Abstract

Shear banding is a material instability in large strain plastic deformation of solids, where otherwise homogeneous flow becomes localized in narrow micrometer-scale bands. Shear bands have broad implications for materials processing and failure under dynamic loading in a wide variety of material systems ranging from metals to rocks. This year marks 75 years since the publication of Zener and Hollomon's pioneering work on shear bands (Zener and Hollomon, J Appl. Phys., 15, 22–32, 1944), which is widely credited with drawing the attention of the mechanics community to shear bands and related localization phenomena. Since this landmark publication, there has been significant experimental and theoretical investigation into the onset of shear banding. Yet, given the extremely small length and time scales associated with band development, several challenges persist in studying the evolution of single bands, postinitiation. For instance, spatiotemporal development of strain fields in the vicinity of a band, crucial to understanding the transition from localized flow to fracture, has remained largely unexplored. Recent full-field displacement measurements, coupled with numerical modeling, have only begun to ameliorate this problem. This article summarizes our present understanding of plastic flow dynamics around single shear bands and the subsequent transition to fracture, with special emphasis on the postinstability stage. These topics are covered specifically from a materials processing perspective. We begin with a semihistorical look at some of Zener's early ideas on shear bands and discuss recent advances in experimental methods for mapping localized flow during band formation, including direct in situ imaging as well as ex situ/postmortem analyses. Classical theories and analytical frameworks are revisited in the light of recently published experimental data. We show that shear bands exhibit a wealth of complex flow characteristics that bear striking resemblance to viscous fluid flows and related boundary layer phenomena. Finally, new material systems and strategies for reproducing shear band formation at low speeds are discussed. It is hoped that these will help further our understanding of shear band dynamics, the subsequent transition to fracture, and lead to practical “control” strategies for suppressing shear band-driven failures in processing applications.

References

1.
Bai
,
Y.
, and
Dodd
,
B.
,
1992
,
Adiabatic Shear Localization: Occurrence, Theories and Applications
,
Pergamon Press
,
Oxford, UK
.
2.
Shaw
,
M. C.
,
Dirke
,
S. O.
,
Smith
,
P. A.
,
Cook
,
N. H.
,
Loewen
,
E. G.
, and
Yang
,
C. T.
,
1954
, “
Machining Titanium
,” U.S. Air Force, Cambridge, MA, Report No. AF 33(600)-22674.
3.
Backofen
,
W. A.
,
1972
,
Deformation Processing
,
Addison-Wesley Publishing Company
, Reading, MA.
4.
Clifton
,
R. J.
,
2000
, “
Response of Materials Under Dynamic Loading
,”
Int. J. Solids Struct.
,
37
(
1–2
), pp.
105
113
.10.1016/S0020-7683(99)00082-7
5.
Antolovich
,
S. D.
, and
Armstrong
,
R. W.
,
2014
, “
Plastic Strain Localization in Metals: Origins and Consequences
,”
Prog. Mater. Sci.
,
59
, pp.
1
160
.10.1016/j.pmatsci.2013.06.001
6.
Rogers
,
H. C.
,
1979
, “
Adiabatic Plastic Deformation
,”
Annu. Rev. Mater. Sci.
,
9
(
1
), pp.
283
311
.10.1146/annurev.ms.09.080179.001435
7.
Wright
,
T. W.
,
2002
,
The Physics and Mathematics of Adiabatic Shear Bands (Cambridge Monographs on Mechanics)
,
Cambridge University Press
,
Cambridge, UK
.
8.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley
, New York.
9.
Walley
,
S. M.
,
2007
, “
Shear Localization: A Historical Overview
,”
Metall. Mater. Trans. A
,
38
(
11
), pp.
2629
2654
.10.1007/s11661-007-9271-x
10.
Dodd
,
B.
,
Walley
,
S. M.
,
Yang
,
R.
, and
Nesterenko
,
V. F.
,
2015
, “
Major Steps in the Discovery of Adiabatic Shear Bands
,”
Metall. Mater. Trans. A
,
46
(
10
), pp.
4454
4458
.10.1007/s11661-015-2739-1
11.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.10.1063/1.1707363
12.
Bridgman
,
P. W.
,
1952
,
Studies in Large Plastic Flow and Fracture
,
McGraw-Hill Book Company
,
New York
.
13.
Nadai
,
A.
,
1950
,
Theory of Flow and Fracture of Solids
,
McGraw-Hill Book Company
,
New York
.
14.
Shanley
,
F. R.
,
1947
, “
Inelastic Column Theory
,”
J. Aeronaut. Sci.
,
14
(
5
), pp.
261
268
.10.2514/8.1346
15.
Tresca
,
H. M.
,
1878
, “
On Further Applications of the Flow of Solids
,”
Proc. Inst. Mech. Eng.
,
29
(
1
), pp.
301
345
.10.1243/PIME_PROC_1878_029_017_02
16.
Massey
,
H. F.
,
1921
, “
The Flow of Metal During Forging
,”
Proceedings of the Manchester Association of Engineers
, Reprinted by The National Machinery Co, Tiffon, OH, pp.
21
26
.
