Abstract

Morphing structures, defined as body panels that are capable of a drastic autonomous shape transformation, have gained importance in the aerospace, automotive, and soft robotics industries since they address the need to switch between shapes for optimal performance over the range of operation. Laminated composites are attractive for morphing because multiple laminae, each serving a specific function, can be combined to address multiple functional requirements such as shape transformation, structural integrity, safety, aerodynamic performance, and minimal actuation energy. This paper presents a review of laminated composite designs for morphing structures. The trends in morphing composites research are outlined and the literature on laminated composites is categorized based on deformation modes and multifunctional approaches. Materials commonly used in morphing structures are classified based on their properties. Composite designs for various morphing modes such as stretching, flexure, and folding are summarized and their performance is compared. Based on the literature, the laminae in an n-layered composite are classified based on function into three types: constraining, adaptive, and prestressed. A general analytical modeling framework is presented for composites comprising the three types of functional laminae. Modeling developments for each morphing mode and for actuation using smart material-based active layers are discussed. Results, presented for each deformation mode, indicate that the analytical modeling can not only provide insight into the structure's mechanics but also serve as a guide for geometric design and material selection.

References

References
1.
Lentink
,
D.
,
Müller
,
U. K.
,
Stamhuis
,
E. J.
,
de Kat
,
R.
,
van Gestel
,
W.
,
Veldhuis
,
L. L. M.
,
Henningsson
,
P.
,
Hedenström
,
A.
,
Videler
,
J. J.
, and
van Leeuwen
,
J. L.
,
2007
, “
How Swifts Control Their Glide Performance With Morphing Wings
,”
Nature
,
446
(
7139
), pp.
1082
1085
.10.1038/nature05733
2.
Forterre
,
Y.
,
Skotheim
,
J. M.
,
Dumais
,
J.
, and
Mahadevan
,
L.
,
2005
, “
How the Venus Flytrap Snaps
,”
Nature
,
433
(
7024
), pp.
421
425
.10.1038/nature03185
3.
Barbarino
,
S.
,
Bilgen
,
O.
,
Ajaj
,
R. M.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2011
, “
A Review of Morphing Aircraft
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
823
877
.10.1177/1045389X11414084
4.
McGowan
,
A.-M. R.
,
Horta
,
L. G.
,
Harrison
,
J. S.
, and
Raney
,
D. L.
,
2000
, “
Research Activities Within NASA's Morphing Program
,”
National Aeronautics and Space Administration
,
Langley Research Center
,
Hampton, VA
, Accession No. ADP010487.
5.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Shape-Morphing Automobile Structures: Concepts and Outlook
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
11
), pp.
1603
1622
.10.1177/0954407013496557
6.
Chu
,
W.-S.
,
Lee
,
K.-T.
,
Song
,
S.-H.
,
Han
,
M.-W.
,
Lee
,
J.-Y.
,
Kim
,
H.-S.
,
Kim
,
M.-S.
,
Park
,
Y.-J.
,
Cho
,
K.-J.
, and
Ahn
,
S.-H.
,
2012
, “
Review of Biomimetic Underwater Robots Using Smart Actuators
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1281
1292
.10.1007/s12541-012-0171-7
7.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Rob.
,
1
(
1
), eaah3690.10.1126/scirobotics.aah3690
8.
Apuleo
,
G.
,
2018
, “
Chapter 2—Aircraft Morphing: An Industry Vision
,”
Morphing Wing Technologies
,
Elsevier
,
Oxford, UK
, pp.
85
101
.
9.
Bowman
,
J.
,
Sanders
,
B.
, and
Weisshaar
,
T.
,
2002
, “
Evaluating the Impact of Morphing Technologies on Aircraft Performance
,”
AIAA
Paper No. 2002-1631.10.2514/6.2002-1631
10.
Thill
,
C.
,
Etches
,
J.
,
Bond
,
I.
,
Potter
,
K.
, and
Weaver
,
P.
,
2008
, “
Morphing Skins
,”
Aeronaut. J.
,
112
(
1129
), pp.
117
139
.10.1017/S0001924000002062
11.
Sofla
,
A. Y. N.
,
Meguid
,
S. A.
,
Tan
,
K. T.
, and
Yeo
,
W. K.
,
2010
, “
Shape Morphing of Aircraft Wing: Status and Challenges
,”
Mater. Des.
,
31
(
3
), pp.
1284
1292
.10.1016/j.matdes.2009.09.011
12.
Weisshaar
,
T. A.
,
2013
, “
Morphing Aircraft Systems: Historical Perspectives and Future Challenges
,”
J. Aircr.
,
50
(
2
), pp.
337
353
.10.2514/1.C031456
13.
Poulin
,
J.-R.
,
Terriault
,
P.
,
Dubé
,
M.
, and
Vachon
,
P.-L.
,
2017
, “
Development of a Morphing Wing Extrados Made of Composite Materials and Actuated by Shape Memory Alloys
,”
J. Intell. Mater. Syst. Struct.
,
28
(
11
), pp.
1437
1453
.10.1177/1045389X16672565
14.
Han
,
M.-W.
,
Rodrigue
,
H.
,
Kim
,
H.-I.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2016
, “
Shape Memory Alloy/Glass Fiber Woven Composite for Soft Morphing Winglets of Unmanned Aerial Vehicles
,”
Compos. Struct.
,
140
, pp.
202
212
.10.1016/j.compstruct.2015.12.051
15.
Dayyani
,
I.
,
Shaw
,
A. D.
,
Saavedra Flores
,
E. I.
, and
Friswell
,
M. I.
,
2015
, “
The Mechanics of Composite Corrugated Structures: A Review With Applications in Morphing Aircraft
,”
Compos. Struct.
,
133
, pp.
358
380
.10.1016/j.compstruct.2015.07.099
16.
Gong
,
X.
,
Liu
,
L.
,
Scarpa
,
F.
,
Leng
,
J.
, and
Liu
,
Y.
,
2017
, “
Variable Stiffness Corrugated Composite Structure With Shape Memory Polymer for Morphing Skin Applications
,”
Smart Mater. Struct.
,
26
(
3
), p.
035052
.10.1088/1361-665X/aa516d
17.
Kochersberger
,
K. B.
,
Ohanian
,
O. J.
,
Probst
,
T.
, and
Gelhausen
,
P. A.
,
2017
, “
Design and Flight Test of the Generic Micro-Aerial Vehicle (GenMAV) Utilizing Piezoelectric Conformal Flight Control Actuation
,”
J. Intell. Mater. Syst. Struct.
,
28
(
19
), pp.
