Abstract

This paper offers an extensive review of publications dealing with the modeling, the design, and the experimental investigation of grooved dynamic gas-lubricated bearings. Recent years have witnessed a rise in small-scale and high-speed turbomachinery applications. Besides the well-known gas foil bearings, grooved bearings offer attractive advantages, which unveil their potential in particular at small scale due to the structural simplicity as well as satisfying predictability. This paper starts with a general background of the application of gas-lubricated bearings and introduces and compares the different gas bearing topologies. Further, the state-of-the-art modeling of grooved gas-lubricated bearings is introduced, systematically assessing the advantages and inconveniences of two major approaches, i.e., the narrow groove theory (NGT) and direct discretization method. Since the NGT method is an elegant and efficient approach to model the complex effects of periodic grooves, a critical section is dedicated to the NGT. In a second phase, different models to include additional physical phenomena such as real gas lubrication, rarefaction, or turbulence effects are reviewed. The paper concludes with a critical assessment of the state-of-the-art and indicates potential fields of research that would allow to shed more light into the understanding of these bearings, as well as with some thoughts on the integrated design methodologies of gas bearing supported rotors.

References

References
1.
Schiffmann
,
J.
,
2008
, “
Integrated Design, Optimization and Experimental Investigation of a Direct Driven Turbocompressor for Domestic Heat Pumps
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
2.
Ognjanovic
,
I.
,
2011
, “
Experimental Contribution to the Mechanics of Herringbone Grooved Journal Air Bearings
,” Doctorate, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
3.
Hamrock
,
B. J.
, 1991,
Fundamentals of Fluid Film Lubrication
, NASA, Washington, DC, Paper No. NASA-RP-1255.
4.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347.10.1115/97-GT-347
5.
Ohlig
,
K.
, and
Bischoff
,
S.
,
2012
, “
Dynamic Gas Bearing Turbine Technology in Hydrogen Plants
,”
AIP Conf. Proc.
,
1434
(1), pp. 814–819.10.1063/1.4706994
6.
Arpagaus
,
C.
,
Bless
,
F.
,
Schiffmann
,
J.
, and
Bertsch
,
S.
,
2016
, “
Multi-Temperature Heat Pumps—A Literature Review
,”
Int. J. Refrigeration
,
69
, pp.
437
465
.10.1016/j.ijrefrig.2016.05.014
7.
Fuller
,
D. D.
,
1970
, “
A Review of Research in the Field of Gas-Lubricated Bearings
,” Defense Technical Information Center, Fort Belvoir, VA, Report No. I-C2429-2.
8.
Powell
,
J. W.
,
1970
, “
A Review of Progress in Gas Lubrication
,”
Rev. Phys. Technol.
,
1
(
2
), pp.
96
129
.10.1088/0034-6683/1/2/303
9.
Gross
,
W. A.
,
1963
, “
Gas Bearings: A Survey
,”
Wear
,
6
(
6
), pp.
423
443
.10.1016/0043-1648(63)90279-5
10.
Waumans
,
T.
,
Peirs
,
J.
,
Reynaerts
,
D.
, and
Al-Bender
,
F.
,
2011
, “
On the Dynamic Stability of High-Speed Gas Bearings: Stability Study and Experimental Validation
,”
Third Conference on Sustainable Construction and Design
, pp.
342
351
.https://www.semanticscholar.org/paper/On-the-dynamic-stability-of-high-speed-gas-study-Waumans-Peirs/c8d95a2e1d6db643777521499307a32a05b0efc3
11.
Waumans
,
T.
,
Peirs
,
J.
,
Al-Bender
,
F.
, and
Reynaerts
,
D.
,
2011
, “
Aerodynamic Journal Bearing With a Flexible, Damped Support Operating at 7.2 Million DN
,”
J. Micromech. Microeng.
,
21
(
10
), p.
104014
.10.1088/0960-1317/21/10/104014
12.
Al-Bender
,
F.
,
Colombo
,
F.
,
Reynaerts
,
D.
,
Villavicencio
,
R.
, and
Waumans
,
T.
,
2017
, “
Dynamic Characterization of Rubber O-Rings: Squeeze and Size Effects
,”
Adv. Tribol.
,
2017
, p.
2509879
.10.1155/2017/2509879
13.
Bättig
,
P.
, and
Schiffmann
,
J.
,
2019
, “
Data-Driven Model for the Dynamic Characteristics of O-Rings for Gas Bearing Supported Rotors
,”
ASME J. Appl. Mech.
,
86
(8), p. 081003.10.1115/1.4043473
14.
Rimpel
,
A. M.
,
2009
, “
Analysis of Flexure Pivot Tilting Pad Gas Bearings With Different Damper Configurations
,” M.Sc. thesis, Texas A&M University, College Station, TX.
15.
Lund
,
J. W.
,
1965
, “
The Stability of an Elastic Rotor in Journal Bearings With Flexible, Damped Supports
,”
ASME J. Appl. Mech.
,
32
(
4
), pp.
911
920
.10.1115/1.3627335
16.
Kerr
,
J.
,
1966
, “
The Onset and Cessation of Half-Speed Whirl in Air-Lubricated Self-Acting Journal Bearings
,”
Proc. Inst. Mech. Eng.
,
180
(11), pp.
145
153
.10.1243/PIME_CONF_1965_180_327_02
17.
Czołczyński
,
K.
, and
Marynowski
,
K.
,
1996
, “
Stability of Symmetrical Rotor Supported in Flexibly Mounted, Self-Acting Gas Journal Bearings
,”
Wear
,
194
(
1
), pp.
190
197
.10.1016/0043-1648(95)06843-0
18.
Kleynhans
,
G.
,
Pfrehm
,
G.
,
Berger
,
H.
, and
Baudelocque
,
L.
,
2005
, “
Hermetically Sealed Oil-Free Turbocompressor Technology
,” Turbomachinery Laboratories, Houston, TX, pp. 63–67.
19.
Heshmat
,
H.
, and
Hermel
,
P.
,
1993
, “
Compliant Foil Bearings Technology and Their Application to High Speed Turbomachinery
,”
Tribology Series
,
D.
Dowson
,
C. M.
Taylor
,
T. H. C.
Childs
,
M.
Godet
, and
G.
Dalmaz
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
559
575
.
20.