17.
Dodd
,
B.
,
Walley
,
S. M.
,
Yang
,
R.
, and
Nesterenko
,
V. F.
,
2014
, “
Major Steps in the Discovery of Adiabatic Shear Bands
,” arXiv preprint
arXiv:1410.1353
.
18.
Trent
,
E. M.
,
1941
, “
The Formation and Properties of Martensite on the Surface of Rope Wire
,”
J. Iron Steel Inst.
,
143
, pp.
401
412
.
19.
Adcock
,
F.
,
1922
, “
The Internal Mechanism of Cold Work and Recrystallization in Cupro-Nickel
,”
J. Inst. Met.
,
27
, pp.
73
105
.
20.
Gilman
,
J. J.
,
1994
, “
Micromechanics of Shear Banding
,”
Mech. Mater.
,
17
(
2–3
), pp.
83
96
.10.1016/0167-6636(94)90051-5
21.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Plastic Flow and Rupture of Metals
,”
Trans. Am. Soc. Met.
,
33
, pp.
163
235
.
22.
Gray
,
D. E.
,
1995
, “
The U.S. Army Laboratories at Watertown, Massachusetts. Contributions to Science and Technology: A History
,” Army Lab Command, Material Technology Lab, Watertown, MA, Accession No.
ADA305301
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a305301.pdf
23.
Weertman
,
J.
,
1986
, “
Zener–Stroh Crack, Zener–Hollomon Parameter, and Other Topics
,”
J. Appl. Phys.
,
60
(
6
), pp.
1877
1887
.10.1063/1.337236
24.
Zener
,
C.
,
1948
, “
The Micro-Mechanism of Fracture
,”
Fracturing of Metals
,
F.
Jonassen
,
W.P.
Roop
, and
R.T.
Bayless
, eds.,
American Society for Metals
,
Cleveland, OH
, pp.
3
31
.
25.
Basinski
,
Z. S.
,
1957
, “
The Instability of Plastic Flow of Metals at Very Low Temperatures
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
240
(
1221
), pp.
229
242
.10.1098/rspa.1957.0079
26.
Chin
,
G. Y.
,
Hosford
,
W. F.
, and
Backofen
,
W. A.
,
1964
, “
Influence of the Mechanical Loading System on Low-Temperature Plastic Instability
,”
Trans. Metall. Soc. AIME
,
230
(
5
), pp.
1043
1049
.
27.
Chin
,
G. Y.
,
Hosford
,
W. F.
, and
Backofen
,
W. A.
,
1964
, “
Ductile Fracture of Aluminum
,”
Trans. Metall. Soc. AIME
,
230
(
3
), p.
437
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201602017880139310
28.
Winter
,
R. E.
, and
Field
,
J. E.
,
1975
, “
The Role of Localized Plastic Flow in the Impact Initiation of Explosives
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
343
(
1634
), pp.
399
413
.10.1098/rspa.1975.0074
29.
Christman
,
T.
, and
Shewmon
,
P. G.
,
1979
, “
Adiabatic Shear Localization and Erosion of Strong Aluminum Alloys
,”
Wear
,
54
(
1
), pp.
145
155
.10.1016/0043-1648(79)90052-8
30.
Shewmon
,
P.
, and
Sundararajan
,
G.
,
1983
, “
The Erosion of Metals
,”
Annu. Rev. Mater. Sci.
,
13
(
1
), pp.
301
318
.10.1146/annurev.ms.13.080183.001505
31.
Poirier
,
J. P.
,
1980
, “
Shear Localization and Shear Instability in Materials in the Ductile Field
,”
J. Struct. Geol.
,
2
(
1–2
), pp.
135
142
.10.1016/0191-8141(80)90043-7
32.
Rice
,
J. R.
,
2006
, “
Heating and Weakening of Faults During Earthquake Slip
,”
J. Geophys. Res. Solid Earth
,
111
(
B5
).https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005JB004006
33.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
189
193
.10.1115/1.3629585
34.
Komanduri
,
R.
, and
Hou
,
Z.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V)
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
2995
3010
.10.1007/s11661-002-0284-1
35.
Sagapuram
,
D.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Mann
,
J. B.
,
M'Saoubi
,
R.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
On the Cutting of Metals: A Mechanics Viewpoint
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p. 110808.10.1115/1.4047869
36.
Johnson
,
W.
,
Baraya
,
G. L.
, and
Slater
,
R. A. C.
,
1964
, “
On Heat Lines or Lines of Thermal Discontinuity
,”
Int. J. Mech. Sci.
,
6
(
6
), p.
409
.10.1016/S0020-7403(64)80001-1
37.
Dodd
,
B.
,
1983
, “
Shear Instabilities in Blanking and Related Processes
,”
Met. Technol.
,
10
(
1
), pp.
57
60
.10.1179/030716983803291550
38.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
,
1983
, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates. Part 1: Ductile Metals
,”
J. Eng. Mater. Technol.
,
105
(
1
), pp.
48
53
.10.1115/1.3225618
39.
Marchand
,
A.
, and
Duffy
,
J.
