Abstract

In this study, a review is presented on previous work referring to analytical modeling of mechanical systems having components that come in contact during their motion in ways that involve impact and/or friction. This study is focused mostly on dynamical systems that can be represented by a finite number of degrees-of-freedom. First, models consisting of oscillators are considered and the contact action is represented by a combination of discrete spring and damper elements or rigid constraints. These models may also involve clearances and effects from friction forces. Then, systems involving rigid or discretized deformable components are examined. Depending on the approach chosen, a contact event is modeled in either an algebraic or a differential manner. In the former, the concept of a restitution coefficient plays a dominant role. In the latter, the Darboux–Keller method is applied, which also requires a restitution coefficient but considers the dynamics during the contact phase by using the normal impulse component as an independent variable, in place of time. The same category of systems is also examined next, separately, by considering techniques of nonsmooth mechanics, which are more convenient to apply in several cases, like in modeling multiple contact events. Finally, some special recent techniques developed for Filippov systems and for systems involving impact and friction are presented. This study concludes by identifying and suggesting possible topics for future research.

References

1.
Routh
,
E. J.
,
1897
,
Dynamics of a System of Rigid Bodies
, 6th ed.,
Macmillan and Co
,
London
.
2.
Goldsmith
,
W.
,
1960
,
Impact: The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold
,
London
.
3.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
4.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
5.
Babitsky
,
V. I.
,
1998
,
Theory of Vibro-Impact Systems and Applications
,
Springer-Verlag
,
Berlin
.
6.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
1996
,
Multibody Dynamics With Unilateral Contacts
,
Wiley & Sons
,
New York
.
7.
Glocker
,
C.
,
2001
,
Set-Valued Force Laws, Dynamics of Non-Smooth Systems
,
Springer
,
Berlin
.
8.
Brogliato
,
B.
,
2016
,
Nonsmooth Mechanics: Models, Dynamics and Control
, 3rd ed.,
Springer-Verlag
,
London
.
9.
Leine
,
R. I.
, and
Nijmeijer
,
H.
,
2013
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
,
Springer-Verlag
,
Berlin
.
10.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.10.1115/1.3111080
11.
di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
,
Kowalczyk
,
P.
,
Nordmark
,
A. B.
,
Olivar Tost
,
G.
, and
Piiroinen
,
P. T.
,
2008
, “
Bifurcations in Nonsmooth Dynamical Systems
,”
SIAM Rev.
,
50
(
4
), pp.
629
701
.10.1137/050625060
12.
Khulief
,
Y. A.
,
2012
, “
Modeling of Impact in Multibody Systems: An Overview
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021012
.10.1115/1.4006202
13.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.10.1007/s11071-016-2999-3
14.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
.10.1016/j.mechmachtheory.2017.12.002
15.
Stewart
,
D. E.
,
2000
, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
,
42
(
1
), pp.
3
39
.10.1137/S0036144599360110
16.
Brogliato
,
B.
,
ten Dam
,
A. A.
,
Paoli
,
L.
,
Génot
,
F.
, and
Abadie
,
M.
,
2002
, “
Numerical Simulation of Finite Dimensional Multibody Nonsmooth Mechanical Systems
,”
ASME Appl. Mech. Rev.
,
55
(
2
), pp.
107
150
.10.1115/1.1454112
17.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
.
18.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
Wiley-Interscience
,
New York
.
19.
Natsiavas
,
S.
,
1990
, “
On the Dynamics of Oscillators With Bilinear Damping and Stiffness
,”
Int. J. Non-Linear Mech.
,
25
(
5
), pp.
535
554
.10.1016/0020-7462(90)90017-4
20.
Masri
,
S. F.
,
1978
, “
Analytical and Experimental Studies of a Dynamic System With a Gap
,”
ASME J. Mech. Des.
,
100
(
3
), pp.
480
486
.10.1115/1.3453952
21.
Maezawa
,
S.
,
Kumano
,
H.
, and
Minakuchi
,
Y.
,
1980
, “
Forced Vibration in an Unsymmetric Piecewise-Linear System Excited by General Periodic Force Functions
,”
Bull. JSME
,
23
(
175
), pp.
68
75
.10.1299/jsme1958.23.68
22.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
.10.1016/0022-460X(83)90407-8
23.
Choi
,
Y. S.
, and
Noah
,
S. T.
,
1988
, “
Forced Periodic Vibration of Unsymmetric Piecewise-Linear System
,”
J. Sound Vib.
,
121
(
1
), pp.
117
126
.10.1016/S0022-460X(88)80064-6
24.
Natsiavas
,
S.
,
1990
, “
Stability and Bifurcation Analysis for Oscillators With Motion Limiting Constraints
,”
J. Sound Vib.
,
141
(
1
), pp.
97
102
.10.1016/0022-460X(90)90515-2
25.
Hartog
,
J. P. D.
, and
Mikina
,
S. J.
,
1932
, “
Forced Vibrations With Non-Linear Spring Constants
,”
ASME J. Appl. Mech.
,
58
, pp.
157
164
.
26.
Maezawa
,
S.
, and
Furukawa
,
S.
,
1973
, “
Subharmonic Resonance in Piecewise-Linear System
,”
Bull. JSME
,
16
(
96
), pp.
931
941
.10.1299/jsme1958.16.931
27.
Nguyen
,
D. T.
,
Noah
,
S. T.
, and
Kettleborough
,
C. F.
,
1986
, “
Impact Behaviour of an Oscillator With Limiting Stops—
Part I: A Parametric Study,”
J. Sound Vib.
,
109
(
2
), pp.
293
325
.10.1016/S0022-460X(86)80010-4
28.
Comparin
,
R. J.
, and
Singh
,
R.
,
1989
, “
Non-Linear Frequency Response Characteristics of an Impact Pair
,”
J. Sound Vib.
,
134
(
2
), pp.
259
290
.10.1016/0022-460X(89)90652-4
29.
Natsiavas
,
S.
,
1989
, “
Periodic Response and Stability of Oscillators With Symmetric Trilinear Restoring Force
,”
J. Sound Vib.
,
134
(
2
), pp.
315
331
.10.1016/0022-460X(89)90654-8
30.
Natsiavas
,
S.
, and
Gonzalez
,
H.
,
1992
, “
Vibration of Harmonically Excited Oscillators With Asymmetric Constraints
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S284
S290
.10.1115/1.2899502
31.
Gurtin
,
M. E.
,
1961
, “
On the Use of Clearance in Viscous Dampers to Limit High Frequency Force Transmission
,”
ASME J. Eng. Ind.
,
83
(
1
), pp.
50
52
.10.1115/1.3664421
32.
Venkatesan
,
C.
, and
Krishnan
,
R.
,
1975
, “
Harmonic Response of a Shock Mount Employing Dual-Phase Damping
,”
J. Sound Vib.
,
40
(
3
), pp.
409
413
.10.1016/S0022-460X(75)81310-1
33.
Guntur
,
R. R.
, and
Sankar
,
S.
,
1982
, “
Performance of Different Kinds of Dual Phase Damping Shock Mounts
,”
J. Sound Vib.
,
84
(
2
), pp.
253
267
.10.1016/S0022-460X(82)80008-4
34.
Natsiavas
,
S.
,
1991
, “
Dynamics of Piecewise Linear Oscillators With Van Der Pol Type Damping
,”
Int. J. Non-Linear Mech.
,
26
(
3–4
), pp.
349
366
.10.1016/0020-7462(91)90065-2
35.