2793
2809
.10.1177/1045389X17698590
18.
Bilgen
,
O.
,
Kochersberger
,
K. B.
,
Inman
,
D. J.
, and
Ohanian
,
O. J.
,
2010
, “
Novel, Bidirectional, Variable-Camber Airfoil Via Macro-Fiber Composite Actuators
,”
J. Aircr.
,
47
(
1
), pp.
303
314
.10.2514/1.45452
19.
Nicassio
,
F.
,
Scarselli
,
G.
,
Pinto
,
F.
,
Ciampa
,
F.
,
Iervolino
,
O.
, and
Meo
,
M.
,
2018
, “
Low Energy Actuation Technique of Bistable Composites for Aircraft Morphing
,”
Aerosp. Sci. Technol.
,
75
, pp.
35
46
.10.1016/j.ast.2017.12.040
20.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2014
, “
A Non-Linear Stiffness Composite Twisting i-Beam
,”
J. Intell. Mater. Syst. Struct.
,
25
(
6
), pp.
744
754
.10.1177/1045389X13502853
21.
Daynes
,
S.
,
Lachenal
,
X.
, and
Weaver
,
P. M.
,
2015
, “
Concept for Morphing Airfoil With Zero Torsional Stiffness
,”
Thin-Walled Struct.
,
94
, pp.
129
134
.10.1016/j.tws.2015.04.017
22.
Jenett
,
B.
,
Calisch
,
S.
,
Cellucci
,
D.
,
Cramer
,
N.
,
Gershenfeld
,
N.
,
Swei
,
S.
, and
Cheung
,
K. C.
,
2017
, “
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
,”
Soft Rob.
,
4
(
1
), pp.
33
48
.10.1089/soro.2016.0032
23.
Rudenko
,
A.
,
Hannig
,
A.
,
Monner
,
H. P.
, and
Horst
,
P.
,
2018
, “
Extremely Deformable Morphing Leading Edge: Optimization, Design and Structural Testing
,”
J. Intell. Mater. Syst. Struct.
,
29
(
5
), pp.
764
773
.10.1177/1045389X17721036
24.
Vasista
,
S.
,
Nolte
,
F.
,
Monner
,
H. P.
,
Horst
,
P.
, and
Burnazzi
,
M.
,
2018
, “
Three-Dimensional Design of a Large-Displacement Morphing Wing Droop Nose Device
,”
J. Intell. Mater. Syst. Struct.
,
29
(
16
), pp.
3222
3241
.10.1177/1045389X18770863
25.
Daynes
,
S.
,
Weaver
,
P.
, and
Trevarthen
,
J.
,
2011
, “
A Morphing Composite Air Inlet With Multiple Stable Shapes
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
961
973
.10.1177/1045389X11399943
26.
Arena
,
G.
,
Groh
,
R. M. J.
,
Brinkmeyer
,
A.
,
Theunissen
,
R.
,
Weaver
,
P. M.
, and
Pirrera
,
A.
,
2017
, “
Adaptive Compliant Structures for Flow Regulation
,”
Proc. Math., Phys., Eng. Sci.
,
473
(
2204
), p.
20170334
.10.1098/rspa.2017.0334
27.
Sun
,
J.
,
Guan
,
Q.
,
Liu
,
Y.
, and
Leng
,
J.
,
2016
, “
Morphing Aircraft Based on Smart Materials and Structures: A State-of-the-Art Review
,”
J. Intell. Mater. Syst. Struct.
,
27
(
17
), pp.
2289
2312
.10.1177/1045389X16629569
28.
Systems
,
H.-D.
,
2013
, “Future US Trends in the Adoption of Light-Duty Automotive Technologies,”
American Petroleum Institute
,
Washington, DC
, Integrated Final Report.
29.
Ando
,
K.
,
Kuratani
,
N.
, and
Fukuda
,
H.
,
2016
, “
Aerodynamic Performance Evaluation System at the Early Concept Stage of Automotive Styling Development Based on CFD
,”
SAE
Paper No. 2016-01-1584.10.4271/2016-01-1584
30.
Hucho
,
W. H.
,
1987
,
Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering
,
Butterworth-Heinemann
,
Oxford, UK
.
31.
Barnard
,
R. H.
,
1996
,
Road Vehicle Aerodynamic Design—An Introduction
,
Addison Wesley Longman Limited
,
Essex, UK
.
32.
Koike
,
M.
,
Nagayoshi
,
T.
, and
Hamamoto
,
N.
,
2004
, “
Research on Aerodynamic Drag Reduction by Vortex Generators
,”
Mitshubishi Motors Tech. Rev.
,
16
, pp.
11
16
.http://www.4g63.de/facts/vortexgenerator-evo-mitsu.pdf
33.
Sunny
,
S. A.
,
2011
, “
Effect of Turbulence in Modeling the Reduction of Local Drag Forces in a Computational Automotive Model
,”
Int. J. Energy Environ.
,
2
(
6
), pp.
1079
1100
.https://www.researchgate.net/publication/267771882_Effect_of_turbulence_in_modeling_the_reduction_of_local_drag_forces_in_a_computational_automotive_model
34.
Hucho
,
W.-H.
, and
Ahmed
,
S. R.
,
1998
,
Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering
,
Society of Automotive Engineers
,
Warrendale, PA
.
35.
Buchheim
,
R.
,
Leie
,
B.
, and
Lückoff
,
H.
,
1983
, “
Der Neue Audi 100–Ein Beispiel Für Konsequente Aerodynamische Personenwagen-Entwicklung
,”
Automobiltechnische Z.
,
85
, pp.
419
425
.
36.
Costelli
,
A. F.
,
1984
, “
Aerodynamic Characteristics of the Fiat UNO Car
,”
SAE
Paper No. 840297.10.4271/840297
37.
BMW
,
2016
, “
BMW Vision Next 100 Years Concept
,” Bayerische Motoren Werke Aktiengesellschaft, Mönchen, Germany, accessed July 25, 2019, https://www.bmwgroup.com/en/company/the-next-100-years/brandvisions.html#BMW
38.
Daimler
,
2015
, “
Mercedes-Benz Intelligent Aerodynamic Automobile: Digital Transformer
,” Mercedes AG, Stuttgart, Germany, accessed July 25, 2019, https://media.daimler.com/marsMediaSite/en/instance/ko/Mercedes-Benz-Concept-IAA-Intelligent-Aerodynamic-Automobile-Digital-transformer.xhtml?oid=9904826
39.