,
1988
, “
An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel
,”
J. Mech. Phys. Solids
,
36
(
3
), pp.
251
283
.10.1016/0022-5096(88)90012-9
40.
Giovanola
,
J. H.
,
1988
, “
Adiabatic Shear Banding Under Pure Shear Loading. Part I: Direct Observation of Strain Localization and Energy Dissipation Measurements
,”
Mech. Mater.
,
7
(
1
), pp.
59
71
.10.1016/0167-6636(88)90006-3
41.
Wingrove
,
A. L.
,
1973
, “
The Influence of Projectile Geometry on Adiabatic Shear and Target Failure
,”
Metall. Mater. Trans. B
,
4
(
8
), pp.
1829
1833
.10.1007/BF02665409
42.
Timothy
,
S. P.
, and
Hutchings
,
I. M.
,
1985
, “
The Structure of Adiabatic Shear Bands in a Titanium Alloy
,”
Acta Metall.
,
33
(
4
), pp.
667
676
.10.1016/0001-6160(85)90030-6
43.
Hatherly
,
M.
, and
Malin
,
A. S.
,
1984
, “
Shear Bands in Deformed Metals
,”
Scr. Metall.
,
18
(
5
), pp.
449
454
.10.1016/0036-9748(84)90419-8
44.
Timothy
,
S. P.
,
1987
, “
The Structure of Adiabatic Shear Bands in Metals: A Critical Review
,”
Acta Metall.
,
35
(
2
), pp.
301
306
.10.1016/0001-6160(87)90238-0
45.
Manion
,
S. A.
, and
Stock
,
T. A. C.
,
1969
, “
Measurement of Strain in Adiabatic Shear Bands
,”
J. Aust. Inst. Met.
,
14
(
3
), pp.
190
191
.
46.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2018
, “
A Common Mechanism for Evolution of Single Shear Bands in Large-Strain Deformation of Metals
,”
Philos. Mag.
,
98
(
36
), pp.
3267
3299
.10.1080/14786435.2018.1524586
47.
Zhou
,
M.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
1996
, “
Dynamically Propagating Shear Bands in Impact-Loaded Prenotched Plates. I. Experimental Investigations of Temperature Signatures and Propagation Speed
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
981
1006
.10.1016/0022-5096(96)00003-8
48.
Roessig
,
K. M.
, and
Mason
,
J. J.
,
1998
, “
Adiabatic Shear Localization in the Impact of Edge-Notched Specimens
,”
Exp. Mech.
,
38
(
3
), pp.
196
203
.10.1007/BF02325743
49.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Mahato
,
A.
,
Sundaram
,
N. K.
,
M'Saoubi
,
R.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2016
, “
Geometric Flow Control of Shear Bands by Suppression of Viscous Sliding
,”
Proc. R. Soc. London A Math., Phys. Eng. Sci.
,
472
(
2192
), p.
20160167
.10.1098/rspa.2016.0167
50.
Hartley
,
K. A.
,
Duffy
,
J.
, and
Hawley
,
R. H.
,
1987
, “
Measurement of the Temperature Profile During Shear Band Formation in Steels Deforming at High Strain Rates
,”
J. Mech. Phys. Solids
,
35
(
3
), pp.
283
301
.10.1016/0022-5096(87)90009-3
51.
Hartmann
,
K. H.
,
Kunze
,
H. D.
, and
Meyer
,
L. W.
,
1981
, “
Metallurgical Effects on Impact Loaded Materials
,”
Shock Waves and High-Strain-Rate Phenomena in Metals
,
Springer
, Boston, MA, pp.
325
337
.
52.
Thompson
,
K. R. L.
,
Stock
,
T. A. C.
, and
McConnoll
,
B. H.
,
1970
, “
Evidence for Melting of a Low-Melting-Point Alloy During High-Velocity Impact
,” J. Aust. Inst. Metals, 15(1), p.
26
.
53.
Yeung
,
H.
,
Viswanathan
,
K.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
Sinuous Flow in Metals
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
32
), pp.
9828
9832
.10.1073/pnas.1509165112
54.
Udupa
,
A.
,
Viswanathan
,
K.
,
Yeung
,
H.
, and
Chandrasekar
,
S.
,
2017
, “
The Cutting of Metals Via Plastic Buckling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2202
), p.
20160863
.10.1098/rspa.2016.0863
55.
Glenn
,
R. C.
, and
Leslie
,
W. C.
,
1971
, “
The Nature of “White Streaks” in Impacted Steel Armor Plate
,”
Metall. Trans.
,
2
(
10
), pp.
2945
2947
.10.1007/BF02813279
56.
Wingrove
,
A. L.
,
1971
, “
A Note on the Structure of Adiabatic Shear Bands in Steel
,”
J. Aust. Inst. Met.
,
16
, pp.
67
70
.
57.
Meyers
,
M. A.
, and
Pak
,
H. R.
,
1986
, “
Observation of an Adiabatic Shear Band in Titanium by High-Voltage Transmission Electron Microscopy
,”
Acta Metall.
,
34
(
12
), pp.
2493
2499
.10.1016/0001-6160(86)90152-5
58.
Landau
,
P.
