.
371.
Hoffman
,
F.
, and
Hammonds
,
J.
,
1994
, “
Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability
,”
Risk Anal.
,
14
(
5
), pp.
707
712
.10.1111/j.1539-6924.1994.tb00281.x
372.
Jakeman
,
J.
,
Eldred
,
M.
, and
Xiu
,
D.
,
2010
, “
Numerical Approach for Quantification of Epistemic Uncertainty
,”
J. Comput. Phys.
,
229
(
12
), pp.
4648
4663
.10.1016/j.jcp.2010.03.003
373.
Enderle
,
B.
,
Rauch
,
B.
,
Grimm
,
F.
,
Eckel
,
G.
, and
Aigner
,
M.
,
2020
, “
Non-Intrusive Uncertainty Quantification in the Simulation of Turbulent Spray Combustion Using Polynomial Chaos Expansion: A Case Study
,”
Combust. Flame
,
213
, pp.
26
38
.10.1016/j.combustflame.2019.11.021
374.
Le Maître
,
O.
, and
Knio
,
O. M.
,
2010
, “
Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
,”
Springer Ser. Sci. Comput.
,
14
(
2
), pp.
707
712
.
375.
Fishman, G. S.
,
1996
, “
Monte Carlo: Concepts, Algorithms, and Applications
,”
Springer-Verlag, New York.
376.
Bravo
,
L.
,
Murugan
,
M.
,
Ghoshal
,
A.
,
Simon
,
S.
,
Koneru
,
R.
,
Jain
,
N.
,
Khare
,
P.
, and
Flatau
,
A.
,
2021
, “
Uncertainty Quantification in Large Eddy Simulation of CMAS Attack and Deposition in Gas Turbine Engines
,”
AIAA
Paper No.
2021
0766
.
377.
Turnquist
,
B.
, and
Owkes
,
M.
,
2019
, “
Multiuq: An Intrusive Uncertainty Quantification Tool for Gas-Liquid Multiphase Flows
,”
J. Comput. Phys.
,
399
(
15
), p.
108951
.10.1016/j.jcp.2019.108951
378.
Roy
,
C.
, and
Oberkampf
,
W.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
379.
Mishra
,
A. A.
, and
Iaccarino
,
G.
,
2019
, “
Theoretical Analysis of Tensor Perturbations for Uncertainty Quantification of Reynolds Averaged and Subgrid Scale Closures
,”
Phys. Fluids
,
31
(
7
), p.
075101
.10.1063/1.5099176
380.
Nieto
,
A.
,
Agrawal
,
R.
,
Bravo
,
L.
,
Hofmeister-Mock
,
C.
,
Pepi
,
M.
, and
Ghoshal
,
A.
,
2019
, “
Calcia-Magnesia-Alumina-Silicate (CMAS) Attack Mechanisms and Roadmap Towards Sandphobic Thermal and Environmental Barrier Coatings
,”
Int. Mater. Rev.
,
399
(
15
), pp.
1
42
.
You do not currently have access to this content.