Porsche
,
2017
, “
Porsche Active Aerodynamics (PAA)
,” Porsche AG, Stuttgart, Germany, accessed July 25, 2019 , https://www.porsche.com/international/models/911/911-turbo-models/911-turbo/chassis/porsche-active-aerodynamics-paa/
40.
Ferrari
,
2014
, “
Ferrari 458 Speciale Active Aerodynamics
,” Ferrari S. p. A., Maranello, Italy, July 25, 2019, https://auto.ferrari.com/en_US/sports-cars-models/past-models/458-speciale/#innovations-aerodynamics-3
41.
Chillara
,
V. S. C.
,
Headings
,
L. M.
,
Tsuruta
,
R.
,
Gandhi
,
U.
,
Itakura
,
E.
, and
Dapino
,
M. J.
,
2018
, “
Shape Memory Alloy-Actuated Prestressed Composites With Application to Morphing Automotive Fender Skirts
,”
J. Intell. Mater. Syst. Struct.
,
30
(3), pp.
479
494
.10.1177/1045389X18812702
42.
Han
,
M.-W.
,
Rodrigue
,
H.
,
Cho
,
S.
,
Song
,
S.-H.
,
Wang
,
W.
,
Chu
,
W.-S.
, and
Ahn
,
S.-H.
,
2016
, “
Woven Type Smart Soft Composite for Soft Morphing Car Spoiler
,”
Compos. Part B Eng.
,
86
, pp.
285
298
.10.1016/j.compositesb.2015.10.009
43.
Spiteri
,
L.
,
Daynes
,
S.
, and
Watkins
,
S.
,
2015
, “
Design of a Morphing Bi-Stable Composite Air Intake
,”
SAE
Paper No. 2015-01-0066.10.4271/2015-01-0066
44.
Qamar
,
I. P. S.
,
Groh
,
R.
,
Holman
,
D.
, and
Roudaut
,
A.
,
2018
, “
HCI Meets Material Science: A Literature Review of Morphing Materials for the Design of Shape-Changing Interfaces
,”
CHI Conference on Human Factors in Computing Systems (CHI), Montreal QC, Canada, Apr. 21–26
, Paper No.
374
.https://dl.acm.org/citation.cfm?id=3173948
45.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Morphing Concepts and Materials for Wind Turbine Blade Applications
,”
Wind Energy
,
16
(
2
), pp.
283
307
.10.1002/we.531
46.
Hayat
,
K.
, and
Ha
,
S. K.
,
2015
, “
Load Mitigation of Wind Turbine Blade by Aeroelastic Tailoring Via Unbalanced Laminates Composites
,”
Compos. Struct.
,
128
, pp.
122
133
.10.1016/j.compstruct.2015.03.042
47.
Herath
,
M. T.
,
Lee
,
A. K. L.
, and
Prusty
,
B. G.
,
2015
, “
Design of Shape-Adaptive Wind Turbine Blades Using Differential Stiffness Bend–Twist Coupling
,”
Ocean Eng.
,
95
, pp.
157
165
.10.1016/j.oceaneng.2014.12.010
48.
Arrieta
,
A. F.
,
Kuder
,
I. K.
,
Rist
,
M.
,
Waeber
,
T.
, and
Ermanni
,
P.
,
2014
, “
Passive Load Alleviation Aerofoil Concept With Variable Stiffness Multi-Stable Composites
,”
Compos. Struct.
,
116
, pp.
235
242
.10.1016/j.compstruct.2014.05.016
49.
Fortini
,
A.
,
Suman
,
A.
,
Merlin
,
M.
, and
Garagnani
,
G. L.
,
2015
, “
Morphing Blades With Embedded SMA Strips: An Experimental Investigation
,”
Mater. Design
,
85
, pp.
785
795
.10.1016/j.matdes.2015.07.175
50.
Fortini
,
A.
,
Suman
,
A.
,
Aldi
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2015
, “
A Shape Memory Alloy-Based Morphing Axial Fan Blade—Part 1: Blade Structure Design and Functional Characterization
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022601
.10.1115/1.4031272
51.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.10.1038/nature14543
52.
Cao
,
J.
,
Qin
,
L.
,
Liu
,
J.
,
Ren
,
Q.
,
Foo
,
C. C.
,
Wang
,
H.
,
Lee
,
H. P.
, and
Zhu
,
J.
,
2018
, “
Untethered Soft Robot Capable of Stable Locomotion Using Soft Electrostatic Actuators
,”
Extreme Mech. Lett.
,
21
, pp.
9
16
.10.1016/j.eml.2018.02.004
53.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.https://www.nature.com/articles/s41578-018-0009-8
54.
Manti
,
M.
,
Cacucciolo
,
V.
, and
Cianchetti
,
M.
,
2016
, “
Stiffening in Soft Robotics: A Review of the State of the Art
,”
IEEE Rob. Autom. Mag./IEEE Rob. Autom. Soc.
,
23
(
3
), pp.
93
106
.10.1109/MRA.2016.2582718
55.
Li
,
S.
, and
Wang
,
K. W.
,
2016
, “
Plant-Inspired Adaptive Structures and Materials for Morphing and Actuation: A Review
,”
Bioinspiration Biomimetics
,
12
(
1
), p.
011001
.10.1088/1748-3190/12/1/011001
56.
Jin
,
H.
,
Dong
,
E.
,
Alici
,
G.
,
Mao
,
S.
,
Min
,
X.
,
Liu
,
C.
,
Low
,
K. H.
, and
Yang
,
J.
,
2016
, “
A Starfish Robot Based on Soft and Smart Modular Structure (SMS) Actuated by SMA Wires
,”
Bioinspiration Biomimetics
,
11
(
5
), p.
056012
.10.1088/1748-3190/11/5/056012
57.
Yeom
,
S.-W.
, and
Oh
,
I.-K.
,
2009
, “
A Biomimetic Jellyfish Robot Based on Ionic Polymer Metal Composite Actuators
,”
Smart Mater. Struct.
,
18
(
8
), p.
085002
.10.1088/0964-1726/18/8/085002
58.
Wang
,
W.
,
Lee
,
J.-Y.
,
Rodrigue
,
H.
,
Song
,
S.-H.
,
Chu
,
W.-S.
, and
Ahn
,
S.-H.
,
2014
, “
Locomotion of Inchworm-Inspired Robot Made of Smart Soft Composite (SSC)
,”
Bioinspiration Biomimetics
,
9
(
4
), p.
046006
.10.1088/1748-3182/9/4/046006
59.
Kim
,
H.-J.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2012
, “
A Turtle-Like Swimming Robot Using a Smart Soft Composite (SSC) Structure
,”
Smart Mater. Struct.