Natsiavas
,
S.
, and
Verros
,
G.
,
1999
, “
Dynamics of Oscillators With Strongly Nonlinear Asymmetric Damping
,”
Nonlinear Dyn.
,
20
(
3
), pp.
221
246
.10.1023/A:1008398813070
36.
Caughey
,
T. K.
,
1960
, “
Sinusoidal Excitation of a System With Bilinear Hysteresis
,”
ASME J. Appl. Mech.
,
27
(
4
), pp.
640
643
.10.1115/1.3644075
37.
Iwan
,
W. D.
, and
Furuike
,
D. M.
,
1973
, “
The Transient and Steady State Response of a Hereditary System
,”
Int. J. Non-Linear Mech.
,
8
(
4
), pp.
395
406
.10.1016/0020-7462(73)90026-7
38.
Miller
,
G. R.
, and
Butler
,
M. E.
,
1988
, “
Periodic Response of Elastic-Perfectly Plastic SDOF Oscillator
,”
ASCE J. Eng. Mech.
,
114
(
3
), pp.
536
550
.10.1061/(ASCE)0733-9399(1988)114:3(536)
39.
Lacarbonara
,
W.
, and
Vestroni
,
F.
,
2003
, “
Non-Classical Responses of Oscillators With Hysteresis
,”
Nonlinear Dyn.
,
32
(
3
), pp.
235
258
.10.1023/A:1024423626386
40.
Padmanabhan
,
C.
, and
Singh
,
R.
,
1996
, “
Analysis of Periodically Forced Nonlinear Hill's Oscillator With Application to a Geared System
,”
J. Acoust. Soc. Am.
,
99
(
1
), pp.
324
334
.10.1121/1.414544
41.
Ma
,
Q. L.
,
Kahraman
,
A.
,
Perret-Liaudet
,
J.
, and
Rigaud
,
E.
,
2007
, “
An Investigation of Steady-State Dynamic Response of a Sphere-Plane Contact Interface With Contact Loss
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
249
255
.10.1115/1.2190230
42.
Natsiavas
,
S.
,
Theodossiades
,
S.
, and
Goudas
,
I.
,
2000
, “
Dynamic Analysis of Piecewise Linear Oscillators With Time Periodic Coefficients
,”
Int. J. Non-Linear Mech.
,
35
(
1
), pp.
53
68
.10.1016/S0020-7462(98)00087-0
43.
Galhoud
,
L. E.
,
Masri
,
S. F.
, and
Anderson
,
J. C.
,
1987
, “
Transfer Function of a Class of Nonlinear Multidegree of Freedom Oscillators
,”
ASME J. Appl. Mech.
,
54
(
1
), pp.
215
225
.10.1115/1.3172961
44.
Comparin
,
R. J.
, and
Singh
,
R.
,
1990
, “
Frequency Response Characteristics of a Multi-Degree-of-Freedom System With Clearances
,”
J. Sound Vib.
,
142
(
1
), pp.
101
124
.10.1016/0022-460X(90)90585-N
45.
Natsiavas
,
S.
,
1993
, “
Dynamics of Multiple Degree of Freedom Oscillators With Colliding Components
,”
J. Sound Vib.
,
165
(
3
), pp.
439
453
.10.1006/jsvi.1993.1269
46.
Watanabe
,
T.
,
1978
, “
Forced Vibration of Continuous System With Nonlinear Boundary Conditions
,”
ASME J. Mech. Des.
,
100
(
3
), pp.
487
491
.10.1115/1.3453953
47.
Masri
,
S. F.
,
Mariamy
,
Y. A.
, and
Anderson
,
J. C.
,
1981
, “
Dynamic Response of a Beam With a Geometric Nonlinearity
,”
ASME J. Appl. Mech.
,
48
(
2
), pp.
404
410
.10.1115/1.3157630
48.
Moon
,
F. C.
, and
Shaw
,
S. W.
,
1983
, “
Chaotic Vibrations of a Beam With Nonlinear Boundary Conditions
,”
Int. J. Non-Linear Mech.
,
18
(
6
), pp.
465
477
.10.1016/0020-7462(83)90033-1
49.
Fey
,
R. H. B.
,
van Campen
,
D. H.
, and
de Kraker
,
A.
,
1996
, “
Long Term Structural Dynamics of Mechanical Systems With Local Nonlinearities
,”
ASME J. Vib. Acoust.
,
118
(
2
), pp.
147
153
.10.1115/1.2889642
50.
Metallidis
,
P.
, and
Natsiavas
,
S.
,
2000
, “
Vibration of a Continuous System With Clearance and Motion Constraints
,”
Int. J. Non-Linear Mech.
,
35
(
4
), pp.
675
690
.10.1016/S0020-7462(99)00049-9
51.
Dubowsky
,
S.
, and
Freudenstein
,
F.
,
1971
, “
Dynamic Analysis of Mechanical Systems With Clearances—Part 1: Formation of Dynamic Model
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
305
309
.10.1115/1.3427895
52.
Thompson
,
J. M. T.
, and
Elvey
,
J. S. N.
,
1984
, “
Elimination of Subharmonic Resonances of Compliant Marine Structures
,”
Int. J. Mech. Sci.
,
26
(
6–8
), pp.
419
426
.10.1016/0020-7403(84)90031-6
53.
Wolf
,
J. P.
, and
Skrikerud
,
P. E.
,
1980
, “
Mutual Pounding of Adjacent Structures During Earthquakes
,”
Nucl. Eng. Des.
,
57
(
2
), pp.
253
275
.10.1016/0029-5493(80)90106-5
54.
Natsiavas
,
S.
, and
Babcock
,
C. D.
,
1988
, “
Behavior of Unanchored Fluid-Filled Tanks Subjected to Ground Excitation
,”
ASME J. Appl. Mech.
,
55
(
3
), pp.
654
659
.10.1115/1.3125844
55.
Paidoussis
,
M. P.
,
Li
,
G. X.
, and
Rand
,
R. H.
,
1991
, “
Chaotic Motions of a Constrained Pipe Conveying Fluid: Comparison Between Simulation, Analysis and Experiment
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
559
565
.10.1115/1.2897220
56.
Sharp
,
R. S.
, and
Crolla
,
D. A.
,
1987
, “
Road Vehicle Suspension System Design—A Review
,”
Veh. Syst. Dyn.
,
16
(
3
), pp.
167
192
.10.1080/00423118708968877
57.
Wallaschek
,
J.
,
1990
, “
Dynamics of Non-Linear Automobile Shock-Absorbers
,”
Int. J. Non-Linear Mech.
,
25
(
2–3
), pp.
299
308
.10.1016/0020-7462(90)90059-I
58.
Surace
,
C.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
,
1992
, “
An Improved Nonlinear Model for an Automotive Shock Absorber
,”
Nonlinear Dyn.
,
3
, pp.
413
429
.10.1007/BF00045646
59.
Verros
,
G.
,
Natsiavas
,
S.
, and
Stepan
,
G.
,
2000
, “
Control and Dynamics of Quarter-Car Models With Dual-Rate Damping
,”
J. Vib. Control
,
6
(
7
), pp.
1045
1063
.10.1177/107754630000600706
60.
Papalukopoulos
,
C.
, and
Natsiavas
,
S.
,
2007
, “
Nonlinear Biodynamics of Passengers Coupled With Quarter Car Models
,”
J. Sound Vib.
,
304
(
1–2
), pp.
50
71
.10.1016/j.jsv.2007.01.042
61.