Eber
,
N.
,
Quack
,
H.
, and
Schmid
,
C.
,
1978
, “
Gas Bearing Turbines With Dynamic Gas Bearings and Their Application in Helium Refrigerators
,”
Cryogenics
,
18
(
11
), pp.
585
588
.10.1016/0011-2275(78)90018-8
21.
Sternlicht
,
B.
,
1969
, “
Gas-Bearing Turbomachinery
,”
Tribology
,
2
(
1
), p.
78
.10.1016/S0041-2678(69)80213-7
22.
Spakovszky
,
Z. S.
,
2009
, “
High-Speed Gas Bearings for Micro-Turbomachinery
,”
Multi-Wafer Rotating MEMS Machines
,
Springer
,
Boston, MA
, pp.
191
278
.
23.
Schiffmann
,
J.
, and
Spakovszky
,
Z. S.
,
2012
, “
Foil Bearing Design Guidelines for Improved Stability
,”
ASME J. Tribol.
,
135
(
1
), p.
011103
.10.1115/1.4007759
24.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), p.
205
.10.1115/1.1739245
25.
Wagner
,
P. H.
,
Wuillemin
,
Z.
,
Diethelm
,
S.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2017
, “
Modeling and Designing of a Radial Anode Off-Gas Recirculation Fan for Solid Oxide Fuel Cell Systems
,”
J. Electrochem. Energy Convers. Storage
,
14
(
1
), p.
011005
.10.1115/1.4036401
26.
Arpagaus
,
C.
,
Bless
,
F.
,
Bertsch
,
S.
,
Javed
,
A.
, and
Schiffmann
,
J. A.
,
2017
, “
Heat Pump Driven by a Small-Scale Oil-Free Turbocompressor–System Design and Simulation
,”
12th IEA Heat Pump Conference
, Rotterdam, The Netherlands.https://pdfs.semanticscholar.org/d0e5/0b838d95ddc67760630b5c77cd3d5a58e67e.pdf
27.
Isomura
,
K.
,
Murayama
,
M.
, and
Kawakubo
,
T.
,
2001
, “
Feasibility Study of a Gas Turbine at Micro Scale
,”
ASME
Paper No. 2001-GT-0101.10.1115/2001-GT-0101
28.
Heshmat
,
C. A.
,
Heshmat
,
H.
,
Valco
,
M. J.
, and
Radil
,
K. C.
,
2005
, “
Foil Bearings Makes Oil-Free Turbocharger Possible
,”
ASME
Paper No. WTC2005-63724.10.1115/WTC2005-63724
29.
Walton
,
I. J. F.
, and
Hesmat
,
H.
,
2002
, “
Application of Foil Bearings to Turbomachinery Including Vertical Operation
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
1032
1041
.10.1115/1.1392986
30.
Forecast International
,
2009
, “
The Market for Microturbine Electrical Power Generation
,”
Forecast International
, Newtown, CT.https://www.forecastinternational.com/samples/f647_completesample.pdf
31.
Castelli
,
V.
, and
Pirvics
,
J.
,
1968
, “
Review of Numerical Methods in Gas Bearing Film Analysis
,”
J. Lubr. Technol.
,
90
(
4
), pp.
777
790
.10.1115/1.3601719
32.
Sternlicht
,
B.
, and
Arwas
,
E. B.
,
1965
, “
State-of-the-Art of Gas-Bearing Turbomachinery
,” Defense Documentation Center, Latham, NY, Report No. MTI-65TR5-I.
33.
Pan
,
C. H. T.
, and
Sternlicht
,
B.
,
1967
, “
Thermal Distortion of Spiral-Grooved Gas-Lubricated Thrust Bearing Due to Self-Heating
,”
J. Lubr. Technol.
,
89
(
2
), pp.
197
202
.10.1115/1.3616948
34.
Ford
,
G. W. K.
,
Harris
,
D. M.
, and
Pantall
,
D.
,
1957
, “
Principles and Applications of Hydrodynamic-Type Gas Bearings
,”
Proc. Inst. Mech. Eng.
,
171
(
1
), pp.
93
128
.10.1243/PIME_PROC_1957_171_019_02
35.
Khonsari
,
M. M.
,
1987
, “
A Review of Thermal Effects in Hydrodynamic Bearings—Part I: Slider and Thrust Bearings
,”
A S L E Trans.
,
30
(
1
), pp.
19
25
.10.1080/05698198708981725
36.
Li
,
S. S.
,
Fu
,
B.
, and
Zhang
,
Q. Y.
,
2017
, “
Optimization Design of Turbo-Expander Gas Bearing for a 500W Helium Refrigerator
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
278
, p.
012025
.10.1088/1757-899X/278/1/012025
37.
Rowe
,
W. B.
,
1989
, “
Advances in Hydrostatic and Hybrid Bearing Technology
,”
Proc. Inst. Mech. Eng., Part C
,
203
(
4
), pp.
225
242
.10.1243/PIME_PROC_1989_203_110_02
38.
Sun
,
D.
,
1975
, “
Stability of Gas-Lubricated, Externally Pressurized Porous Journal Bearings
,”
J. Lubr. Technol.
,
97
(
3
), pp.
494
505
.10.1115/1.3452645
39.
San Andrés
,
L.
,
Cable
,
T. A.
,
Zheng
,
Y.
,
De Santiago
,
O.
, and
Devitt
,
D.
,
2016
, “
Assessment of Porous Type Gas Bearings: Measurements of Bearing Performance and Rotor Vibrations
,”
ASME
Paper No. GT2016-57876.10.1115/GT2016-57876
40.
Lee
,
C.-C.
, and
You
,
H.-I.
,
2009
, “
Characteristics of Externally Pressurized Porous Gas Bearings Considering Structure Permeability
,”
Tribol. Trans.
,
52
(
6
), pp.
768
776
.10.1080/10402000903097403
41.
Shapiro
,
W.
,
1969
, “
Steady-State and Dynamic Analyses of Gas-Lubricated Hybrid Journal Bearings
,”
J. Lubr. Technol.
,
91
(
1
), pp.
171
180
.10.1115/1.3554850
42.
San Andrés
,
L.
, and
Ryu
,
K.