,
22
(
1
), p.
014007
.https://iopscience.iop.org/article/10.1088/0964-1726/22/1/014007/meta
60.
Marchese
,
A. D.
,
Katzschmann
,
R. K.
, and
Rus
,
D.
,
2015
, “
A Recipe for Soft Fluidic Elastomer Robots
,”
Soft Rob.
,
2
(
1
), pp.
7
25
.10.1089/soro.2014.0022
61.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
.10.1016/j.actaastro.2010.02.021
62.
Lake
,
M.
,
Munshi
,
N.
,
Meink
,
T.
, and
Tupper
,
M.
,
2001
, “
Application of Elastic Memory Composite Materials to Deployable Space Structures
,”
AIAA
Paper No. 2001-4602.10.2514/6.2001-4602
63.
Wang
,
W.
,
Rodrigue
,
H.
, and
Ahn
,
S.-H.
,
2016
, “
Deployable Soft Composite Structures
,”
Sci. Rep.
,
6
, p.
20869
.10.1038/srep20869
64.
Costantine
,
J.
,
Tawk
,
Y.
,
Christodoulou
,
C. G.
,
Banik
,
J.
, and
Lane
,
S.
,
2012
, “
CubeSat Deployable Antenna Using Bistable Composite Tape-Springs
,”
IEEE Antennas Wireless Propag. Lett.
,
11
, pp.
285
288
.10.1109/LAWP.2012.2189544
65.
Murphey
,
T.
, and
Pellegrino
,
S.
,
2004
, “
A Novel Actuated Composite Tape-Spring for Deployable Structures
,”
AIAA
Paper No. 2004-1528.10.2514/6.2004-1528
66.
Kikuta
,
M. T.
,
2003
, “
Mechanical Properties of Candidate Materials for Morphing Wings
,”
Master's thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.https://vtechworks.lib.vt.edu/bitstream/handle/10919/36152/mkikuta_thesis.pdf?sequence=1
67.
Murray
,
G.
,
Gandhi
,
F.
, and
Bakis
,
C.
,
2010
, “
Flexible Matrix Composite Skins for One-Dimensional Wing Morphing
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1771
1781
.10.1177/1045389X10369719
68.
Bubert
,
E. A.
,
Woods
,
B. K. S.
,
Lee
,
K.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2010
, “
Design and Fabrication of a Passive 1D Morphing Aircraft Skin
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1699
1717
.10.1177/1045389X10378777
69.
Lachenal
,
X.
,
Weaver
,
P. M.
, and
Daynes
,
S.
,
2012
, “
Multi-Stable Composite Twisting Structure for Morphing Applications
,”
Proc. R. Soc. A
,
468
(
2141
), pp.
1230
1251
.10.1098/rspa.2011.0631
70.
Chillara
,
V. S. C.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2016
, “
Multifunctional Composites With Intrinsic Pressure Actuation and Prestress for Morphing Structures
,”
Compos. Struct.
,
157
, pp.
265
274
.10.1016/j.compstruct.2016.08.044
71.
Daynes
,
S.
, and
Weaver
,
P.
,
2010
, “
Analysis of Unsymmetric CFRP–Metal Hybrid Laminates for Use in Adaptive Structures
,”
Compos. Part A
,
41
(
11
), pp.
1712
1718
.10.1016/j.compositesa.2010.08.009
72.
Hyer
,
M. W.
,
1981
, “
Some Observations on the Cured Shape of Thin Unsymmetric Laminates
,”
J. Compos. Mater.
,
15
(
2
), pp.
175
194
.10.1177/002199838101500207
73.
Hyer
,
M. W.
,
1982
, “
The Room-Temperature Shapes of Four-Layer Unsymmetric Cross-Ply Laminates
,”
J. Compos. Mater.
,
16
(
4
), pp.
318
340
.10.1177/002199838201600406
74.
Dano
,
M.-L.
, and
Hyer
,
M. W.
,
1998
, “
Thermally-Induced Deformation Behavior of Unsymmetric Laminates
,”
Int. J. Solids Struct.
,
35
(
17
), pp.
2101
2120
.10.1016/S0020-7683(97)00167-4
75.
Huber
,
J. E.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
1997
, “
The Selection of Mechanical Actuators Based on Performance Indices
,”
Proc. R. Soc. A
,
453
(
1965
), pp.
2185
2205
.10.1098/rspa.1997.0117
76.
Feng
,
N.
,
Liu
,
L.
,
Liu
,
Y.
, and
Leng
,
J.
,
2015
, “
A Bio-Inspired, Active Morphing Skin for Camber Morphing Structures
,”
Smart Mater. Struct.
,
24
(
3
), p.
035023
.10.1088/0964-1726/24/3/035023
77.
Shan
,
Y.
,
Philen
,
M.
,
Lotfi
,
A.
,
Li
,
S.
,
Bakis
,
C. E.
,
Rahn
,
C. D.
, and
Wang
,
K.-W.
,
2009
, “
Variable Stiffness Structures Utilizing Fluidic Flexible Matrix Composites
,”
J. Intell. Mater. Syst. Struct.
,
20
(
4
), pp.
443
456
.10.1177/1045389X08095270
78.
Li
,
S.
, and
Wang
,
K. W.
,
2015
, “
Fluidic Origami: A Plant-Inspired Adaptive Structure With Shape Morphing and Stiffness Tuning
,”
Smart Mater. Struct.
,
24
(
10
), p.
105031
.10.1088/0964-1726/24/10/105031
79.
Woods
,
B. K. S.
, and
Friswell
,
M. I.
,
2015
, “
The Adaptive Aspect Ratio Morphing Wing: Design Concept and Low Fidelity Skin Optimization
,”
Aerosp. Sci. Technol.
,
42
, pp.
209
217
.10.1016/j.ast.2015.01.012
80.
Murugan
,
S.
,
Saavedra Flores
,
E. I.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2012
, “
Optimal Design of Variable Fiber Spacing Composites for Morphing Aircraft Skins
,”
Compos. Struct.
,
94
(
5
), pp.
1626
1633
.10.1016/j.compstruct.2011.12.023
81.
Olympio
,
K. R.
, and
Gandhi
,
F.
,
2010
, “
Zero Poisson's Ratio Cellular Honeycombs for Flex Skins Undergoing One-Dimensional Morphing
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1737
1753
.10.1177/1045389X09355664
82.
Murray
,
G. J.
, and
Gandhi
,
F.
,
2013
, “
Auxetic Honeycombs With Lossy Polymeric Infills for High Damping Structural Materials
,”
J. Intell. Mater. Syst. Struct.
,
24
(
9
), pp.