,
Osovski
,
S.
,
Venkert
,
A.
,
Gärtnerová
,
V.
, and
Rittel
,
D.
,
2016
, “
The Genesis of Adiabatic Shear Bands
,”
Sci. Rep.
,
6
(
1
), p.
37226
.10.1038/srep37226
59.
Sagapuram
,
D.
, and
Viswanathan
,
K.
,
2018
, “
Evidence for Bingham Plastic Boundary Layers in Shear Banding of Metals
,”
Extreme Mech. Lett.
,
25
, pp.
27
36
.10.1016/j.eml.2018.10.002
60.
Yadav
,
S.
, and
Sagapuram
,
D.
,
2020
, “
In Situ Analysis of Shear Bands and Boundary Layer Formation in Metals
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190519
.10.1098/rspa.2019.0519
61.
Needleman
,
A.
, and
Tvergaard
,
V.
,
1992
, “
Analyses of Plastic Flow Localization in Metals
,”
ASME Appl. Mech. Rev.
,
45
(
3S
), pp.
S3
18
.10.1115/1.3121390
62.
Argon
,
A. S.
,
1973
, “
Stability of Plastic Deformation
,”
The Inhomogeneity of Plastic Deformation
,
American Society for Metals
,
Metals Park, OH
, pp.
161
189
.
63.
Dillamore
,
I. L.
,
Roberts
,
J. G.
, and
Bush
,
A. C.
,
1979
, “
Occurrence of Shear Bands in Heavily Rolled Cubic Metals
,”
Met. Sci.
,
13
(
2
), pp.
73
77
.10.1179/msc.1979.13.2.73
64.
Rice
,
J. R.
,
1976
, “
The Localization of Plastic Deformation
,”
Proceedings of the 14th International Congress on Theoretical and Applied Mechanics
, North-Holland, Amsterdam, The Netherlands, Aug. 30–Sept. 4, pp.
207
220
.
65.
Hill
,
R.
,
1962
, “
Acceleration Waves in Solids
,”
J. Mech. Phys. Solids
,
10
(
1
), pp.
1
16
.10.1016/0022-5096(62)90024-8
66.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, Vol.
21
, The Netherlands, Apr. 19–21, pp.
541
547
.
67.
Burns
,
T. J.
, and
Davies
,
M. A.
,
1997
, “
Nonlinear Dynamics Model for Chip Segmentation in Machining
,”
Phys. Rev. Lett.
,
79
(
3
), pp.
447
450
.10.1103/PhysRevLett.79.447
68.
Viswanathan
,
K.
,
Udupa
,
A.
,
Yeung
,
H.
,
Sagapuram
,
D.
,
Mann
,
J. B.
,
Saei
,
M.
, and
Chandrasekar
,
S.
,
2017
, “
On the Stability of Plastic Flow in Cutting of Metals
,”
CIRP Ann.
,
66
(
1
), pp.
69
72
.10.1016/j.cirp.2017.04.027
69.
Clifton
,
R. J.
,
1980
, “Adiabatic Shear Banding,” Chapter 8,
Material Response to Ultra High Loading Rates
, NRC National Material Advisory Board (US), Washington, DC, Report No. NMAB-356.
70.
Clifton
,
R. J.
,
Duffy
,
J.
,
Hartley
,
K. A.
, and
Shawki
,
T. G.
,
1984
, “
On Critical Conditions for Shear Band Formation at High Strain Rates
,”
Scr. Metall.
,
18
(
5
), pp.
443
448
.10.1016/0036-9748(84)90418-6
71.
Molinari
,
A.
, and
Clifton
,
R. J.
,
1987
, “
Analytical Characterization of Shear Localization in Thermoviscoplastic Materials
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
806
812
.10.1115/1.3173121
72.
Molinari
,
A.
,
1997
, “
Collective Behavior and Spacing of Adiabatic Shear Bands
,”
J. Mech. Phys. Solids
,
45
(
9
), pp.
1551
1575
.10.1016/S0022-5096(97)00012-4
73.
Shawki
,
T. G.
,
Sherif
,
R. A.
, and
Cherukuri
,
H. P.
,
1992
, “
Characterization of the Flow Localization History in Dynamic Viscoplasticity
,”
ASME Appl. Mech. Rev.
,
45
(
3S
), pp.
S149
–S
153
.10.1115/1.3121385
74.
Cherukuri
,
H. P.
, and
Shawki
,
T. G.
,
1995
, “
An Energy-Based Localization Theory: II. Effects of the Diffusion, Inertia, and Dissipation Numbers
,”
Int. J. Plasticity
,
11
(
1
), pp.
41
64
.10.1016/0749-6419(94)00038-7
75.
Giglio
,
M.
,
Manes
,
A.
, and
Vigano
,
F.
,
2012
, “
Ductile Fracture Locus of Ti–6Al–4V Titanium Alloy
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
121
135
.10.1016/j.ijmecsci.2011.10.003
76.
Ramalingam
,
S.
, and
Black
,
J. T.
,
1973
, “
An Electron Microscopy Study of Chip Formation
,”
Metall. Trans.
,
4
(
4
), pp.