,
2008
, “
Hybrid Gas Bearings With Controlled Supply Pressure to Eliminate Rotor Vibrations While Crossing System Critical Speeds
,”
ASME J. Eng. Gas Turbines Power
,
130
(6), pp. 062505.10.1115/1.2966391
43.
Ertas
,
B. H.
,
2009
, “
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022503
.10.1115/1.2967476
44.
Delgado
,
A.
,
2014
, “
Experimental Identification of Dynamic Force Coefficients for a 110 Mm Compliantly Damped Hybrid Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
137
(7), p.
072502
.10.1115/1.4029203
45.
Pan
,
C. H. T.
,
Malanoski
,
S. B.
,
Broussard
,
P. H.
, Jr.
, and
Burch
,
J. L.
,
1966
, “
Theory and Experiments of Squeeze-Film Gas Bearings—Part 1: Cylindrical Journal Bearing
,”
J. Basic Eng.
,
88
(
1
), pp.
191
198
.10.1115/1.3645801
46.
Yoshimoto
,
S.
,
1997
, “
Floating Characteristics of Squeeze-Film Gas Bearings With Vibration Absorber for Linear Motion Guide
,”
ASME J. Tribol.
,
119
(
3
), pp.
531
536
.10.1115/1.2833533
47.
Mahajan
,
M.
,
Jackson
,
R.
, and
Flowers
,
G.
,
2008
, “
Experimental and Analytical Investigation of a Dynamic Gas Squeeze Film Bearing Including Asperity Contact Effects
,”
Tribol. Trans.
,
51
(
1
), pp.
57
67
.10.1080/10402000701739339
48.
Salbu
,
E. O. J.
,
1964
, “
Compressible Squeeze Films and Squeeze Bearings
,”
ASME J. Fluids Eng.
,
86
(
2
), pp.
355
364
.10.1115/1.3653080
49.
Li
,
W.-L.
,
1999
, “
Analytical Modelling of Ultra-Thin Gas Squeeze Film
,”
Nanotechnology
,
10
(
4
), p.
440
.10.1088/0957-4484/10/4/314
50.
Mohite
,
S. S.
,
Kesari
,
H.
,
Sonti
,
V. R.
, and
Pratap
,
R.
,
2005
, “
Analytical Solutions for the Stiffness and Damping Coefficients of Squeeze Films in MEMS Devices With Perforated Back Plates
,”
J. Micromech. Microeng.
,
15
(
11
), pp.
2083
2092
.10.1088/0960-1317/15/11/013
51.
Blech
,
J. J.
,
1983
, “
On Isothermal Squeeze Films
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
615
620
.10.1115/1.3254692
52.
Ausman
,
J. S.
,
1967
, “
Gas Squeeze Film Stiffness and Damping Torques on a Circular Disk Oscillating About Its Diameter
,”
ASME J. Lubr. Technol.
,
89
(
2
), pp.
219
221
.10.1115/1.3616951
53.
Lund
,
J. W.
,
1967
, “
A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings
,”
ASME J. Lubr. Technol.
,
89
(
2
), pp.
154
165
.10.1115/1.3616933
54.
Chiang
,
T.
, and
Pan
,
C. H.
,
1967
, “
Analysis of Pneumatic Hammer Instability of Inherently Compensated Hydrostatic Thrust Gas Bearings
,” Mechanical Technology, Latham, NY, Report No. MTI-66TR47.
55.
Jacob
,
J. S.
,
Yu
,
J. J.
,
Bently
,
D. E.
, and
Goldman
,
P.
, 2001, “
Air-Hammer Instability of Externally Pressurized Compressible-Fluid Bearings
,” Proceedings from the First International Symposium on Stability Control of Rotating Machinery, South Lake Tahoe, CA.
56.
DellaCorte
,
C.
,
2013
, “
Gas Lubrication Applications
,”
Encyclopedia of Tribology
,
Springer
,
Boston, MA
, pp.
1429
1433
.
57.
San Andres
,
L.
,
2006
, “
Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery
,”
Turbomachinery Labs, Texas A&M University
,
College Station, TX
.
58.
Isomura
,
K.
,
Togo
,
S.
, and
Tanaka
,
S.
, 2005, “
Study of Micro-High Speed Bearings and Rotor Dynamics for Micromachine Gas Turbines
,” Micro Gas Turbines, Educational Notes, France.
59.
Cheng
,
H. S.
, and
Pan
,
C. H. T.
,
1965
, “
Stability Analysis of Gas-Lubricated, Self-Acting, Plain, Cylindrical, Journal Bearings of Finite Length, Using Galerkin's Method
,”
J. Basic Eng.
,
87
(
1
), pp.
185
192
.10.1115/1.3650504
60.
Wang
,
S.
,
Lei
,
K.
,
Luo
,
X.
,
Gu
,
Z.
, and
Kiwamu
,
K.
,
2010
, “
Effect of Boundary Conditions on the Performances of Gas-Lubricated Micro Journal Bearing
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
10
, p.
012179
.10.1088/1757-899X/10/1/012179
61.
Zhu
,
X.
, and
San Andrés
,
L.
,
2005
, “
Experimental Response of a Rotor Supported on Rayleigh Step Gas Bearings
,”
ASME
Paper No. GT2005-68296.10.1115/GT2005-68296
62.
DiRusso
,
E.
,
1985
, “
Dynamic Response of Film Thickness in Spiral-Groove Face Seals
,” National Aeronautics and Space Administration Scientific and Technical Information Office, Lewis Research Center, Cleveland, OH.
63.
Chow
,
C. Y.
,
Cheng
,
H. S.
, and
Wilcock
,
D. F.
,
1970
, “
Optimum Surface Profile for the Enclosed Pocket Hydrodynamic Gas Thrust Bearing
,”
J. Lubr. Technol.
,
92
(
2
), pp.
318
324
.10.1115/1.3451402
64.
Whipple
,
R. T. P.
,
1951
, “
Theory of the Spiral Grooved Thrust Bearing With Liquid or Gas Lubricant
,” Atomic Energy Research Establishment, Harwell, Berkshire, UK, Report No. AERE-T/R-622.
65.
Malanoski
,
S. B.
,
1967
, “
Experiments on an Ultrastable Gas Journal Bearing
,”
J. Lubr. Technol.
,
89
(
4
), pp.
433
438
.10.1115/1.3617021
66.
Etsion
,
I.