1090
1104
.10.1177/1045389X13480569
83.
Gong
,
X.
,
Huang
,
J.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2015
, “
Zero Poisson's Ratio Cellular Structure for Two-Dimensional Morphing Applications
,”
Compos. Struct.
,
134
, pp.
384
392
.10.1016/j.compstruct.2015.08.048
84.
Olympio
,
K. R.
, and
Gandhi
,
F.
,
2010
, “
Flexible Skins for Morphing Aircraft Using Cellular Honeycomb Cores
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1719
1735
.10.1177/1045389X09350331
85.
Dayyani
,
I.
,
Ziaei-Rad
,
S.
, and
Friswell
,
M. I.
,
2014
, “
The Mechanical Behavior of Composite Corrugated Core Coated With Elastomer for Morphing Skins
,”
J. Compos. Mater.
,
48
(
13
), pp.
1623
1636
.10.1177/0021998313488807
86.
Previtali
,
F.
,
Arrieta
,
A. F.
, and
Ermanni
,
P.
,
2015
, “
Double-Walled Corrugated Structure for Bending-Stiff Anisotropic Morphing Skins
,”
J. Intell. Mater. Syst. Struct.
,
26
(
5
), pp.
599
613
.10.1177/1045389X14554132
87.
Bai
,
J. B.
,
Chen
,
D.
,
Xiong
,
J. J.
, and
Shenoi
,
R. A.
,
2017
, “
A Corrugated Flexible Composite Skin for Morphing Applications
,”
Compos. Part B Eng.
,
131
, pp.
134
143
.10.1016/j.compositesb.2017.07.056
88.
Ghabezi
,
P.
,
2018
, “
Rectangular and Triangular Corrugated Composite Skins
,”
Fibers Polym.
,
19
(
2
), pp.
435
445
.10.1007/s12221-018-7728-8
89.
Philen
,
M.
,
Shan
,
Y.
,
Bakis
,
C.
,
Wang
,
K.-W.
, and
Rahn
,
C.
,
2006
, “
Variable Stiffness Adaptive Structures Utilizing Hydraulically Pressurized Flexible Matrix Composites With Valve Control
,”
AIAA
Paper No. 2006-2134.10.2514/6.2006-2134
90.
Chen
,
Y.
,
Yin
,
W.
,
Liu
,
Y.
, and
Leng
,
J.
,
2011
, “
Structural Design and Analysis of Morphing Skin Embedded With Pneumatic Muscle Fibers
,”
Smart Mater. Struct.
,
20
(
8
), p.
085033
.10.1088/0964-1726/20/8/085033
91.
Pikul
,
J. H.
,
Li
,
S.
,
Bai
,
H.
,
Hanlon
,
R. T.
,
Cohen
,
I.
, and
Shepherd
,
R. F.
,
2017
, “
Stretchable Surfaces With Programmable 3D Texture Morphing for Synthetic Camouflaging Skins
,”
Science
,
358
(
6360
), pp.
210
214
.10.1126/science.aan5627
92.
Yin
,
W. L.
,
Sun
,
Q. J.
,
Zhang
,
B.
,
Liu
,
J. C.
, and
Leng
,
J. S.
,
2008
, “
Seamless Morphing Wing With SMP Skin
,”
Adv. Mater. Res.
,
47–50
, pp.
97
100
.10.4028/www.scientific.net/AMR.47-50.97
93.
Chen
,
S.
,
Chen
,
Y.
,
Zhang
,
Z.
,
Liu
,
Y.
, and
Leng
,
J.
,
2014
, “
Experiment and Analysis of Morphing Skin Embedded With Shape Memory Polymer Composite Tube
,”
J. Intell. Mater. Syst. Struct.
,
25
(
16
), pp.
2052
2059
.10.1177/1045389X13517307
94.
Sun
,
J.
,
Liu
,
Y.
, and
Leng
,
J.
,
2015
, “
Mechanical Properties of Shape Memory Polymer Composites Enhanced by Elastic Fibers and Their Application in Variable Stiffness Morphing Skins
,”
J. Intell. Mater. Syst. Struct.
,
26
(
15
), pp.
2020
2027
.10.1177/1045389X14546658
95.
Song
,
J. J.
,
Chen
,
Q.
, and
Naguib
,
H. E.
,
2016
, “
Constitutive Modeling and Experimental Validation of the Thermo-Mechanical Response of a Shape Memory Composite Containing Shape Memory Alloy Fibers and Shape Memory Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
,
27
(
5
), pp.
625
641
.10.1177/1045389X15575086
96.
Leng
,
J.
,
Lan
,
X.
,
Liu
,
Y.
, and
Du
,
S.
,
2011
, “
Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications
,”
Prog. Mater. Sci.
,
56
(
7
), pp.
1077
1135
.10.1016/j.pmatsci.2011.03.001
97.
Yokozeki
,
T.
,
Takeda
,
S.-I.
,
Ogasawara
,
T.
, and
Ishikawa
,
T.
,
2006
, “
Mechanical Properties of Corrugated Composites for Candidate Materials of Flexible Wing Structures
,”
Compos. Part A
,
37
(
10
), pp.
1578
1586
.10.1016/j.compositesa.2005.10.015
98.
Dayyani
,
I.
,
Khodaparast
,
H. H.
,
Woods
,
B. K. S.
, and
Friswell
,
M. I.
,
2015
, “
The Design of a Coated Composite Corrugated Skin for the Camber Morphing Airfoil
,”
J. Intell. Mater. Syst. Struct.
,
26
(
13
), pp.
1592
1608
.10.1177/1045389X14544151
99.
Deimel
,
R.
, and
Brock
,
O.
,
2013
, “
A Compliant Hand Based on a Novel Pneumatic Actuator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Karlsruhe, Germany
,
May 6–10
, pp.
2047
2053
.
100.
Marchese
,
A. D.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2014
, “
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators
,”
Soft Rob.
,
1
(
1
), pp.
75
87
.10.1089/soro.2013.0009
101.
Yao
,
L.
,
Niiyama
,
R.
,
Ou
,
J.
,
Follmer
,
S.
,
Della Silva
,
C.
, and
Ishii
,
H.
,
2013
, “
PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces
,”
26th Annual ACM Symposium on User Interface Software and Technology
,
Scotland, UK
,
Oct. 8–11
, pp.
13
22
.10.1145/2501988.2502037
102.
Pagitz
,
M.
,
Lamacchia
,
E.