Wang
,
J.
,
Li
,
R.
, and
Peng
,
X.
,
2003
, “
Survey of Nonlinear Vibration of Gear Transmission Systems
,”
ASME Appl. Mech. Rev.
,
56
(
3
), pp.
309
329
.10.1115/1.1555660
62.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2014
, “
Review of Planetary and Epicyclic Gear Dynamics and Vibration Research
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040804
.10.1115/1.4027812
63.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Non-Linear Dynamics of a Spur Gear System
,”
J. Sound Vib.
,
142
(
1
), pp.
49
75
.10.1016/0022-460X(90)90582-K
64.
Theodossiades
,
S.
, and
Natsiavas
,
S.
,
2000
, “
Nonlinear Dynamics of Gear-Pair Systems With Periodic Stiffness and Backlash
,”
J. Sound Vib.
,
229
(
2
), pp.
287
310
.10.1006/jsvi.1999.2490
65.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
,
2000
, “
Nonlinear Dynamic Responses of a Spur Gear Pair: Modeling and Experimental Comparisons
,”
J. Sound Vib.
,
237
(
3
), pp.
435
455
.10.1006/jsvi.2000.3067
66.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Period One Motions
,”
J. Sound Vib.
,
284
(
1–2
), pp.
151
172
.10.1016/j.jsv.2004.06.010
67.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
.10.1016/j.jsv.2006.11.028
68.
Guo
,
Y.
,
Keller
,
J.
, and
Parker
,
R. G.
,
2014
, “
Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets Under Gravity Effects
,”
Eur. J. Mech. A/Solids
,
47
, pp.
45
57
.10.1016/j.euromechsol.2014.02.013
69.
De la Cruz
,
M.
,
Chong
,
W. W. F.
,
Teodorescu
,
M.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2012
, “
Transient Mixed Thermo-Elastohydrodynamic Lubrication in Multi-Speed Transmissions
,”
Tribol. Int.
,
49
, pp.
17
29
.10.1016/j.triboint.2011.12.006
70.
Mohammad Pour
,
M.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2015
, “
Dynamics and Efficiency of Planetary Gear Sets for Hybrid Powertrains
,”
Proc. Inst. Mech. Eng., Part C
,
230
, pp.
1359
1368
.10.1177/0954406215590644
71.
Karagiannis
,
K.
, and
Pfeiffer
,
F.
,
1991
, “
Theoretical and Experimental Investigations of Gear-Rattling
,”
Nonlinear Dyn.
,
2
(
5
), pp.
367
387
.10.1007/BF00045670
72.
Theodossiades
,
S.
, and
Natsiavas
,
S.
,
2001
, “
Periodic and Chaotic Dynamics of Motor-Driven Gear-Pair Systems With Backlash
,”
Chaos Solitons Fractals
,
12
(
13
), pp.
2427
2440
.10.1016/S0960-0779(00)00210-1
73.
den Hartog
,
J. P.
,
1930
, “
Forced Vibration With Combined Coulomb and Viscous Friction
,”
Trans. ASME
,
53
, pp.
107
115
.10.1080/1478644300856505185
74.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.10.1115/1.3111079
75.
Armstrong-Helouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
, pp.
1083
1138
.10.1016/0005-1098(94)90209-7
76.
Dankowicz
,
H.
,
1999
, “
On the Modeling of Dynamic Friction Phenomena
,”
ZAMM
,
79
(
6
), pp.
399
409
.10.1002/(SICI)1521-4001(199906)79:6<399::AID-ZAMM399>3.0.CO;2-K
77.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.10.1007/s11071-015-2485-3
78.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
79.
Leine
,
R. I.
,
van Campen
,
D. H.
,
de Kraker
,
A.
, and
van den Steen
,
L.
,
1998
, “
Stick-Slip Vibrations Induced by Alternate Friction Models
,”
Nonlinear Dyn.
,
16
(
1
), pp.
41
51
.10.1023/A:1008289604683
80.
Quinn
,
D. D.
,
2004
, “
A New Regularization for Coulomb Friction
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
391
397
.10.1115/1.1760564
81.
Shaw
,
S. W.
,
1986
, “
On the Dynamic Response of a System With Dry Friction
,”
J. Sound Vib.
,
108
(
2
), pp.
305
325
.10.1016/S0022-460X(86)80058-X
82.
Natsiavas
,
S.
,
1998
, “
Stability of Piecewise Linear Oscillators With Viscous and Dry Friction Damping
,”
J. Sound Vib.
,
217
(
3
), pp.
507
522
.10.1006/jsvi.1998.1768
83.
Pratt
,
T. K.
, and
Williams
,
R.
,
1981
, “
Non-Linear Analysis for Stick/Slip Motion
,”
J. Sound Vib.
,
74
(
4
), pp.
531
542
.10.1016/0022-460X(81)90417-X
84.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
958
964
.10.1115/1.3169175
85.
Awrejcewicz
,
J.
, and
Delfs
,
J.
,
1990
, “
Dynamics of a Self-Excited Stick-Slip Oscillator With Two Degrees of Freedom—Part I: Investigation of Equilibria
,”
Eur. J. Mech. A/Solids
,
9
, pp.
269
282
.
86.
Awrejcewicz
,
J.
, and
Delfs
,
J.
,
1990
, “
Dynamics of a Self-Excited Stick-Slip Oscillator With Two Degrees of Freedom—Part II: Slip-Stick, Slip-Slip, Stick-Slip Transitions, Periodic and Chaotic Orbits
,”
Eur. J. Mech. A/Solids
,
9
(
5
), pp.
397
418
.
87.
Popp
,
K.
, and
Stelter
,
P.
,
1990
, “
Stick-Slip Vibrations and Chaos
,”
Phil. Trans. R. Soc. London A
,
332
(
1624
), pp.
89
105
.10.1115/1.3176192
88.
Feeny
,
B.
, and
Moon
,
F. C.
,
1994
, “
Chaos in a Forced Dry Friction Oscillator: Experiments and Numerical Modelling
,”
J. Sound Vib.
,
170
(
3
), pp.
303
323
.10.1006/jsvi.1994.1065
89.
Begley
,
C. J.
, and
Virgin
,
L. N.
,
1997
, “
A Detailed Study of the Low Frequency Periodic Behaviour of a Dry Friction Oscillator
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
3
), pp.
491
497
.10.1115/1.2801284
90.
Thomsen
,
J. J.
, and
Fidlin
,
A.
,
2003
, “
Analytical Approximations for Stick-Slip Vibration Amplitudes
,”
Int. J. Non-Linear Mech.
,
38
, pp.
389
403
.10.1016/S0020-7462(01)00073-7
91.
Kang
,
J.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2009
, “
Oscillation Pattern of Stick–Slip Vibrations
,”
Int. J. Non-Linear Mech.
,
44
(
7
), pp.
820
828
.10.1016/j.ijnonlinmec.2009.05.002
92.
Saha
,
A.
,
Wahi
,
P.
,
Wiercigroch
,
M.
, and
Stefański
,
A.
,
2016
, “
A Modified LuGre Friction Model for an Accurate Prediction of Friction Force in the Pure Sliding Regime
,”
Int. J. Non-Linear Mech.
,
80
, pp.
122
131
.10.1016/j.ijnonlinmec.2015.08.013
93.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1966
, “
On the Stability of the Impact Damper
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
586
592
.10.1115/1.3625125
94.
Masri
,
S. F.
,
1973
, “
Steady-State Response of a Multidegree System With an Impact Damper
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
127
592
.10.1115/1.3422910
95.