, 1976, “
Analysis of the Gas-Lubricated Flat-Sector-Pad Thrust Bearing
,” National Aeronautics and Space Administration Scientific and Technical Information Office, Lewis Research Center, Cleveland, OH, Paper No. NASA TN D-8220.
67.
Rimpel
,
A. M.
,
Vannini
,
G.
, and
Kim
,
J.
,
2017
, “
A Rotordynamic, Thermal, and Thrust Load Performance Gas Bearing Test Rig and Test Results for Tilting Pad Journal Bearings and Spiral Groove Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
122501
.10.1115/1.4037315
68.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas Lubricated Compliant Thrust Bearings
,”
J. Lubr. Technol.
,
105
(
4
), p.
638
.10.1115/1.3254696
69.
Heshmat
,
H.
,
2000
, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
,
122
(
1
), p.
192
.10.1115/1.555342
70.
Heshmat
,
H.
,
Walton
,
J. F.
, and
Tomaszewski
,
M. J.
,
2005
, “
Demonstration of a Turbojet Engine Using an Air Foil Bearing
,”
ASME
Paper No. GT2005-68404.10.1115/GT2005-68404
71.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2005
, “
Gas Foil Bearings: Limits for High-Speed Operation
,”
ASME
Paper No. WTC2005-63398.10.1115/WTC2005-63398
72.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2012
, “
A Metal Mesh Foil Bearing and a Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(10), p.
102501
.10.1115/1.4007061
73.
Kim
,
T. H.
,
Park
,
M.
, and
Lee
,
T. W.
,
2017
, “
Design Optimization of Gas Foil Thrust Bearings for Maximum Load Capacity
,”
ASME J. Tribol.
,
139
(
3
), p.
031705
.10.1115/1.4034616
74.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2017
, “
Comparative Evaluation of Foil Bearings With Different Compliant Structures for Improved Manufacturability
,”
ASME
Paper No. GT2017-63615.10.1115/GT2017-63615
75.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2017
, “
On the Manufacturing of Compliant Foil Bearings
,”
J. Manuf. Processes
,
25
, pp.
357
368
.10.1016/j.jmapro.2016.12.021
76.
Walton
,
I.
,
James
,
F.
,
Tomaszewski
,
M. J.
, and
Heshmat
,
H.
,
2003
, “
The Role of High Performance Foil Bearings in Advanced, Oil-Free, High-Speed Motor Driven Compressors
,” pp. 411–417.
77.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2010
, “
Integrated Design and Optimization of Gas Bearing Supported Rotors
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051007
.10.1115/1.4001381
78.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
87
(
3
), p.
568
.10.1115/1.3650607
79.
Faria
,
M. T. C.
,
2001
, “
Some Performance Characteristics of High Speed Gas Lubricated Herringbone Groove Journal Bearings
,”
JSME Int. J., Ser. C
,
44
(
3
), pp.
775
781
.10.1299/jsmec.44.775
80.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2008
, “
Optimization of Groove Geometry for Thrust Air Bearing to Maximize Bearing Stiffness
,”
ASME J. Tribol.
,
130
(
3
), p.
031101
.10.1115/1.2913546
81.
Hashimoto
,
H.
, and
Namba
,
T.
,
2009
, “
Optimization of Groove Geometry for a Thrust Air Bearing According to Various Objective Functions
,”
ASME J. Tribol.
,
131
(
4
), p.
041704
.10.1115/1.3201860
82.
Wong
,
C. W.
,
Zhang
,
X.
,
Jacobson
,
S. A.
, and
Epstein
,
A. H.
,
2002
, “
A Self-Acting Thrust Bearing for High Speed Micro-Rotors
,” IEEE International Conference on Micro Electro Mechanical Systems (
MEMSYS
), Las Vegas, NV, Aug. 7, pp. 276–279.10.1109/MEMSYS.2002.984256
83.
Szeri
,
A. Z.
,
2005
,
Fluid Film Lubrication: Theory and Design
,
Cambridge University Press
,
Cambridge, UK
.
84.
Khonsari
,
M. M. R.
, and
Booser
,
E.
,
2017
,
Applied Tribology
,
Bearing Design and Lubrication
,
Wiley, Hoboken, NJ
.
85.
Mujiderman
,
E. A.
,
1964
, “
Spiral Groove Bearings
,” Technological University of Delft, Delft, The Netherlands.
86.
Faria
,
M. T. C.
, and
Andrés
,
L. S.
,
2000
, “
On the Numerical Modeling of High-Speed Hydrodynamic Gas Bearings
,”
ASME J. Tribol.
,
122
(
1
), pp.
124
130
.10.1115/1.555335
87.
Bonneau
,
D.
, and
Absi
,
J.
,
1994
, “
Analysis of Aerodynamic Journal Bearings With Small Number of Herringbone Grooves by Finite Element Method
,”
ASME J. Tribol.
,
116
(
4
), pp.
698
704
.10.1115/1.2927320
88.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Proc. R. Soc. London.
,
40
(
242–245
), pp.
191
203
.10.1098/rspl.1886.0021
89.
Harrison
,
W. J.
,
1913
, “The Hydrodynamical Theory of Lubrication with Special Reference to Air as a Lubricant,”
University Press
,
Cambridge, UK
.
90.
Whipple
,
R. T. P.
,
1949
, “
Herringbone Pattern Thrust Bearing
,” British Atomic Energy Research Establishment, Harwell, UK.
91.
Boeker
,
G. F.
,
Fuller
,
D. D.
, and
Kazan
,
C. F.
,
1958
, “
Gas-Lubricated Bearings, A Critical Survey
,” Department of Commerce, United States Air Force, : Washington, DC, Report No. AD 216 356.
92.
Whitley
,
S.
, and
Williams
,
L. G.
,
1959
, “
The Gas-Lubricated Spiral Groove Thrust Bearing
,” United Kingdom Atomic Energy Authority, Harwell, UK.
93.
Whitley
,
S.
,
1967
, “
The Design of the Spiral Groove Thrust Bearing
,” Harwell, UK.
94.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
J. Basic Eng.
,
87
(
3
), p.
547
.10.1115/1.3650603
95.
Muijderman
,
E. A.
,
1964
, “
Spiral Groove Bearings
,” Doctorate, Technological University Delft, Delft, The Netherlands.
96.