, and
Hol
,
J. M. A. M.
,
2012
, “
Pressure-Actuated Cellular Structures
,”
Bioinspiration Biomimetics
,
7
(
1
), p.
016007
.10.1088/1748-3182/7/1/016007
103.
Pagitz
,
M.
, and
Bold
,
J.
,
2013
, “
Shape-Changing Shell-Like Structures
,”
Bioinspiration Biomimetics
,
8
(
1
), p.
016010
.10.1088/1748-3182/8/1/016010
104.
Villanueva
,
A. A.
,
Joshi
,
K. B.
,
Blottman
,
J. B.
, and
Priya
,
S.
,
2010
, “
A Bio-Inspired Shape Memory Alloy Composite (BISMAC) Actuator
,”
Smart Mater. Struct.
,
19
(
2
), p.
025013
.10.1088/0964-1726/19/2/025013
105.
Lacasse
,
S.
,
Terriault
,
P.
,
Simoneau
,
C.
, and
Brailovski
,
V.
,
2015
, “
Design, Manufacturing, and Testing of an Adaptive Composite Panel With Embedded Shape Memory Alloy Actuators
,”
J. Intell. Mater. Syst. Struct.
,
26
(
15
), pp.
2055
2072
.10.1177/1045389X14549862
106.
Rodrigue
,
H.
,
Bhandari
,
B.
,
Han
,
M.-W.
, and
Ahn
,
S.-H.
,
2015
, “
A Shape Memory Alloy–Based Soft Morphing Actuator Capable of Pure Twisting Motion
,”
J. Intell. Mater. Syst. Struct.
,
26
(
9
), pp.
1071
1078
.10.1177/1045389X14536008
107.
Feng
,
N.
,
Liu
,
L.
,
Liu
,
Y.
, and
Leng
,
J.
,
2015
, “
Characteristics of Multi-Functional Composites Using Elastomer Embedded With Shape Memory Alloy Wires
,”
Mater. Des.
,
88
, pp.
75
81
.10.1016/j.matdes.2015.08.119
108.
Wang
,
W.
,
Rodrigue
,
H.
, and
Ahn
,
S.-H.
,
2015
, “
Smart Soft Composite Actuator With Shape Retention Capability Using Embedded Fusible Alloy Structures
,”
Compos. Part B Eng.
,
78
, pp.
507
514
.10.1016/j.compositesb.2015.04.007
109.
Lelieveld
,
C.
,
Jansen
,
K.
, and
Teuffel
,
P.
,
2016
, “
Mechanical Characterization of a Shape Morphing Smart Composite With Embedded Shape Memory Alloys in a Shape Memory Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
,
27
(
15
), pp.
2038
2048
.10.1177/1045389X15620035
110.
Huang
,
J.
,
Zhang
,
Q.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2017
, “
Shape Memory Polymer-Based Hybrid Honeycomb Structures With Zero Poisson's Ratio and Variable Stiffness
,”
Compos. Struct.
,
179
, pp.
437
443
.10.1016/j.compstruct.2017.07.091
111.
Zhang
,
C.-S.
, and
Ni
,
Q.-Q.
,
2007
, “
Bending Behavior of Shape Memory Polymer Based Laminates
,”
Compos. Struct.
,
78
(
2
), pp.
153
161
.10.1016/j.compstruct.2005.08.029
112.
Takeda
,
T.
,
Shindo
,
Y.
, and
Narita
,
F.
,
2015
, “
Flexural Stiffness Variations of Woven Carbon Fiber Composite/Shape Memory Polymer Hybrid Layered Beams
,”
J. Compos. Mater.
,
49
(
2
), pp.
209
216
.10.1177/0021998313515458
113.
Maples
,
H. A.
,
Wakefield
,
S.
,
Robinson
,
P.
, and
Bismarck
,
A.
,
2014
, “
High Performance Carbon Fibre Reinforced Epoxy Composites With Controllable Stiffness
,”
Compos. Sci. Technol.
,
105
, pp.
134
143
.10.1016/j.compscitech.2014.09.008
114.
Robinson
,
P.
,
Bismarck
,
A.
,
Zhang
,
B.
, and
Maples
,
H. A.
,
2017
, “
Deployable, Shape Memory Carbon Fibre Composites Without Shape Memory Constituents
,”
Compos. Sci. Technol.
,
145
, pp.
96
104
.10.1016/j.compscitech.2017.02.024
115.
Li
,
H.
,
Dai
,
F.
,
Weaver
,
P. M.
, and
Du
,
S.
,
2014
, “
Bistable Hybrid Symmetric Laminates
,”
Compos. Struct.
,
116
, pp.
782
792
.10.1016/j.compstruct.2014.05.030
116.
Daynes
,
S.
,
Diaconu
,
C. G.
,
Potter
,
K. D.
, and
Weaver
,
P. M.
,
2010
, “
Bistable Prestressed Symmetric Laminates
,”
J. Compos. Mater.
,
44
(
9
), pp.
1119
1137
.10.1177/0021998309351603
117.
Daynes
,
S.
,
Potter
,
K. D.
, and
Weaver
,
P. M.
,
2008
, “
Bistable Prestressed Buckled Laminates
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3431
3437
.10.1016/j.compscitech.2008.09.036
118.
Hufenbach
,
W.
,
Gude
,
M.
, and
Czulak
,
A.
,
2006
, “
Actor-Initiated Snap-Through of Unsymmetric Composites With Multiple Deformation States
,”
J. Mater. Process. Technol.
,
175
(
1–3
), pp.
225
230
.10.1016/j.jmatprotec.2005.04.025
119.
Eckstein
,
E.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2014
, “
Multi-Mode Morphing Using Initially Curved Composite Plates
,”
Compos. Struct.
,
109
, pp.
240
245
.10.1016/j.compstruct.2013.11.005
120.
Schultz
,
M. R.
,
Hyer
,
M. W.
,
Brett Williams
,
R.
,
Keats Wilkie
,
W.
, and
Inman
,
D. J.
,
2006
, “
Snap-Through of Unsymmetric Laminates Using Piezocomposite Actuators
,”
Compos. Sci. Technol.
,
66
(
14
), pp.
2442
2448
.10.1016/j.compscitech.2006.01.027
121.
Kim
,
H. A.
,
Betts
,
D. N.
,
Salo
,
A. I. T.
, and
Bowen
,
C. R.
,
2010
, “
Shape Memory Alloy-Piezoelectric Active Structures for Reversible Actuation of Bistable Composites
,”
Am. Inst. Aeronaut. Astronaut. J.
,
48
(
6
), pp.
1265
1268
.10.2514/1.J050100
122.
Lee
,
A. J.
,
Moosavian
,
A.