Nigm
,
M. M.
, and
Shabana
,
A. A.
,
1983
, “
Effect of an Impact Damper on a Multi-Degree of Freedom System
,”
J. Sound Vib.
,
89
(
4
), pp.
541
557
.10.1016/0022-460X(83)90356-5
96.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Impact Oscillator With Large Dissipation
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
849
857
.10.1115/1.3167156
97.
Shaw
,
S. W.
, and
Rand
,
R. H.
,
1989
, “
The Transition to Chaos in a Simple Mechanical System
,”
Int. J. Non-Linear Mech.
,
24
(
1
), pp.
41
56
.10.1016/0020-7462(89)90010-3
98.
Li
,
G. X.
,
Rand
,
R. H.
, and
Moon
,
F. C.
,
1990
, “
Bifurcation and Chaos in a Forced Zero-Stiffness Impact Oscillator
,”
Int. J. Non-Linear Mech.
,
25
(
4
), pp.
417
432
.10.1016/0020-7462(90)90030-D
99.
Heiman
,
M. S.
,
Bajaj
,
A. K.
, and
Sherman
,
P. J.
,
1988
, “
Periodic Motions and Bifurcations in Dynamics of an Impact Pair
,”
J. Sound Vib.
,
124
(
1
), pp.
55
78
.10.1016/S0022-460X(88)81405-6
100.
Karyeaclis
,
M.
, and
Caughey
,
T. K.
,
1989
, “
Stability of a Semi-Active Impact Damper
,”
ASME J. Appl. Mech.
,
56
, pp.
453
464
.
101.
Kleczka
,
M.
,
Kreuzer
,
E.
, and
Schiehlen
,
W.
,
1992
, “
Local and Global Stability of a Piecewise Linear Oscillator
,”
Philos. Trans. R. Soc. London
,
338
, pp.
533
546
.10.1098/rsta.1992.0019
102.
Peterka
,
F.
,
1996
, “
Bifurcations and Transition Phenomena in an Impact Oscillator
,”
Chaos Solitons Fractals
,
7
(
10
), pp.
1635
1647
.10.1016/S0960-0779(96)00028-8
103.
Knudsen
,
C.
,
Feldberg
,
R.
, and
True
,
H.
,
1992
, “
Bifurcations and Chaos in a Model of a Rolling Railway Wheelset
,”
Philos. Trans. R. Soc. London A
,
338
, pp.
455
469
.
104.
Balachandran
,
B.
,
2001
, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. London A
,
359
(
1781
), pp.
793
819
.10.1098/rsta.2000.0755
105.
Leine
,
R. I.
,
van Campen
,
D. H.
, and
Keultjes
,
W. J. G.
,
2002
, “
Stick-Slip Whirl Interaction in Drillstring Dynamics
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
209
220
.10.1115/1.1452745
106.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2013
, “
Nonlinear Oscillations of a Flexible Rotor With a Drill Bit: Stick-Slip and Delay Effects
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
61
77
.10.1007/s11071-012-0690-x
107.
Shaw
,
S. W.
, and
Pierre
,
C.
,
2006
, “
The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
13
24
.10.1115/1.1991872
108.
Lancioni
,
G.
,
Lenci
,
S.
, and
Galvanetto
,
U.
,
2016
, “
Dynamics of Windscreen Wiper Blades: Squeal Noise, Reversal Noise and Chattering
,”
Int. J. Non-Linear Mech.
,
80
, pp.
132
143
.10.1016/j.ijnonlinmec.2015.10.003
109.
Filippov
,
A. F.
,
1964
, “
Differential Equations With Discontinuous Right-Hand Side
,”
Am. Math. Soc. Transl., Ser. 2
,
42
, pp.
199
231
.
110.
Filippov
,
A. F.
,
1988
,
Differential Equations With Discontinuous Righthand Sides
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
111.
di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
,
Springer-Verlag
,
London
.
112.
Utkin
,
V. I.
,
1992
,
Sliding Modes in Control and Optimization
,
Springer-Verlag
,
Berlin
.
113.
Budd
,
C. J.
, and
Dux
,
F.
,
1994
, “
Chattering and Related Behaviour in Impact Oscillators
,”
Philos Trans. R. Soc. London A
,
347
, pp.
365
389
.
114.
di Bernardo
,
M.
,
Budd
,
C.
, and
Champneys
,
A.
,
2001
, “
Corner-Collision Implies Border Collision Bifurcation
,”
Phys. D
,
154
(
3–4
), pp.
171
194
.10.1016/S0167-2789(01)00250-0
115.
Feigin
,
M. I.
,
1970
, “
Doubling of the Oscillation Period With C-Bifurcation in Piecewise-Continuous Systems
,”
PMM
,
34
, pp.
861
869
.10.1016/0021-8928(70)90064-X
116.
Feigin
,
M. I.
,
1978
, “
On the Structure of C-Bifurcation Boundaries of Piecewise-Continuous Systems
,”
PMM
,
42
, pp.
820
829
.10.1016/0021-8928(78)90035-7
117.
Whiston
,
G. S.
,
1987
, “
The Vibro-Impact Response of a Harmonically Excited and Preloaded One-Dimensional Linear Oscillator
,”
J. Sound Vib.
,
115
(
2
), pp.
303
319
.10.1016/0022-460X(87)90474-3
118.
Whiston
,
G. S.
,
1987
, “
Global Dynamics of Vibro-Impacting Linear Oscillator
,”
J. Sound Vib.
,
118
(
3
), pp.
395
429
.10.1016/0022-460X(87)90361-0
119.
Nordmark
,
A. B.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.10.1016/0022-460X(91)90592-8
120.
Nusse
,
H. E.
, and
York
,
J. A.
,
1992
, “
Border-Collision Bifurcations Including “Period Two to Period Three” for Piecewise Smooth Systems
,”
Phys. D
,
57
(
1–2
), pp.
39
57
.10.1016/0167-2789(92)90087-4
121.
Foale
,
S.
, and
Bishop
,
S. R.
,
1992
, “
Dynamical Complexities of Forced Impacting System
,”
Philos. Trans. R. Soc. London A
,
338
, pp.
547
556
.
122.
Foale
,
S.
, and
Bishop
,
S. R.
,
1994
, “
Bifurcations in Impact Oscillations
,”
Nonlinear Dyn.
,
6
(
3
), pp.
285
299
.10.1007/BF00053387
123.
Ivanov
,
A. P.
,
1994
, “
Impact Oscillations: Linear Theory of Stability and Bifurcations
,”
J. Sound Vib.
,
178
(
3
), pp.
361
378
.10.1006/jsvi.1994.1492
124.
Ivanov
,
A. P.
,
1996
, “
Bifurcations in Impact Systems
,”
Chaos Solitons Fractals
,
7
(
10
), pp.
1615
1634
.10.1016/S0960-0779(96)00025-2
125.
Meijaard
,
J. P.
,
1996
, “
A Mechanism for the Onset of Chaos in Mechanical Systems With Motion-Limiting Stops
,”
Chaos Solitons Fractals
,
7
(
10
), pp.
1649
1658
.10.1016/S0960-0779(96)00027-6
126.
Galvanetto
,
U.
, and
Bishop
,
S. R.
,
1999
, “
Dynamics of a Simple Damped Oscillator Undergoing Stick-Slip Vibrations
,”
Meccanica
,
34
(
5
), pp.
337
347
.10.1023/A:1004741715733
127.