Muijderman
,
E. A.
,
1967
, “
Analysis and Design of Spiral-Groove Bearings
,”
ASME J. Lubr. Technol.
,
89
(
3
), p.
291
.10.1115/1.3616974
97.
Wordsworth
,
D. V.
,
1952
, “
The Viscosity Plate Thrust Bearing
,” United Kingdom Atomic Energy Authority Research Group, Harwell, Berkshire, UK, Report No. E/R-2217.
98.
Vohr
,
J. H.
, and
Pan
,
C. H. T.
,
1963
, “
On the Spiral-Grooved, Self-Acting Gas Bearing
,” Office of Naval Research, Latham, NY, Report No. 63TR52.
99.
Liu
,
Y.
,
Shen
,
X.
, and
Xu
,
W.
,
2002
, “
Numerical Analysis of Dynamic Coefficients for Gas Film Face Seals
,”
ASME J. Tribol.
,
124
(
4
), p.
743
.10.1115/1.1472459
100.
Zirkelback
,
N.
, and
San
,
A. L.
,
1998
, “
Finite Element Analysis of Herringbone Groove Journal Bearings: A Parametric Study
,”
ASME J. Tribol.
,
120
(
2
), pp.
234
240
.10.1115/1.2834415
101.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Effects of Humid Air on Aerodynamic Journal Bearings
,”
Tribol. Int.
,
127
, pp.
333
340
.10.1016/j.triboint.2018.06.002
102.
Miyanaga
,
N.
, and
Tomioka
,
J.
,
2015
, “
Stability Analysis of Herringbone-Grooved Aerodynamic Journal Bearings for Ultra High-Speed Rotations
,”
Int. J. Mater., Mech. Manuf.
,
4
(
3
), pp.
156
161
.10.7763/IJMMM.2016.V4.246
103.
Hirs
,
G. G.
,
1965
, “
The Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearings
,”
A S L E Trans.
,
8
(
3
), pp.
296
305
.10.1080/05698196508972102
104.
Castelli
,
V.
, and
Vohr
,
J. H.
,
1967
,
“Performance Characteristics of Herringbone-Grooved Journal Bearings Operating at High Eccentricity Ratios with Misalignment,
” Gas Bearing Symposium, Mechanical Technology Inc., University of Southampton, Southampton, UK, Paper No. 14.
105.
Cunningham
,
R. E.
,
Fleming
,
D. P.
, and
Anderson
,
W. J.
,
1971
, “
Experimental Load Capacity and Power Loss of Herringbone Grooved Gas Lubricated Journal Bearings
,”
ASME J. Lubr. Technol.
,
93
(
3
), p.
415
.10.1115/1.3451610
106.
Stanev
,
P. T.
,
Wardle
,
F.
, and
Corbett
,
J.
,
2004
, “
Investigation of Grooved Hybrid Air Bearing Performance
,”
Proc. Inst. Mech. Eng., Part K
,
218
(
2
), pp.
95
106
.10.1243/146441904323074558
107.
Fleming
,
D. P.
,
1970
, “
Steady-State and Stability Analysis of Externally Pressurized Gas-Lubricated Journal Bearings With Herringbone Grooves
,” Lewis Research Center, Cleveland, OH, Paper No. NASA TN D-5870.
108.
Demierre
,
J.
,
Rubino
,
A.
, and
Schiffmann
,
J. A.
,
2014
, “
Modeling and Experimental Investigation of an Oil-Free Microcompressor-Turbine Unit for an Organic Rankine Cycle Driven Heat Pump
,”
Trans. ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032602
.10.1115/1.4028391
109.
Carré
,
J.-B.
,
Favrat
,
D.
, and
Schiffmann
,
J. A.
,
2016
, “
Experimental Investigation of a Two-Stage Oil-Free Domestic Air/Water Heat Pump Prototype Powered by an Oil-Free High-Speed Twin-Stage Radial Compressor Rotating on Gas Bearings
,”
16th International Refrigeration and Air Conditioning Conference
, West Lafayette, IN, July 11–14.https://infoscience.epfl.ch/record/220963?ln=en
110.
Yoshimoto
,
S.
,
Ito
,
Y.
, and
Takahashi
,
A.
,
2000
, “
Pumping Characteristics of a Herringbone-Grooved Journal Bearing Functioning as a Viscous Vacuum Pump
,”
ASME J. Tribol.
,
122
(
1
), pp.
131
136
.10.1115/1.555371
111.
van der Stegen
,
R. H. M.
, “
Numerical Modelling of Self-Acting Gas Lubricated Bearings With Experimental Verification
,” Doctoral thesis, The University of Twente, Enschede, The Netherlands.
112.
Faria
,
M. T. C. D.
,
1999
, “
Finite Element Analysis of High-Speed Grooved Gas Bearings
,” Doctoral thesis, Texas A&M University, College Station, TX.
113.
Reddi
,
M. M.
, and
Chu
,
T. Y.
,
1970
, “
Finite Element Solution of the Steady-State Compressible Lubrication Problem
,”
ASME J. Lubr. Technol.
,
92
(
3
), pp.
495
502
.10.1115/1.3451453
114.
Arghir
,
M.
,
Lez
,
S. L.
, and
Frene
,
J.
,
2006
, “
Finite-Volume Solution of the Compressible Reynolds Equation: Linear and Non-Linear Analysis of Gas Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
220
(
7
), pp.
617
627
.10.1243/13506501JET161
115.
Yu
,
Y.
,
Pu
,
G.
, and
Jiang
,
K.
,
2017
, “
Modeling and Analysis of the Static Characteristics and Dynamic Responses of Herringbone-Grooved Thrust Bearings
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
280
(
1
), p.
012006
.10.1088/1757-899X/280/1/012006
116.
Arghir
,
M.
,
Alsayed
,
A.
, and
Nicolas
,
D.
,
2002
, “
The Finite Volume Solution of the Reynolds Equation of Lubrication With Film Discontinuities
,”
Int. J. Mech. Sci.
,
44
(
10
), pp.
2119
2132
.10.1016/S0020-7403(02)00166-2
117.
Miller
,
B. A.
, and
Green
,
I.
,
2001
, “
Numerical Formulation for the Dynamic Analysis of Spiral-Grooved Gas Face Seals
,”
ASME J. Tribol.