, and
Inman
,
D. J.
,
2017
, “
A Piezoelectrically Generated Bistable Laminate for Morphing
,”
Mater. Lett.
,
190
, pp.
123
126
.10.1016/j.matlet.2017.01.005
123.
Gude
,
M.
,
Hufenbach
,
W.
, and
Kirvel
,
C.
,
2011
, “
Piezoelectrically Driven Morphing Structures Based on Bistable Unsymmetric Laminates
,”
Compos. Struct.
,
93
(
2
), pp.
377
382
.10.1016/j.compstruct.2010.09.004
124.
Chillara
,
V. S. C.
, and
Dapino
,
M. J.
,
2017
, “
Mechanically-Prestressed Bistable Composite Laminates With Weakly Coupled Equilibrium Shapes
,”
Compos. Part B: Eng.
,
111
, pp.
251
260
.10.1016/j.compositesb.2016.12.011
125.
Chillara
,
V. S. C.
, and
Dapino
,
M. J.
,
2018
, “
Stability Considerations and Actuation Requirements in Bistable Laminated Composites
,”
Compos. Struct.
,
184
, pp.
1062
1070
.10.1016/j.compstruct.2017.09.097
126.
Chillara
,
V. S. C.
, and
Dapino
,
M. J.
,
2017
, “
Bistable Morphing Composites With Selectively Pre-Stressed Laminae
,”
Proc. SPIE, 10165,
p. 101650Y.
127.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Stiffness Tailoring Using Prestress in Adaptive Composite Structures
,”
Compos. Struct.
,
106
, pp.
282
287
.10.1016/j.compstruct.2013.05.059
128.
Emam
,
S. A.
, and
Inman
,
D. J.
,
2015
, “
A Review on Bistable Composite Laminates for Morphing and Energy Harvesting
,”
ASME Appl. Mech. Rev.
,
67
(
6
), p.
060803
.10.1115/1.4032037
129.
Bilgen
,
O.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
Analytical and Experimental Characterization of Macro-Fiber Composite Actuated Thin Clamped-Free Unimorph Benders
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051005
.10.1115/1.4001504
130.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.10.1115/1.4039314
131.
Wilding
,
S. E.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2012
, “
Introduction of Planar Compliant Joints Designed for Combined Bending and Axial Loading Conditions in Lamina Emergent Mechanisms
,”
Mech. Mach. Theory
,
56
, pp.
1
15
.10.1016/j.mechmachtheory.2012.05.007
132.
Boncheva
,
M.
, and
Whitesides
,
G. M.
,
2005
, “
Templated Self-Assembly: Formation of Folded Structures by Relaxation of Pre-Stressed, Planar Tapes
,”
Adv. Mater.
,
17
(
5
), pp.
553
557
.10.1002/adma.200400940
133.
Chillara
,
V. S. C.
, and
Dapino
,
M. J.
,
2018
, “
Stress-Biased Laminated Composites for Smooth Folds in Origami Structures
,”
Mater. Res. Express
,
6
(
2
), p.
025703
.10.1088/2053-1591/aaee49
134.
Daynes
,
S.
,
Trask
,
R. S.
, and
Weaver
,
P. M.
,
2014
, “
Bio-Inspired Structural Bistability Employing Elastomeric Origami for Morphing Applications
,”
Smart Mater. Struct.
,
23
(
12
), p.
125011
.10.1088/0964-1726/23/12/125011
135.
Li
,
S.
, and
Wang
,
K. W.
,
2015
, “
Fluidic Origami With Embedded Pressure Dependent Multi-Stability: A Plant Inspired Innovation
,”
J. R. Soc. Interface
,
12
(
111
), p.
20150639
.10.1098/rsif.2015.0639
136.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
24
(
10
), p.
105031
.https://iopscience.iop.org/article/10.1088/0964-1726/23/9/094009/meta
137.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
.10.1002/adfm.201102978
138.
Lan
,
X.
,
Liu
,
Y.
,
Lv
,
H.
,
Wang
,
X.
,
Leng
,
J.
, and
Du
,
S.
,
2009
, “
Fiber Reinforced Shape-Memory Polymer Composite and Its Application in a Deployable Hinge
,”
Smart Mater. Struct.
,
18
(
2
), p.
024002
.10.1088/0964-1726/18/2/024002
139.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.10.1126/science.1252610
140.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
Smart Mater. Struct.
,
23
(
9
), p.
094006
.10.1088/0964-1726/23/9/094006
141.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
.10.1115/1.4025382
142.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
143.
Koh
,
J.-S.
,
Kim
,
S.-R.
, and
Cho
,
K.-J.
,
2014
, “
Self-Folding Origami Using Torsion Shape Memory Alloy Wire Actuators
,”
ASME
Paper No. DETC2014-34822.10.1115/DETC2014-34822
144.
von Lockette
,
P.
, and
Sheridan
,
R.
,
2013
, “
Folding Actuation and Locomotion of Novel Magneto-Active Elastomer (MAE) Composites
,”
ASME
Paper No. SMASIS2013-3222.10.1115/SMASIS2013-3222
145.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Lien
,
J.-M.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments
,”
ASME
Paper No. DETC2013-12405.10.1115/DETC2013-12405
146.
Ahmed
,
S.
,
Ounaies
,
Z.
, and
Arrojado
,
E. A. F.
,
2017
, “
Electric Field-Induced Bending and Folding of Polymer Sheets
,”
Sens. Actuators. A
,
260
, pp.
68
80
.10.1016/j.sna.2017.03.025
147.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.10.1039/c3sm51003d
148.
Peel
,
L. D.
, and
Jensen
,
D. W.
,
2000
, “
Nonlinear Modeling of Fiber-Reinforced Elastomers and the Response of a ‘Rubber Muscle’ Actuator
,” 158th Fall Technical Meeting of the Rubber Division, Cincinnati, OH, Oct. 17–20, Paper No.
30
.https://www.researchgate.net/publication/228612495_Nonlinear_Modeling_of_Fiber-Reinforced_Elastomers_and_the_Response_of_a_Rubber_Muscle_Actuator
149.
Hamamoto
,
A.
, and
Hyer
,
M. W.
,
1987
, “
Non-Linear Temperature-Curvature Relationships for Unsymmetric Graphite-Epoxy Laminates
,”
Int. J. Solids Struct.
,
23
(
7
), pp.
919
935
.10.1016/0020-7683(87)90087-4
150.
Mattioni
,
F.
,
Weaver
,
P. M.
, and
Friswell
,
M. I.
,
2009
, “
Multistable Composite Plates With Piecewise Variation of Lay-Up in the Planform
,”
Int. J. Solids Struct.