Galvanetto
,
U.
,
2001
, “
Some Discontinuous Bifurcations in a Two-Block Stick–Slip System
,”
J. Sound Vib.
,
248
(
4
), pp.
653
669
.10.1006/jsvi.2001.3809
128.
Fredriksson
,
M. H.
, and
Nordmark
,
A. B.
,
1997
, “
Bifurcations Caused by Grazing Incidence in Many Degrees of Freedom Impact Oscillators
,”
Proc. R. Soc. London A
,
453
(
1961
), pp.
1261
1276
.10.1098/rspa.1997.0069
129.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
,
2000
, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Phys. D
,
136
(
3–4
), pp.
280
302
.10.1016/S0167-2789(99)00161-X
130.
Chillingworth
,
D. R. J.
,
2002
, “
Discontinuity Geometry for an Impact Oscillator
,”
Dyn. Syst.
,
17
, pp.
380
420
.10.1080/1468936021000041654
131.
di Bernardo
,
M.
,
Feigin
,
M. I.
,
Hogan
,
S. J.
, and
Homer
,
M. E.
,
1999
, “
Local Analysis of C-Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Chaos Solitons Fractals
,
10
, pp.
1881
1908
.
132.
di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champneys
,
A. R.
,
2001
, “
Normal Form Maps for Grazing Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Phys. D
,
160
(
3–4
), pp.
222
254
.10.1016/S0167-2789(01)00349-9
133.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A.
,
2002
, “
Bifurcations of Dynamical Systems With Sliding: Derivation of Normal Form Mappings
,”
Phys. D
,
170
(
3–4
), pp.
175
205
.10.1016/S0167-2789(02)00547-X
134.
Jeffrey
,
M. R.
,
Champneys
,
A. R.
,
di Bernardo
,
M.
, and
Shaw
,
S. W.
,
2010
, “
Catastrophic Sliding Bifurcations and Onset of Oscillations in a Superconducting Resonator
,”
Phys. Rev. E
,
81
(
1
), p.
016213
.10.1103/PhysRevE.81.016213
135.
Humphries
,
N.
, and
Piiroinen
,
P. T.
,
2012
, “
A Discontinuity-Geometry View of the Relationship Between Saddle-Node and Grazing Bifurcations
,”
Phys. D
,
241
(
22
), pp.
1911
1918
.10.1016/j.physd.2011.05.003
136.
Leine
,
R. I.
, and
van Campen
,
D. H.
,
2002
, “
Discontinuous Bifurcations of Periodic Solutions
,”
Math. Comput. Modell.
,
36
(
3
), pp.
259
273
.10.1016/S0895-7177(02)00124-3
137.
Leine
,
R. I.
,
2006
, “
Bifurcations of Equilibria in Non-Smooth Continuous Systems
,”
Phys. D
,
223
(
1
), pp.
121
137
.10.1016/j.physd.2006.08.021
138.
Aizerman
,
M. A.
, and
Gantmakher
,
P. R.
,
1958
, “
On the Stability of Periodic Motions
,”
PMM
,
22
, pp.
750
758
.
139.
Luo
,
A. C. J.
,
2005
, “
A Theory for Non-Smooth Dynamical Systems on the Connectable Domains
,”
Commun. Nonlinear Sci. Num. Simul.
,
10
(
1
), pp.
1
55
.10.1016/j.cnsns.2004.04.004
140.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
,
2006
, “
Stick and Non-Stick Periodic Motions in Periodically Forced Oscillators With Dry Friction
,”
J. Sound Vib.
,
291
(
1–2
), pp.
132
168
.10.1016/j.jsv.2005.06.003
141.
Luo
,
A. C. J.
,
2012
,
Discontinuous Dynamical Systems
,
HEP-Springer
,
Berlin
.
142.
Awrejcewicz
,
J.
, and
Lamarque
,
C.-H.
,
2003
,
Bifurcation and Chaos in Nonsmooth Mechanical Systems
,
World Scientific
,
Singapore
.
143.
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2013
, “
Application of Hénon Method in Numerical Estimation of the Stick–Slip Transitions Existing in Filippov-Type Discontinuous Dynamical Systems With Dry Friction
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
723
736
.10.1007/s11071-013-0826-7
144.
Theodosiou
,
C.
,
Pournaras
,
A.
, and
Natsiavas
,
S.
,
2011
, “
On Periodic Steady State Response and Stability of Filippov-Type Mechanical Models
,”
Nonlinear Dyn.
,
66
(
3
), pp.
355
376
.10.1007/s11071-011-0080-9
145.
Szalai
,
R.
,
Stepan
,
G.
, and
Hogan
,
S. J.
,
2004
, “
Global Dynamics of Low Immersion High-Speed Milling
,”
Chaos
,
14
(
4
), pp.
1069
1077
.10.1063/1.1807395
146.
Casini
,
P.
, and
Vestroni
,
F.
,
2004
, “
Nonstandard Bifurcations in Oscillators With Multiple Discontinuity Boundaries
,”
Nonlinear Dyn.
,
35
(
1
), pp.
41
59
.10.1023/B:NODY.0000017487.21283.8d
147.
Dankowicz
,
H.
, and
Zhao
,
X.
,
2005
, “
Local Analysis of Co-Dimension-One and Co-Dimension-Two Grazing Bifurcations in Impact Microactuators
,”
Phys. D
,
202
(
3–4
), pp.
238
257
.10.1016/j.physd.2005.02.008
148.
Banerjee
,
S.
,
Ing
,
J.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Reddy
,
R. K.
,
2009
, “
Invisible Grazings and Dangerous Bifurcations in Impacting Systems: The Problem of Narrow-Band Chaos
,”
Phys. Rev. E
,
79
(
3
), p.
037201
.10.1103/PhysRevE.79.037201
149.
Jiang
,
H.
,
Chong
,
A. S. E.
,
Ueda
,
Y.
, and
Wiercigroch
,
M.
,
2017
, “
Grazing-Induced Bifurcations in Impact Oscillators With Elastic and Rigid Constraints
,”
Int. J. Mech. Sci.
,
127
, pp.
204
214
.10.1016/j.ijmecsci.2017.02.001
150.
Vlajic
,
N.
,
Champneys
,
A. R.
, and
Balachandran
,
B.
,
2017
, “
Nonlinear Dynamics of a Jeffcott Rotor With Torsional Deformations and Rotor-Stator Contact
,”
Int. J. Non-Linear Mech.
,
92
, pp.
102
110
.10.1016/j.ijnonlinmec.2017.02.002
151.
Lancioni
,
G.
,
Lenci
,
S.
, and
Galvanetto
,
U.
,
2009
, “
Non-Linear Dynamics of a Mechanical System With a Frictional Unilateral Constraint
,”
Int. J. Non-Linear Mech.
,
44
(
6
), pp.
658
674
.10.1016/j.ijnonlinmec.2009.02.012
152.
Nordmark
,
A. B.
,
Dankowicz
,
H.
, and
Champneys
,
A.
,
2009
, “
Discontinuity-Induced Bifurcations in Systems With Impacts and Friction: Discontinuities in the Impact Law
,”
Int. J. Non-Linear Mech.
,
44
(
10
), pp.
1011
1023
.10.1016/j.ijnonlinmec.2009.05.009
153.
Brach
,
R. M.
,
1984
, “
Friction, Restitution and Energy Loss in Planar Collisions
,”
ASME J. Appl. Mech.
,
51
(
1
), pp.
164
170
.10.1115/1.3167562
154.