,
123
(
2
), p.
395
.10.1115/1.1308015
118.
Miller
,
B. A.
, and
Green
,
I.
,
2002
, “
Numerical Techniques for Computing Rotordynamic Properties of Mechanical Gas Face Seals
,”
ASME J. Tribol.
,
124
(
4
), pp.
755
761
.10.1115/1.1467635
119.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME J. Tribol.
,
115
(
3
), pp.
348
354
.10.1115/1.2921642
120.
Castelli
,
V.
, and
Vohr
,
J. H.
,
1967
, “
Performance Characteristics of Herringbone-Grooved Journal Bearings Operating at High Eccentricity Ratios With Misalignment
,”
J. Tribol.
,
115
(3), pp. 348–354.
121.
Hsing
,
F. C.
,
1972
, “
Formulation of a Generalized Narrow Groove Theory for Spiral Grooved Viscous Pumps
,”
ASME J. Lubr. Technol.
,
94
(
1
), pp.
81
85
.10.1115/1.3451640
122.
Elrod
,
H. G.
,
1969
,
A Generalized Narrow-Groove Theory for the Gas-Lubricated Herringbone Thrust Bearing
, University of Southampton, Southampton, UK, Paper I.D. 18.
123.
Chow
,
C. Y.
, and
Vohr
,
J. H.
,
1970
, “
Helical-Grooved Journal Bearing Operated in Turbulent Regime
,”
J. Lubr. Technol.
,
92
(
2
), p.
346
.10.1115/1.3451407
124.
Emel'yanov
,
A. V.
, and
Emel'yanova
,
L. S.
,
1971
, “
Theory of a Gas Bearing With Spiral Grooves, Taking Account of the Effects of Slip and of Local Compressibility
,”
Fluid Dyn.
,
6
(
5
), pp.
799
807
.10.1007/BF01013863
125.
Gupta
,
P. K.
,
Coleman
,
R. L.
, and
Pan
,
C. H. T.
,
1974
, “
Ambient Edge Correction for the Locally Incompressible Narrow-Groove Theory
,”
J. Lubr. Technol.
,
96
(
2
), pp.
284
290
.10.1115/1.3451944
126.
Constantinescu
,
V. N.
, and
Castelli
,
V.
,
1969
, “
On the Local Compressibility Effect in Spiral-Groove Bearings
,”
ASME J. Lubr. Technol.
,
91
(
1
), p.
79
.10.1115/1.3554902
127.
Hsing
,
F. C.
, and
Malanoski
,
S. B.
,
1969
, “
Mean Free Path Effect in Spiral-Grooved Thrust Bearings
,”
ASME J. Lubr. Technol.
,
91
(
1
), pp.
69
78
.10.1115/1.3554901
128.
Pan
,
C. H. T.
,
Gupta
,
P.
, and
Coleman
,
R. L.
,
1972
, “
On the Computation of Edge Correction for the Locally-Incompressible Narrow-Groove Theory
,” Mechanical Technology, Latham, NY.
129.
Pan
,
C. H. T.
,
2001
, “
Influence of Compressibility on the Helical Viscous Compressor
,”
ASME J. Tribol.
,
123
(
1
), p.
108
.10.1115/1.1327581
130.
Fleming
,
D. P.
, and
Hamrock
,
B. J.
,
1974
, “
Optimization of Self-Acting Herringbone Journal Bearings for Maximum Stability
,” University of Southampton, Southampton, UK, p. C1 1-12.
131.
Cunningham
,
R. E.
,
Fleming
,
D. P.
, and
Anderson
,
W. J.
,
1969
, “
Experimental Stability Studies of the Herringbone-Grooved Gas-Lubricated Journal Bearing
,”
ASME J. Lubr. Technol.
,
91
(
1
), p.
52
.10.1115/1.3554896
132.
Pan
,
C. H. T.
, and
San Andrés
,
L.
,
2005
, “
The Narrow Groove Analysis Revisited
,” Washington, DC, pp. 121–122.
133.
Liu
,
R.
,
Wang
,
X.-L.
, and
Zhang
,
X.-Q.
,
2012
, “
Effects of Gas Rarefaction on Dynamic Characteristics of Micro Spiral-Grooved Thrust Bearing
,”
ASME J. Tribol.
,
134
(
2
), p.
022201
.10.1115/1.4006359
134.
Pan
,
C. H. T.
,
1998
, “
Compressible Narrow Groove Analysis—Part 2: Computation of Pressure Field in a Spherical Device Rotating in Either Direction
,”
ASME J. Tribol.
,
120
(
4
), p.
765
.10.1115/1.2833777
135.
Pan
,
C. H. T.
,
1998
, “
Compressible Narrow Groove Analysis—Part 1: Derivation
,”
ASME J. Tribol.
,
120
(
4
), pp.
758
764
.10.1115/1.2833776
136.
Ng
,
C.-W.
, and
Pan
,
C. H. T.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
J. Basic Eng.
,
87
(
3
), pp.
675
682
.10.1115/1.3650640
137.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
,
1976
, “
Pressure Drop Due to Inertia Forces in Step Bearings
,”
ASME J. Lubr. Technol.
,
98
(
1
), pp.
167
174
.10.1115/1.3452757
138.
Feldman
,
Y.
,
Kligerman
,
Y.
,
Etsion
,
I.
, and
Haber
,
S.
,
2006
, “
The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces
,”
ASME J. Tribol.
,
128
(
2
), pp.
345
350
.10.1115/1.2148419
139.
De Kraker
,
A.
,
van Ostayen
,
R. A. J.
, and
Rixen
,
D. J.
,
2010
, “
Development of a Texture Averaged Reynolds Equation
,”
Tribol. Int.
,
43
(
11
), pp.
2100
2109
.10.1016/j.triboint.2010.06.001
140.
De Kraker
,
A.
,
Ostayen
,
R. A. van
,
Beek
,
A. van.
, and
Rixen
,
D. J.
,
2007
, “
A Multiscale Method Modeling Surface Texture Effects
,”
ASME J. Tribol.
,
129
(
2
), pp.
221
230
.10.1115/1.2540156
141.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2006
, “
Multi-Objective Optimisation of Herringbone Grooved Gas Bearings Supporting a High Speed Rotor, Taking Into Account Rarefied Gas and Real Gas Effects
,”
ASME
Paper No. ESDA2006-95085.10.1115/ESDA2006-95085
142.