1103
1112
.10.1007/BF02645614
77.
Rittel
,
D.
,
Landau
,
P.
, and
Venkert
,
A.
,
2008
, “
Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure
,”
Phys. Rev. Lett.
,
101
(
16
), p.
165501
.10.1103/PhysRevLett.101.165501
78.
Lewandowski
,
J. J.
, and
Greer
,
A. L.
,
2006
, “
Temperature Rise at Shear Bands in Metallic Glasses
,”
Nat. Mater.
,
5
(
1
), pp.
15
18
.10.1038/nmat1536
79.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon Press
, Oxford, UK.
80.
Christian
,
J. W.
,
2002
,
The Theory of Transformations in Metals and Alloys (Part I)
,
Pergamon Press
,
Oxford, UK
.
81.
Gottstein
,
G.
, and
Shvindlerman
,
L. S.
,
2009
,
Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications
,
CRC Press
, Boca Raton, FL.
82.
Hines
,
J. A.
, and
Vecchio
,
K. S.
,
1997
, “
Recrystallization Kinetics Within Adiabatic Shear Bands
,”
Acta Mater.
,
45
(
2
), pp.
635
649
.10.1016/S1359-6454(96)00193-0
83.
Lee
,
C. S.
, and
Duggan
,
B. J.
,
1994
, “
A Dislocation Avalanche Theory of Shear Banding
,”
Acta Metall. Mater.
,
42
(
3
), pp.
857
860
.10.1016/0956-7151(94)90280-1
84.
Antolovich
,
S. D.
, and
Armstrong
,
R. W.
,
2014
, “
A Dislocation Pile-Up Computation for Adiabatic Shear Banding
,”
MRS Online Proceedings Library Archive
, p.
1650
.
85.
Yadav
,
S.
, and
Sagapuram
,
D.
,
2020
, “
Nucleation Properties of Isolated Shear Bands
,”
Proc. R. Soc. A
,
476
(
2241
), p.
20200529
.10.1098/rspa.2020.0529
86.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
.10.1115/1.2831200
87.
Woodward
,
R. L.
,
1979
, “
Metallographic Features Associated With the Penetration of Titanium Alloy Targets
,”
Metall. Trans. A
,
10
(
5
), pp.
569
573
.10.1007/BF02658319
88.
Needleman
,
A.
,
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
Void Growth in Plastic Solids
,”
Topics in Fracture and Fatigue
,
Springer
, New York, pp.
145
178
.
89.
Samuels
,
L. E.
, and
Lamborn
,
I. R.
,
1978
, “
Failure Analysis of Armament Hardware
,”
Metallography in Failure Analysis
, Plenum Press
, Boston, MA, pp.
167
190
.
90.
Stock
,
T. A. C.
, and
Thompson
,
K. R. L.
,
1970
, “
Penetration of Aluminum Alloys by Projectiles
,”
Metall. Trans.
,
1
(
1
), pp.
219
224
.10.1007/BF02819264
91.
Duffy
,
J.
, and
Chi
,
Y. C.
,
1992
, “
On the Measurement of Local Strain and Temperature During the Formation of Adiabatic Shear Bands
,”
Mater. Sci. Eng.: A
,
157
(
2
), pp.
195
210
.10.1016/0921-5093(92)90026-W
92.
Cho
,
K.
,
Chi
,
Y. C.
, and
Duffy
,
J.
,
1990
, “
Microscopic Observations of Adiabatic Shear Bands in Three Different Steels
,”
Metall. Trans. A
,
21
(
4
), pp.
1161
1175
.10.1007/BF02656536
93.
Cho
,
K.
,
Lee
,
S.
,
Nutt
,
S. R.
, and
Duffy
,
J.
,
1993
, “
Adiabatic Shear Band Formation During Dynamic Torsional Deformation of an HY-100 Steel
,”
Acta Metall. Mater.
,
41
(
3
), pp.
923
932
.10.1016/0956-7151(93)90026-O
94.
Mgbokwere
,
C. O.
,
Nutt
,
S. R.
, and
Duffy
,
J.
,
1994
, “
Shear Band Formation in 4340 Steel: A TEM Study
,”
Mech. Mater.
,
17
(
2–3
), pp.
97
110
.10.1016/0167-6636(94)90052-3
95.
R. J.
Clifton
and
R. J.
Asaro
,
1994
,
In memoriam Professor Jacques W. Duffy
.
Mech. Mater.
,
17
(
2–3
), p.
iv
(Also see special issue (Volume 17, Issues 2–3) in the Journal Mechanics of Materials on the topic of shear instabilities, dedicated to Jacques Duffy).https://doi.org/10.1016/0167-6636(94)90050-7
96.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
97.
Oldroyd
,
J. G.
,
1947
, “
Two-Dimensional Plastic Flow of a Bingham Solid
,”
Math. Proc. Cambridge Philos. Soc.
,
43
(
3
), pp.
383
395
.10.1017/S0305004100023616
98.
Pascal
,
H.
,
1989
, “
Propagation of Disturbances in a non-Newtonian Fluid
,”
Phys. D Nonlinear Phenom.