Brach
,
R. M.
,
1989
, “
Rigid Body Collisions
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
133
138
.10.1115/1.3176033
155.
Smith
,
C. E.
,
1991
, “
Predicting Rebounds Using Rigid-Body Dynamics
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
754
758
.10.1115/1.2897260
156.
Wang
,
Y.
, and
Mason
,
M. T.
,
1992
, “
Two-Dimensional Rigid-Body Collisions With Friction
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
635
642
.10.1115/1.2893771
157.
Chatterjee
,
A.
, and
Ruina
,
A.
,
1998
, “
Two Interpretations of Rigidity in Rigid Body Collisions
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
894
900
.10.1115/1.2791929
158.
Chatterjee
,
A.
, and
Ruina
,
A.
,
1998
, “
A New Algebraic Rigid-Body Collision Law Based on Impulse Space Considerations
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
939
951
.10.1115/1.2791938
159.
Keller
,
J. B.
,
1986
, “
Impact With Friction
,”
ASME J. Appl. Mech.
,
53
(
1
), pp.
1
4
.10.1115/1.3171712
160.
Ivanov
,
A. P.
,
1992
, “
Energetics of a Collision With Friction
,”
J. Appl. Math. Mech.
,
56
(
4
), pp.
527
534
.10.1016/0021-8928(92)90008-V
161.
Bhatt
,
V.
, and
Koechling
,
J.
,
1995
, “
Partitioning the Parameter Space According to Different Behaviors During Three Dimensional Impacts
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
740
746
.10.1115/1.2897009
162.
Bhatt
,
V.
, and
Koechling
,
J.
,
1995
, “
Three-Dimensional Frictional Rigid-Body Impact
,”
ASME J. Appl. Mech.
,
62
(
4
), pp.
893
898
.10.1115/1.2896017
163.
Stronge
,
W. J.
,
1990
, “
Rigid Body Collisions With Friction
,”
Proc. R. Soc. London A
,
431
(
1881
), pp.
169
181
.10.1098/rspa.1990.0125
164.
Stronge
,
W. J.
,
1994
, “
Swerve During Three-Dimensional Impact of Rough Rigid Bodies
,”
ASME J. Appl. Mech.
,
61
(
3
), pp.
605
611
.10.1115/1.2901502
165.
Stronge
,
W. J.
,
2013
, “
Smooth Dynamics of Oblique Impact With Friction
,”
Int. J. Impact Eng.
,
51
, pp.
36
49
.10.1016/j.ijimpeng.2012.08.001
166.
Shen
,
Y.
, and
Stronge
,
W. J.
,
2011
, “
Painlevé Paradox During Oblique Impact With Friction
,”
Eur. J. Mech. A/Solids
,
30
(
4
), pp.
457
467
.10.1016/j.euromechsol.2011.03.001
167.
Shen
,
Y.
,
2015
, “
Painlevé Paradox and Dynamic Jam of a Three-Dimensional Elastic Rod
,”
Arch. Appl. Mech.
,
85
(
6
), pp.
805
816
.10.1007/s00419-015-0992-9
168.
Zhao
,
Z.
,
Liu
,
C.
, and
Chen
,
B.
,
2008
, “
The Painlevé Paradox Studied at a 3-D Slender Rod
,”
Multibody Syst. Dyn.
,
19
(
4
), pp.
323
343
.10.1007/s11044-007-9098-7
169.
Zhang
,
Y.
, and
Sharf
,
I.
,
2007
, “
Rigid Body Impact Modeling Using Integral Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
98
102
.10.1115/1.2389232
170.
Jia
,
Y.
, and
Wang
,
F.
,
2017
, “
Analysis and Computation of Two Body Impact in Three Dimensions
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041012
.10.1115/1.4035411
171.
Housner
,
G. W.
,
1963
, “
The Behaviour of Inverted Pendulum Structures During Earthquakes
,”
Bull. Seismol. Soc. Am.
,
53
, pp.
403
417
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/53/2/403/116143
172.
Palmeri
,
A.
, and
Makris
,
N.
,
2008
, “
Response Analysis of Rigid Structures Rocking on Viscoelastic Foundation
,”
Earthq. Eng. Struct. Dyn.
,
37
(
7
), pp.
1039
1063
.10.1002/eqe.800
173.
Yilmaz
,
C.
,
Gharib
,
M.
, and
Hurmuzlu
,
Y.
,
2009
, “
Solving Frictionless Rocking Block Problem With Multiple Impacts
,”
Proc. R. Soc. London A
,
465
(
2111
), pp.
3323
3339
.10.1098/rspa.2009.0273
174.
Zhao
,
Z.
,
Liu
,
C.
, and
Brogliato
,
B.
,
2009
, “
Planar Dynamics of a Rigid Body System With Frictional Impacts—II: Qualitative Analysis and Numerical Simulations
,”
Proc. R. Soc. London A
,
465
(
2107
), pp.
2267
2292
.10.1098/rspa.2008.0520
175.
Maw
,
N.
,
Barber
,
J. R.
, and
Fawcett
,
J. N.
,
1981
, “
The Role of Elastic Tangential Compliance in Oblique Impact
,”
J. Lubr. Technol.
,
103
, pp.
74
80
.10.1115/1.3251617
176.
Garland
,
P. P.
, and
Roberts
,
R. J.
,
2013
, “
Comparison of Contact Forces During Oblique Impact
,”
Recent Advances in Contact Mechanics
(Lecture Notes in Applied and Computational Mechanics), Vol.
56
,
G. E.
Stavroulakis
, ed.,
Springer-Verlag
,
Berlin
, pp.
239
255
.
177.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
,
1996
, “
A Critical Study of the Applicability of Rigid-Body Collisions Theory
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
307
316
.10.1115/1.2788865
178.
Ghaednia
,
H.
,
Marghitu
,
D. B.
, and
Jackson
,
R. L.
,
2014
, “
Predicting the Permanent Deformation After the Impact of a Rod With a Flat Surface
,”
ASME J. Tribol.
,
137
(
1
), p.
011403
.10.1115/1.4028709
179.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
,
2001
, “
Normal and Tangential Force-Displacement Relations for Frictional Elasto-Plastic Contact of Spheres
,”
Int. J. Solids Struct.
,
38
(
36–37
), pp.
6455
6489
.10.1016/S0020-7683(01)00065-8
180.
Brake
,
M. R.
,
2015
, “
An Analytical Elastic-Plastic Contact Model With Strain Hardening and Frictional Effects for Normal and Oblique Impacts
,”
Int. J. Solids Struct.
,
62
, pp.
104
123
.10.1016/j.ijsolstr.2015.02.018
181.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
182.
Han
,
I.
, and
Gilmore
,
B. J.
,
1993
, “
Multi-Body Impact Motion With Friction: Analysis, Simulation, and Experimental Validation
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
412
422
.10.1115/1.2919206
183.
Lubarda
,
V.
,
2010
, “
The Bounds on the Coefficients of Restitution for the Frictional Impact of Rigid Pendulum Against a Fixed Surface
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011006
.10.1115/1.3172198
184.
Batlle
,
J. A.
, and
Condomines
,
A. B.
,
1991
, “
Rough Collisions in Multibody Systems
,”
Mech. Mach. Theory
,
26
, pp.
565
577
.10.1016/0094-114X(91)90039-7
185.
Batlle
,
J. A.
,
1996
, “
The Sliding Velocity Flow of Rough Collisions in Multibody Systems
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
804
809
.10.1115/1.2823366
186.