Hughes
,
W. F.
, and
Osterle
,
J. F.
,
1957
, “
Heat Transfer Effects in Hydrostatic Thrust Bearing Lubrication
,”
Trans. ASME
,
79
(
4
), pp.
1225
1228
.10.1016/0043-1648(58)90032-2
143.
Kao
,
H.-C.
,
1963
, “
A Theory of Self-Acting, Gas-Lubricated Bearings With Heat Transfer Through Surfaces
,”
J. Basic Eng.
,
85
(
2
), pp.
324
328
.10.1115/1.3656589
144.
Hsia
,
Y.-T.
, and
Domoto
,
G. A.
,
1983
, “
An Experimental Investigation of Molecular Rarefaction Effects in Gas Lubricated Bearings at Ultra-Low Clearances
,”
J. Lubr. Technol.
,
105
(
1
), pp.
120
129
.10.1115/1.3254526
145.
Fukui
,
S.
, and
Kaneko
,
R.
,
1990
, “
A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems
,”
ASME J. Tribol.
,
112
(
1
), pp.
78
83
.10.1115/1.2920234
146.
Burgdorfer
,
A.
,
1958
, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings
,” Franklin Inst. Labs. for Research and Development, Philadelphia, PA.
147.
Hwang
,
C.-C.
,
Fung
,
R.-F.
,
Yang
,
R.-F.
,
Weng
,
C.-I.
, and
Li
,
W.-L.
,
1996
, “
A New Modified Reynolds Equation for Ultrathin Film Gas Lubrication
,”
IEEE Trans. Magn.
,
32
(
2
), pp.
344
347
.10.1109/20.486518
148.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
(
2
), pp.
253
261
.10.1115/1.3261594
149.
Shukla
,
J. B.
,
Kumar
,
S.
, and
Chandra
,
P.
,
1980
, “
Generalized Reynolds Equation With Slip at Bearing Surfaces: Multiple-Layer Lubrication Theory
,”
Wear
,
60
(
2
), pp.
253
268
.10.1016/0043-1648(80)90226-4
150.
Gans
,
R. F.
,
1985
, “
Lubrication Theory at Arbitrary Knudsen Number
,”
ASME J. Tribol.
,
107
(
3
), pp.
431
433
.10.1115/1.3261103
151.
Constantinescu
,
V. N.
,
1962
, “
Analysis of Bearings Operating in Turbulent Regime
,”
ASME J. Basic Eng.
,
84
(
1
), p.
139
.10.1115/1.3657235
152.
Elrod
,
H. G.
, Jr.
, and
Ng
,
C. W.
,
1967
, “
A Theory for Turbulent Fluid Films and Its Application to Bearings
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
346
362
.10.1115/1.3616989
153.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.10.1115/1.3451752
154.
Constantinescu
,
V. N.
,
1973
, “
Basic Relationships in Turbulent Lubrication and Their Extension to Include Thermal Effects
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
147
154
.10.1115/1.3451755
155.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Real-Gas Effects on Aerodynamic Bearings
,”
Tribol. Int.
,
120
, pp.
358
368
.10.1016/j.triboint.2018.01.008
156.
Guardino
,
C.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2004
, “
Calculation of Surface Roughness Effects on Air-Riding Seals
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
75
82
.10.1115/1.1619426
157.
Jarray
,
M.
,
Souchet
,
D.
,
Henry
,
Y.
, and
Fatu
,
A.
,
2017
, “
A Finite Element Solution of the Reynolds Equation of Lubrication With Film Discontinuities: Application to Helical Groove Seals
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
174
, p.
012037
.10.1088/1757-899X/174/1/012037
158.
Conboy
,
T.
, and
Wright
,
S.
,
2011
, “
Modeling of Gas Foil Thrust Bearings for S-CO2 Cycle Turbomachinery
,” Supercritical CO2 Power Cycle Symposium, Boulder, CO, pp. 1–9.
159.
Chapman
,
P. A.
,
2016
, “
Advanced Gas Foil Bearing Design for Supercritical CO2 Power Cycles
,” Fifth International Symposium on Supercritical CO2 Power Cycles, San Antonio, TX, p.
15
.
160.
Fairuz
,
Z. M.
, and
Jahn
,
I.
,
2016
, “
The Influence of Real Gas Effects on the Performance of Supercritical CO2 Dry Gas Seals
,”
Tribol. Int.
,
102
, pp.
333
347
.10.1016/j.triboint.2016.05.038
161.
Wang
,
Q. J.
, and
Chung
,
Y.-W.
, eds.,
2013
,
Encyclopedia of Tribology
,
Springer
,
Boston, MA
.
162.
Zirkelback
,
N.
, and
San
,
A. L.
,
1999
, “
Effect of Frequency Excitation on Force Coefficients of Spiral Groove Gas Seals
,”
ASME J. Tribol.
,
121
(
4
), pp.
853
861
.10.1115/1.2834145
163.
Wilson
,
D.
,
1968
, “
Gas Lubrication Research for 1900F Non-Isothermal Operation
,” United States Air Force Aero Propulsion Laboratory, Latham, NY, Report No. AF33 (615)-3235.
164.
Schiffmann
,
J.
,
2015
, “
Integrated Design and Multi-Objective Optimization of a Single Stage Heat-Pump Turbocompressor
,”
ASME J. Turbomach.
,
137
(
7
), p.
071002
.10.1115/1.4029123
165.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2007
, “
Theoretical Analysis and Optimum Design of High Speed Gas Film Thrust Bearings
,”
JAMDSM
,
1
(
1
), pp.
102
112
.10.1299/jamdsm.1.102
166.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2011
, “
On the Shape Optimization of Self-Adaptive Grooves
,”
Tribol. Trans.
,
54
(
2
), pp.
256
264
.10.1080/10402004.2010.539772
167.
Schiffmann
,
J.
,
2013
, “
Enhanced Groove Geometry for Herringbone Grooved Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102501
.10.1115/1.4025035
168.
Shahin
,
I.
,
Gadala
,
M.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2013
, “
Centrifugal Compressor Spiral Dry Gas Seal Simulation Working at Reverse Rotation
,”
Procedia Eng.
,
68
, pp.