,
46
(
1
), pp.
151
164
.10.1016/j.ijsolstr.2008.08.023
151.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Akleman
,
E.
, and
Lagoudas
,
D. C.
,
2016
, “
Modeling and Analysis of Origami Structures With Smooth Folds
,”
Comput.-Aided Des.
,
78
, pp.
93
106
.10.1016/j.cad.2016.05.010
152.
Reddy
,
J. N.
,
1997
,
Mechanics of Laminated Composite Plates: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
153.
Dano
,
M.-L.
, and
Hyer
,
M. W.
,
2003
, “
SMA-Induced Snap-Through of Unsymmetric Fiber-Reinforced Composite Laminates
,”
Int. J. Solids Struct.
,
40
(
22
), pp.
5949
5972
.10.1016/S0020-7683(03)00374-3
154.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
326
(
1567
), pp.
565
584
.10.1098/rspa.1972.0026
155.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
156.
Philen
,
M.
,
Shan
,
Y.
,
Wang
,
K.-W.
,
Bakis
,
C.
, and
Rahn
,
C.
,
2007
, “
Fluidic Flexible Matrix Composites for the Tailoring of Variable Stiffness Adaptive Structures
,”
AIAA
Paper No. 2007-1703.10.2514/6.2007-1703
157.
Dano
,
M.-L.
, and
Hyer
,
M. W.
,
1996
, “
The Response of Unsymmetric Laminates to Simple Applied Forces
,”
Mech. Compos. Mater. Struct.
,
3
(
1
), pp.
65
80
.10.1080/10759419608945854
158.
Schlecht
,
M.
, and
Schulte
,
K.
,
1999
, “
Advanced Calculation of the Room-Temperature Shapes of Unsymmetric Laminates
,”
J. Compos. Mater.
,
33
(
16
), pp.
1472
1490
.10.1177/002199839903301601
159.
Betts
,
D. N.
,
Salo
,
A. I. T.
,
Bowen
,
C. R.
, and
Kim
,
H. A.
,
2010
, “
Characterisation and Modelling of the Cured Shapes of Arbitrary Layup Bistable Composite Laminates
,”
Compos. Struct.
,
92
(
7
), pp.
1694
1700
.10.1016/j.compstruct.2009.12.005
160.
Hufenbach
,
W.
,
Gude
,
M.
, and
Kroll
,
L.
,
2002
, “
Design of Multistable Composites for Application in Adaptive Structures
,”
Compos. Sci. Technol.
,
62
(
16
), pp.
2201
2207
.10.1016/S0266-3538(02)00159-8
161.
Tawfik
,
S. A.
,
Stefan
,
D. D.
, and
Armanios
,
E.
,
2011
, “
Planform Effects Upon the Bistable Response of Cross-Ply Composite Shells
,”
Compos. Part A
,
42
(
7
), pp.
825
833
.10.1016/j.compositesa.2011.03.012
162.
Lee
,
A. J.
,
Moosavian
,
A.
, and
Inman
,
D. J.
,
2017
, “
Control and Characterization of a Bistable Laminate Generated With Piezoelectricity
,”
Smart Mater. Struct.
,
26
(
8
), p.
085007
.10.1088/1361-665X/aa7165
163.
Brinson
,
L. C.
,
1993
, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
,
4
(
2
), pp.
229
242
.10.1177/1045389X9300400213
164.
Diaconu
,
C. G.
,
Weaver
,
P. M.
, and
Arrieta
,
A. F.
,
2009
, “
Dynamic Analysis of Bi-Stable Composite Plates
,”
J. Sound Vibr.
,
322
(
4–5
), pp.
987
1004
.10.1016/j.jsv.2008.11.032
165.
Gigliotti
,
M.
,
Wisnom
,
M. R.
, and
Potter
,
K. D.
,
2004
, “
Loss of Bifurcation and Multiple Shapes of Thin [0/90] Unsymmetric Composite Plates Subject to Thermal Stress
,”
Compos. Sci. Technol.
,
64
(
1
), pp.
109
128
.10.1016/S0266-3538(03)00213-6
166.
Potter
,
K.
,
Weaver
,
P.
,
Seman
,
A. A.
, and
Shah
,
S.
,
2007
, “
Phenomena in the Bifurcation of Unsymmetric Composite Plates
,”
Compos. Part A: Appl. Sci. Manuf.
,
38
(
1
), pp.
100
106
.10.1016/j.compositesa.2006.01.017
167.
Cantera
,
M. A.
,
Romera
,
J. M.
,
Adarraga
,
I.
, and
Mujika
,
F.
,
2014
, “
Modelling of [0/90] Laminates Subject to Thermal Effects Considering Mechanical Curvature and Through-the-Thickness Strain
,”
Compos. Struct.
,
110
, pp.
77
87
.10.1016/j.compstruct.2013.11.023
168.
Pirrera
,
A.
,
Avitabile
,
D.
, and
Weaver
,
P. M.
,
2010
, “
Bistable Plates for Morphing Structures: A Refined Analytical Approach With High-Order Polynomials
,”
Int. J. Solids Struct.
,
47
(
25–26
), pp.
3412
3425
.10.1016/j.ijsolstr.2010.08.019
169.
Berbinau
,
P.
,
Soutis
,
C.
, and
Guz
,
I. A.
,
1999
, “
Compressive Failure of 0 Unidirectional Carbon-Fibre-Reinforced Plastic (CFRP) Laminates by Fibre Microbuckling
,”
Compos. Sci. Technol.
,
59
(
9
), pp.
1451
1455
.10.1016/S0266-3538(98)00181-X
170.
Murphey
,
T.
,
Meink
,
T.
, and
Mikulas
,
M.
,
2001
, “
Some Micromechanics Considerations of the Folding of Rigidizable Composite Materials
,”
AIAA
Paper No. 2001-1418.10.2514/6.2001-1418
171.
López Jiménez
,
F.
, and
Pellegrino
,
S.
,
2012
, “
Folding of Fiber Composites With a Hyperelastic Matrix
,”
Int. J. Solids Struct.
,
49
(
3–4
), pp.
395
407
.10.1016/j.ijsolstr.2011.09.010
172.
Francis
,
W.
,
Lake
,
M.
, and
Mayes
,
J. S.
,
2006
, “
A Review of Classical Fiber Microbuckling Analytical Solutions for Use With Elastic Memory Composites
,”
AIAA
Paper No. 2006-1764.10.2514/6.2006-1764
You do not currently have access to this content.