,
39
(
2–3
), pp.
262
266
.10.1016/0167-2789(89)90008-0
99.
Zener
,
C.
,
1948
,
Elasticity and Anelasticity of Metals
,
University of Chicago Press
,
Chicago, IL
.
100.
Giannuzzi
,
L. A.
, and
King
,
A. H.
,
1985
, “
Grain Boundary Viscosity at High Temperature and the Grain Boundary Phase Transformation
,”
Scr. Metall.
,
19
(
3
), pp.
291
294
.10.1016/0036-9748(85)90316-3
101.
Gioia
,
G.
, and
Ortiz
,
M.
,
1996
, “
The Two-Dimensional Structure of Dynamic Boundary Layers and Shear Bands in Thermoviscoplastic Solids
,”
J. Mech. Phys. Solids
,
44
(
2
), pp.
251
292
.10.1016/0022-5096(95)00071-2
102.
DiLellio
,
J. A.
, and
Olmstead
,
W. E.
,
1997
, “
Temporal Evolution of Shear Band Thickness
,”
J. Mech. Phys. Solids
,
45
(
3
), pp.
345
359
.10.1016/S0022-5096(96)00098-1
103.
Tzavaras
,
A. E.
,
1986
, “
Shearing of Materials Exhibiting Thermal Softening or Temperature Dependent Viscosity
,”
Q. Appl. Math.
,
44
(
1
), pp.
1
12
.10.1090/qam/840438
104.
Tzavaras
,
A. E.
,
1992
, “
Nonlinear Analysis Techniques for Shear Band Formation at High Strain Rates
,”
ASME Appl. Mech. Rev.
,
45
(
3S
), pp.
S82
S94
.10.1115/1.3121395
105.
Basinski
,
Z. S.
,
1960
, “
The Instability of Plastic Flow of Metals at Very Low Temperatures. II
,”
Aust. J. Phys.
,
13
(
2
), p.
354
.10.1071/PH600354a
106.
Akcan
,
S.
,
Shah
,
W. S.
,
Moylan
,
S. P.
,
Chandrasekar
,
S.
,
Chhabra
,
P. N.
, and
Yang
,
H. T. Y.
,
2002
, “
Formation of White Layers in Steels by Machining and Their Characteristics
,”
Metall. Mater. Trans. A
,
33
(
4
), pp.
1245
1254
.10.1007/s11661-002-0225-z
107.
Archard
,
J. F.
, and
Rowntree
,
R. A.
,
1988
, “
Metallurgical Phase Transformations in the Rubbing of Steels
,”
Proc. R. Soc. London A. Math. Phys. Sci.
,
418
(
1855
), pp.
405
424
.10.1098/rspa.1988.0091
108.
Costin
,
L. S.
,
Crisman
,
E. E.
,
Hawley
,
R. H.
, and
Duffy
,
J.
,
1979
, “
On the Localization of Plastic Flow in Mild Steel Tubes Under Dynamic Torsional Loading
,”
Proceedings of the Second Oxford Conference on the Mechanical Properties of Materials at High Rates of Strain
,
The Institute of Physics
,
Oxford
, UK, Mar. 28–30, pp.
90
100.
https://books.google.co.in/books/about/On_the_Localization_of_Plastic_Flow_in_M.html?id=vHyVHAAACAAJ&redir_esc=y
109.
Liao
,
S. C.
, and
Duffy
,
J.
,
1998
, “
Adiabatic Shear Bands in a Ti-6Al-4V Titanium Alloy
,”
J. Mech. Phys. Solids
,
46
(
11
), pp.
2201
2231
.10.1016/S0022-5096(98)00044-1
110.
Guo
,
Y.
,
Ruan
,
Q.
,
Zhu
,
S.
,
Wei
,
Q.
,
Chen
,
H.
,
Lu
,
J.
,
Hu
,
B.
,
Wu
,
X.
,
Li
,
Y.
, and
Fang
,
D.
,
2019
, “
Temperature Rise Associated With Adiabatic Shear Band: Causality Clarified
,”
Phys. Rev. Lett.
,
122
(
1
), p.
015503
.10.1103/PhysRevLett.122.015503
111.
Guduru
,
P. R.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2001
, “
Dynamic Shear Bands: An Investigation Using High Speed Optical and Infrared Diagnostics
,”
Mech. Mater.
,
33
(
7
), pp.
371
402
.10.1016/S0167-6636(01)00051-5
112.
Ranc
,
N.
,
Taravella
,
L.
,
Pina
,
V.
, and
Hervé
,
P.
,
2008
, “
Temperature Field Measurement in Titanium Alloy During High Strain Rate Loading—Adiabatic Shear Bands Phenomenon
,”
Mech. Mater.
,
40
(
4–5
), pp.
255
270
.10.1016/j.mechmat.2007.08.002
113.
Dodd
,
B.
, and
Bai
,
Y.
,
2012
,
Adiabatic Shear Localization: Frontiers and Advances
,
Elsevier
, Amsterdam, The Netherlands.
114.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford, UK
.
115.