Batlle
,
J. A.
, and
Cardona
,
S.
,
1998
, “
The Jamb (Self-Locking) Process in Three-Dimensional Collisions
,”
ASME J. Appl. Mech.
,
65
(
2
), pp.
417
423
.10.1115/1.2789070
187.
Zhao
,
Z.
, and
Liu
,
C.
,
2007
, “
The Analysis and Simulation for Three-Dimensional Impact With Friction
,”
Multibody Syst. Dyn.
,
18
, pp.
511
530
.10.1007/s11044-007-9071-5
188.
Elkaranshawy
,
H. A.
,
Abdelrazek
,
A. M.
, and
Ezzat
,
H. M.
,
2017
, “
Tangential Velocity During Impact With Friction in Three-Dimensional Rigid Multibody Systems
,”
Nonlinear Dyn.
,
90
(
2
), pp.
1443
1459
.10.1007/s11071-017-3737-1
189.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modeling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.10.1016/S0094-114X(02)00045-9
190.
Gau
,
W. H.
, and
Shabana
,
A. A.
,
1995
, “
Use of the Finite Element Method in the Analysis of Impact-Induced Longitudinal Waves in Constrained Elastic Systems
,”
ASME J. Mech. Des.
,
117
(
2A
), pp.
336
342
.10.1115/1.2826144
191.
Schiehlen
,
W.
, and
Seifried
,
R.
,
2004
, “
Three Approaches for Elastodynamic Contact in Multibody Systems
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
1
16
.10.1023/B:MUBO.0000042930.24911.bf
192.
Escalona
,
J. L.
,
Sany
,
J. R.
, and
Shabana
,
A. A.
,
2002
, “
On the Use of the Restitution Condition in Flexible Body Dynamics
,”
Nonlinear Dyn.
,
30
(
1
), pp.
71
86
.10.1023/A:1020337204996
193.
Najafabadi
,
S. A. M.
,
Kövecses
,
J.
, and
Angeles
,
J.
,
2008
, “
Generalization of the Energetic Coefficient of Restitution for Contacts in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041008
.10.1115/1.2960477
194.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
,
1987
, “
A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems
,”
Mech. Mach. Theory
,
22
(
3
), pp.
213
224
.10.1016/0094-114X(87)90004-8
195.
Lankarani
,
H.
, and
Nikravesh
,
P.
,
1994
, “
Continuous Contact Force Models for Impact Analysis in Multibody Systems
,”
Nonlinear Dyn.
,
5
, pp.
193
207
.10.1007/BF00045676
196.
Bauchau
,
O. A.
, and
Rodriguez
,
J.
,
2002
, “
Modeling of Joints With Clearance in Flexible Multibody Systems
,”
Int. J. Solids Struct.
,
39
(
1
), pp.
41
63
.10.1016/S0020-7683(01)00186-X
197.
Flores
,
P.
, and
Ambrósio
,
J.
,
2004
, “
Revolute Joints With Clearance in Multibody Systems
,”
Comput. Struct.
,
82
(
17–19
), pp.
1359
1369
.10.1016/j.compstruc.2004.03.031
198.
Pereira
,
C. M.
,
Ramalho
,
A. L.
, and
Ambrosio
,
J. A.
,
2014
, “
Applicability Domain of Internal Cylindrical Contact Force Models
,”
Mech. Mach. Theory
,
78
, pp.
141
157
.10.1016/j.mechmachtheory.2014.03.010
199.
Ma
,
J.
,
Qian
,
L.
,
Chen
,
G.
, and
Li
,
M.
,
2015
, “
Dynamic Analysis of Mechanical Systems With Planar Revolute Joints With Clearance
,”
Mech. Mach. Theory
,
94
, pp.
148
164
.10.1016/j.mechmachtheory.2015.08.011
200.
Marghitu
,
D. B.
, and
Hurmuzlu
,
Y.
,
1995
, “
Three-Dimensional Rigid Body Collisions With Multiple Contact Points
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
725
732
.10.1115/1.2897006
201.
Ceanga
,
V.
, and
Hurmuzlu
,
Y.
,
2001
, “
A New Look at an Old Problem: Newton's Cradle
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
575
583
.10.1115/1.1344902
202.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2008
, “
Frictionless Multiple Impacts in Multibody Systems—Part I: Theoretical Framework
,”
Proc. R. Soc. Lond. A
,
464
(
2100
), pp.
3193
3211
.10.1098/rspa.2008.0078
203.
Brogliato
,
B.
,
Zhang
,
H.
, and
Liu
,
C.
,
2012
, “
Analysis of a Generalized Kinematic Impact Law for Multibody-Multicontact Systems, With Application to the Planar Rocking Block and Chains of Balls
,”
Multibody Syst. Dyn.
,
27
(
3
), pp.
351
382
.10.1007/s11044-012-9301-3
204.
Zhuravlev
,
V. G.
,
1998
, “
The Model of Dry Friction in the Problem of the Rolling of Rigid Bodies
,”
J. Appl. Math. Mech.
,
62
(
5
), pp.
705
710
.10.1016/S0021-8928(98)00090-2
205.
Kudra
,
G.
, and
Awrejcewicz
,
J.
,
2013
, “
Approximate Modelling of Resulting Dry Friction Forces and Rolling Resistance for Elliptic Contact Shape
,”
Eur. J. Mech. A/Solids
,
42
, pp.
358
375
.10.1016/j.euromechsol.2013.07.005
206.
O'Reilly
,
O. M.
,
1996
, “
The Dynamics of Rolling Disks and Sliding Disks
,”
Nonlinear Dyn.
,
10
, pp.
287
305
.10.1007/BF00045108
207.
Kessler
,
P.
, and
O'Reilly
,
O. M.
,
2002
, “
The Ringing of Euler's Disk
,”
Reg. Chaotic Dyn.
,
7
(
1
), pp.
49
60
.10.1070/RD2002v007n01ABEH000195
208.
Awrejcewicz
,
J.
, and
Kudra
,
G.
,
2012
, “
Celtic Stone Dynamics Revisited Using Dry Friction and Rolling Resistance
,”
Shock Vib.
,
19
(
5
), pp.
1115
1123
.10.1155/2012/781573
209.
Moreau
,
J. J.
,
Panagiotopoulos
,
P. D.
, and
Strang
,
G.
(eds.),
1988
,
Topics in Nonsmooth Mechanics
,
Birkhauser Verlag
,
Basel, Switzerland
.
210.
Moreau
,
J. J.
, and
Panagiotopoulos
,
P. D.
(eds.),
1988
,
Nonsmooth Mechanics and Applications
(CISM Courses and Lectures), Vol.
302
,
Springer-Verlag
,
Wien, Austria
.
211.
Moreau
,
J. J.
,
2011
, “
On Unilateral Constraints, Friction and Plasticity
,”
New Variational Techniques in Mathematical Physics
,
G.
Capriz
, and
G.
Stampacchia
, eds.,
Springer
,
Berlin
, pp.
171
322
.
212.
Panagiotopoulos
,
P. D.
,
1993
,
Hemivariational Inequalities: Applications in Mechanics and Engineering
,
Springer
,
Berlin
.
213.
Rockafellar
,
R. T.
,
1970
,
Convex Analysis
,
Princeton University Press
,
Princeton, NJ
.
214.
Clarke
,
F. H.
,
1983
,
Optimization and Nonsmooth Analysis
,
Wiley
,
New York
.
215.