285
292
.10.1016/j.proeng.2013.12.181
169.
Pan
,
C. H.
, and
Kim
,
D.
,
2007
, “
Stability Characteristics of a Rigid Rotor Supported by a Gas-Lubricated Spiral-Groove Conical Bearing
,”
ASME J. Tribol.
,
129
(
2
), pp.
375
383
.10.1115/1.2647443
170.
Zirkelback
,
N. L.
,
1997
, “
Computational Analysis of Spiral Groove Thrust Bearings and Face Seals
,” Master thesis, Texas A&M University, College Station, TX.
171.
Hashimoto
,
H.
,
Ochiai
,
M.
, and
Nanba
,
T.
,
2007
, “
Theoretical Analysis and Optimum Design of High Speed Air Film Thrust Bearings
,”
JAMDSM
,
1
(
3
), pp.
306
318
.10.1299/jamdsm.1.306
172.
Xue
,
Y.
, and
Stolarski
,
T. A.
,
1997
, “
Numerical Prediction of the Performance of Gas-Lubricated Spiral Groove Thrust Bearings
Proc. Inst. Mech Eng., Part J: J. Engi. Tribol.
,
211
(2), pp. 117–128.
173.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M. J.
,
2008
, “
Computational Fluid Dynamics Analysis of a Journal Bearing With Surface Texturing
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
2
), pp.
97
107
.10.1243/13506501JET319
174.
Cupillard
,
S.
,
Cervantes
,
M. J.
, and
Glavatskih
,
S.
,
2008
, “
A CFD Study of a Finite Textured Journal Bearing
,”
24th Symposium on Hydraulic Machinery and Systems
,
Foz Do Iguassu, Brazil
, pp.
1
11
.
175.
Kango
,
S.
,
Sharma
,
R.
, and
Pandey
,
R.
,
2014
, “
Comparative Analysis of Textured and Grooved Hydrodynamic Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
1
), pp.
82
95
.10.1177/1350650113499742
176.
Yemelyanov
,
A. V.
, and
Yemelyanov
,
I. A.
,
1999
, “
Physical Models, Theory and Fundamental Improvement to Self-Acting Spiral-Grooved Gas Bearings and Visco-Seals
,”
Proc. Inst. Mech. Eng., Part J
,
213
(
4
), pp.
263
273
.10.1243/1350650991542659
177.
Lehn
,
A.
, and
Schweizer
,
B.
,
2016
, “
Generalized Reynolds Equation for Fluid Film Problems With Arbitrary Boundary Conditions: Application to Double-Sided Spiral Groove Thrust Bearings
,”
Arch. Appl. Mech.
,
86
(
4
), pp.
743
760
.10.1007/s00419-015-1059-7
178.
James
,
D. D.
, and
Potter
,
A. F.
,
1967
, “
Numerical Analysis of the Gas-Lubricated Spiral-Groove Thrust Bearing-Compressor
,”
ASME J. Lubr. Technol.
,
89
(
4
), pp.
439
443
.10.1115/1.3617023
179.
Sato
,
Y.
,
Ono
,
K.
, and
Iwama
,
A.
,
1990
, “
The Optimum Groove Geometry for Spiral Groove Viscous Pumps
,”
ASME J. Tribol.
,
112
(
2
), pp.
409
414
.10.1115/1.2920272
180.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2013
, “
On the Optimum Groove Shapes for Load-Carrying Capacity Enhancement in Parallel Flat Surface Bearings: Theory and Experiment
,”
Tribol. Int.
,
67
, pp.
254
262
.10.1016/j.triboint.2013.08.001
181.
Sengupta
,
S.
, and
Basak
,
S.
, and
Peters
,
R. A.
, II
,
2018
, “
Particle Swarm Optimization: A Survey of Historical and Recent Developments With Hybridization Perspectives
,” arXiv:1804.05319.
182.
Dobrica
,
M. B.
,
Fillon
,
M.
,
Pascovici
,
M. D.
, and
Cicone
,
T.
,
2010
, “
Optimizing Surface Texture for Hydrodynamic Lubricated Contacts Using a Mass-Conserving Numerical Approach
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
8
), pp.
737
750
.10.1243/13506501JET673
183.
Boggs
,
P. T.
, and
Tolle
,
J. W.
,
1996
, “
Sequential Quadratic Programming
,”
Acta Numerica
,
4
, pp.
1
52
.
184.
Geem
,
Z. W.
,
Kim
,
J. H.
, and
Loganathan
,
G. V.
,
2001
, “
A New Heuristic Optimization Algorithm: Harmony Search
,”
Simulation
,
76
(
2
), pp.
60
68
.10.1177/003754970107600201
185.
Coello
,
C. A. C.
,
Lamont
,
G. B.
, and
van Veldhuizen
,
D. A.
,
2007
,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Springer
,
Berlin, Heidelberg
.
186.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.10.1109/4235.797969
187.
Guzek
,
A.
,
Podsiadlo
,
P.
, and
Stachowiak
,
G. W.
,
2010
, “
A Unified Computational Approach to the Optimization of Surface Textures: One Dimensional Hydrodynamic Bearings
,”
Tribol. Online
,
5
(
3
), pp.
150
160
.10.2474/trol.5.150
188.
Guzek
,
A.
,
Podsiadlo
,
P.
, and
Stachowiak
,
G.
,
2013
, “
Optimization of Textured Surface in 2D Parallel Bearings Governed by the Reynolds Equation Including Cavitation and Temperature
,”
Tribol. Online
,
8
(
1
), pp.
7
21
.10.2474/trol.8.7
189.
Papadopoulos
,
C. I.
,
Efstathiou
,
E. E.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
,
2011
, “
Geometry Optimization of Textured Three-Dimensional Micro-Thrust Bearings
,”
ASME J. Tribol.
,
133
(
4
), p.
041702
.10.1115/1.4004990
190.
Fu
,
G.
, and
Untaroiu
,
A.
,
2017
, “
An Optimum Design Approach for Textured Thrust Bearing With Elliptical-Shape Dimples Using Computational Fluid Dynamics and Design of Experiments Including Cavitation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
092502
.10.1115/1.4036188
191.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings
,”
Tribol. Int.
,
94
, pp.
509
529
.10.1016/j.triboint.2015.10.009
You do not currently have access to this content.