Batra
,
R. C.
, and
Kim
,
C. H.
,
1992
, “
Analysis of Shear Banding in Twelve Materials
,”
Int. J. Plasticity
,
8
(
4
), pp.
425
452
.10.1016/0749-6419(92)90058-K
116.
Aifantis
,
E. C.
,
1987
, “
The Physics of Plastic Deformation
,”
Int. J. Plasticity
,
3
(
3
), pp.
211
247
.10.1016/0749-6419(87)90021-0
117.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1989
, “
A Gradient-Dependent Flow Theory of Plasticity: Application to Metal and Soil Instabilities
,”
ASME Appl. Mech. Rev.
,
42
(
11S
), pp.
S295
–S
304
.10.1115/1.3152403
118.
Grady
,
D. E.
, and
Kipp
,
M. E.
,
1987
, “
The Growth of Unstable Thermoplastic Shear With Application to Steady-Wave Shock Compression in Solids
,”
J. Mech. Phys. Solids
,
35
(
1
), pp.
95
119
.10.1016/0022-5096(87)90030-5
119.
Grady
,
D. E.
,
1992
, “
Properties of an Adiabatic Shear-Band Process Zone
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1197
1215
.10.1016/0022-5096(92)90012-Q
120.
Latanision
,
R. M.
, and
Jones
,
R. H.
, eds.,
1987
,
Chemistry and Physics of Fracture
, Vol.
130
,
Springer
, Dordrecht,
The Netherlands
.
121.
Timothy
,
S. P.
, and
Hutchings
,
I. M.
,
1985
, “
Initiation and Growth of Microfractures Along Adiabatic Shear Bands in Ti–6Al–4V
,”
Mater. Sci. Technol.
,
1
(
7
), pp.
526
530
.10.1179/mst.1985.1.7.526
122.
Winter
,
R. E.
,
1975
, “
Adiabatic Shear of Titanium and Polymethylmethacrylate
,”
Philos. Mag.
,
31
(
4
), pp.
765
773
.10.1080/14786437508229629
123.
Winter
,
R. E.
, and
Hutchings
,
I. M.
,
1975
, “
The Role of Adiabatic Shear in Solid Particle Erosion
,”
Wear
,
34
(
2
), pp.
141
148
.10.1016/0043-1648(75)90060-5
124.
Teng
,
X.
,
Wierzbicki
,
T.
, and
Couque
,
H.
,
2007
, “
On the Transition From Adiabatic Shear Banding to Fracture
,”
Mech. Mater.
,
39
(
2
), pp.
107
125
.10.1016/j.mechmat.2006.03.001
125.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.10.1016/j.ijmecsci.2004.02.006
126.
Giovanola
,
J. H.
,
1988
, “
Adiabatic Shear Banding Under Pure Shear Loading. Part II: Fractographic and Metallographic Observations
,”
Mech. Mater.
,
7
(
1
), pp.
73
87
.10.1016/0167-6636(88)90007-5
127.
Kalthoff
,
J. F.
, and
Winkler
,
S.
,
1988
, “
Failure Mode Transition at High Rates of Shear Loading
,”
International Conference on Impact Loading and Dynamic Behavior of Materials, C. Y. Chiem, H. D. Kunze, and L. W. Meyer, eds., DGM Informationsgesellschaft Verlag,
1
, pp.
185
195
.
128.
Torki
,
M. E.
, and
Benzerga
,
A. A.
,
2018
, “
A Mechanism of Failure in Shear Bands
,”
Extreme Mech. Lett.
,
23
, pp.
67
71
.10.1016/j.eml.2018.06.008
129.
Stock
,
T. A. C.
, and
Wingrove
,
A. L.
,
1971
, “
The Energy Required for High-Speed Shearing of Steel
,”
J. Mech. Eng. Sci.
,
13
(
2
), pp.
110
115
.10.1243/JMES_JOUR_1971_013_018_02
130.
Balendra
,
R.
, and
Travis
,
F. W.
,
1970
, “
Static and Dynamic Blanking of Steel of Varying Hardness
,”
Int. J. Mach. Tool Des. Res.
,
10
(
2
), pp.
249
271
.10.1016/0020-7357(70)90010-7
131.
Davies
,
R.
, and
Dhawan
,
S. M.
,
1965
, “
A Preliminary Investigation of High-Speed Blanking and Piercing of Metals
,”
Proc. Inst. Mech. Eng.
,
180
(
9
), pp.
182
196
.10.1243/PIME_CONF_1965_180_243_02
132.
Interview of Clarence Zener by Lillian Hoddeson on 1981
, April 1, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD, accessed Feb. 25, 2020, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4996
133.
Azizi
,
H.
,
Zurob
,
H. S.
,
Embury
,
D.
,
Wang
,
X.
,
Wang
,
K.
, and
Bose
,
B.
,
2018
, “
Using Architectured Materials to Control Localized Shear Fracture
,”
Acta Mater.
,
143
, pp.
298
305
.10.1016/j.actamat.2017.10.027
134.
Hays
,
C. C.
,
Kim
,
C. P.
, and
Johnson
,
W. L.
,
2000
, “
Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in Situ Formed Ductile Phase Dendrite Dispersions
,”
Phys. Rev. Lett.
,
84
(
13
), pp.
2901
2904
.10.1103/PhysRevLett.84.2901
135.
Donohue
,
A.
,
Spaepen
,
F.
,
Hoagland
,
R. G.
, and
Misra
,
A.
,
2007
, “
Suppression of the Shear Band Instability During Plastic Flow of Nanometer-Scale Confined Metallic Glasses
,”
Appl. Phys. Lett.
,
91
(
24
), p.
241905
.10.1063/1.2821227
136.
Magness
,
L. S.
,
1994
, “
High Strain Rate Deformation Behaviors of Kinetic Energy Penetrator Materials During Ballistic Impact
,”
Mech. Mater.
,
17
(
2–3
), pp.
147
154
.10.1016/0167-6636(94)90055-8
137.
Latanision
,
R. M.
, and
Pickens
,
J. R.
, eds.,
1983
,
Atomistics of Fracture
, Vol.
5
,
Plenum Press
, New York.
138.
Healy
,
C.
,
Koch
,
S.
,
Siemers
,
C.
,
Mukherji
,
D.
, and
Ackland
,
G. J.
,
2015
, “
Shear Melting and High Temperature Embrittlement: Theory and Application to Machining Titanium
,”
Phys. Rev. Lett.
,
114
(
16
), p.
165501
.10.1103/PhysRevLett.114.165501
139.
Haratani
,
T.
,
Hutchinson
,
W. B.
,
Dillamore
,
I. L.
, and
Bate
,
P.
,
1984
, “
Contribution of Shear Banding to Origin of Goss Texture in Silicon Iron
,”
Met. Sci.
,
18
(
2
), pp.
57
66
.10.1179/030634584790420258
140.
Humphreys
,
F. J.
, and
Hatherly
,
M.
,
2012
,
Recrystallization and Related Annealing Phenomena
,
Elsevier
, Amsterdam, The Netherlands.
141.
Hirsch
,
J.
, and
Al-Samman
,
T.
,
2013
, “
Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications
,”
Acta Mater.
,
61
(
3
), pp.
818
843
.10.1016/j.actamat.2012.10.044
142.
Langer
,
J. S.
,
2006
, “
Shear-Transformation-Zone Theory of Deformation in Metallic Glasses
,”
Scr. Mater.
,
54
(
3
), pp.
375
379
.10.1016/j.scriptamat.2005.10.005
143.
Greer
,
A. L.
,
Cheng
,
Y. Q.
, and
Ma
,
E.
,
2013
, “
Shear Bands in Metallic Glasses
,”
Mater. Sci. Eng. R Rep.
,
74
(
4
), pp.
71
132
.10.1016/j.mser.2013.04.001
144.
Yadav
,
S.
,
Feng
,
G.
, and
Sagapuram
,
D.
,
2019
, “
Dynamics of Shear Band Instabilities in Cutting of Metals
,”
CIRP Ann.
,
68
(
1
), pp.
45
48
.10.1016/j.cirp.2019.04.030
145.
Sagapuram
,
D.
, and
Viswanathan
,
K.
,
2018
, “
Viscous Shear Banding in Cutting of Metals
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p. 111004.10.1115/1.4040875
146.
Xue
,
Q.
,
Meyers
,
M. A.
, and
Nesterenko
,
V. F.
,
2002
, “
Self-Organization of Shear Bands in Titanium and Ti–6Al–4V Alloy
,”
Acta Mater.
,
50
(
3
), pp.
575
596
.10.1016/S1359-6454(01)00356-1
147.
Lovinger
,
Z.
,
Rittel
,
D.
, and
Rosenberg
,
Z.
,
2015
, “
An Experimental Study on Spontaneous Adiabatic Shear Band Formation in Electro-Magnetically Collapsing Cylinders
,”
J. Mech. Phys. Solids
,
79
, pp.
134
156
.10.1016/j.jmps.2015.04.007
148.
Navarro
,
P. F.
,
Chiu
,
P. H.
,
Higgins
,
A.
,
Serge
,
M.
,
Benson
,
D. J.
, and
Nesterenko
,
V. F.
,
2018
, “
Shear Band Patterning and Post-Critical Behavior in AISI 4340 Steel With Different Microstructure
,”
Int. J. Impact Eng.
,
112
, pp.
144
154
.10.1016/j.ijimpeng.2017.10.011
149.
Lemaire
,
J. C.
, and
Backofen
,
W. A.
,
1972
, “
Adiabatic Instability in the Orthogonal Cutting of Steel
,”
Metall. Mater. Trans. B
,
3
(
2
), pp.
481
485
.10.1007/BF02642052
150.
Abbadi
,
M.
,
Hähner
,
P.
, and
Zeghloul
,
A.
,
2002
, “
On the Characteristics of Portevin–Le Chatelier Bands in Aluminum Alloy 5182 Under Stress-Controlled and Strain-Controlled Tensile Testing
,”
Mater. Sci. Eng. A
,
337
(
1–2
), pp.
194
201
.10.1016/S0921-5093(02)00036-9
You do not currently have access to this content.