Rockafellar
,
R. T.
, and
Wets
,
R. B.-J.
,
1998
,
Variational Analysis
,
Springer
,
Berlin
.
216.
Aubin
,
J. P.
, and
Ekeland
,
I.
,
1984
,
Applied Nonlinear Analysis
,
Wiley
,
New York
.
217.
Monteiro Marques
,
M. D. P.
,
1993
,
Differential Inclusions in Non-Smooth Mechanical Problems: Shocks and Dry Friction
,
Birkhäuser
,
Boston, MA
.
218.
Cottle
,
R.
, and
Pang
,
W.
,
1992
,
The Linear Complementarity Problem
,
Academic
,
New York
.
219.
Murty
,
K. G.
,
1998
,
Linear Complementarity, Linear and Nonlinear Programming
(Sigma Series in Applied Mathematics), Vol.
3
,
Heldermann Verlag
,
Berlin
.
220.
Bertsekas
,
D. P.
,
2009
,
Convex Optimization Theory
,
Athena Scientific
,
Belmont, Australia
.
221.
Demyanov
,
V. F.
,
Stavroulakis
,
G. E.
,
Polyakova
,
L. N.
, and
Panagiotopoulos
,
P. D.
,
1996
,
Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
222.
Moreau
,
J. J.
,
1988
, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Non-Smooth Mechanics and Applications
(CISM Courses and Lectures),
J. J.
Moreau
, and
P. D.
,
Panagiotopoulos
, eds., Vol.
302
,
Springer
,
Wien, Austria
, pp.
1
82
.
223.
Moreau
,
J. J.
,
1988
, “
Bounded Variation in Time
,”
Topics in Nonsmooth Mechanics
,
J. J.
Moreau
,
P. D.
Panagiotopoulos
, and
G.
Strang
, eds.,
Birkhäuser
,
Basel, Switzerland
, pp.
1
74
.
224.
Brogliato
,
B.
, and
Goeleven
,
D.
,
2015
, “
Singular Mass Matrix and Redundant Constraints in Unilaterally Constrained Lagrangian and Hamiltonian Systems
,”
Multibody Syst. Dyn.
,
35
(
1
), pp.
39
61
.10.1007/s11044-014-9437-4
225.
Blumentals
,
A.
,
Brogliato
,
B.
, and
Bertails-Descoubes
,
F.
,
2016
, “
The Contact Problem in Lagrangian Systems Subject to Bilateral and Unilateral Constraints, With or Without Sliding Coulomb's Friction: A Tutorial
,”
Multibody Syst. Dyn.
,
38
(
1
), pp.
43
76
.10.1007/s11044-016-9527-6
226.
Leine
,
R. I.
, and
Glocker
,
C.
,
2003
, “
A Set-Valued Force Law for Spatial Coulomb–Contensou Friction
,”
Eur. J. Mech. A/Solids
,
22
(
2
), pp.
193
216
.10.1016/S0997-7538(03)00025-1
227.
Studer
,
C.
,
2009
,
Numerics of Unilateral Contact and Friction
,
Springer-Verlag
,
Berlin
.
228.
Glocker
,
Ch.
,
2006
, “
An Introduction to Impacts
,”
Nonsmooth Mechanics of Solids
(CISM Courses and Lectures),
J.
Haslinger
and
G.
Stavroulakis
eds., Vol.
485
,
Springer Verlag
,
Wien, Austria
, pp.
45
102
.
229.
Fremond
,
M.
,
1995
, “
Rigid Bodies Collisions
,”
Phys. Lett. A
,
204
, pp.
33
41
.10.1016/0375-9601(95)00418-3
230.
Pfeiffer
,
F.
,
2010
, “
On Impacts With Friction
,”
Appl. Math. Comput.
,
217
, pp.
1184
1192
.10.1016/j.amc.2010.05.047
231.
De Luca
,
T.
,
Facchinei
,
F.
, and
Kanzow
,
C.
,
1996
, “
A Semismooth Equation Approach to the Solution of Nonlinear Complementarity Problems
,”
Math. Program.
,
75
(
3
), pp.
407
439
.10.1007/BF02592192
232.
Alart
,
P.
, and
Curnier
,
A.
,
1991
, “
A Mixed Formulation for Frictional Contact Problems Prone to Newton Like Solution Methods
,”
Comput. Meth. Appl. Mech. Eng.
,
92
(
3
), pp.
353
375
.10.1016/0045-7825(91)90022-X
233.
Leung
,
A. Y. T.
,
Guoqing
,
C.
, and
Wanji
,
C.
,
1998
, “
Smoothing Newton Method for Solving Two- and Three-Dimensional Frictional Contact Problems
,”
Int. J. Numer. Methods Eng.
,
41
(
6
), pp.
1001
1027
.10.1002/(SICI)1097-0207(19980330)41:6<1001::AID-NME319>3.0.CO;2-A
234.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems
(Lecture Notes in Applied and Computational Mechanics), Vol.
35
,
Springer
,
Berlin
.
235.
Klarbring
,
A.
,
1986
, “
A Mathematical Programming Approach to Three-Dimensional Contact Problems With Friction
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
2
), pp.
175
200
.10.1016/0045-7825(86)90095-2
236.
Stewart
,
D. E.
, and
Trinkle
,
J. C.
,
1996
, “
An Implicit Time-Stepping Scheme for Rigid Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
,
39
(
15
), pp.
2673
2691
.10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
237.
Anitescu
,
M.
, and
Potra
,
F. A.
,
1997
, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
(
3
), pp.
231
247
.10.1023/A:1008292328909
238.
Jean
,
M.
,
1999
, “
The Non-Smooth Contact Dynamics Method
,”
Comput. Methods Appl. Mech. Eng.
,
177
(
3–4
), pp.
235
257
.10.1016/S0045-7825(98)00383-1
239.
Moreau
,
J. J.
,
1999
, “
Numerical Aspects of the Sweeping Process
,”
Comput. Methods Appl. Mech. Eng.
,
177
(
3–4
), pp.
329
349
.10.1016/S0045-7825(98)00387-9
240.
Paoli
,
L.
, and
Schatzman
,
M.
,
2002
, “
A Numerical Scheme for Impact Problems I: The One-Dimensional Case
,”
SIAM J. Numer. Anal.
,
40
(
2
), pp.
702
733
.10.1137/S0036142900378728
241.
Paoli
,
L.
, and
Schatzman
,
M.
,
2002
, “
A Numerical Scheme for Impact Problems II: The Multi-Dimensional Case
,”
SIAM J. Numer. Anal.
,
40
(
2
), pp.
734
768
.10.1137/S003614290037873X
242.
Rockafellar
,
R.
,
1974
, “
Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming
,”
SIAM J. Control
,
12
(
2
), pp.
268
285
.10.1137/0312021
243.
Fortin
,
M.
,
1975
, “
Minimization of Some Non-Differentiable Functionals by the Augmented Lagrangian Method of Hestenes and Powell
,”
Appl. Math. Optim.
,
2
(
3
), pp.
236
250
.10.1007/BF01464269
244.
Simo
,
J. C.
, and
Laursen
,
T. A.
,
1992
, “
An Augmented Lagrangian Treatment of Contact Problems Involving Friction
,”
Comput. Struct.
,
42
(
1
), pp.
97
116
.10.1016/0045-7949(92)90540-G
245.
Payr
,
M.
, and
Glocker
,
C.
,
2005
, “
Oblique Frictional Impact of a Rod: Analysis and Comparison of Different Impact Laws
,”
Nonlinear Dyn.
,
41
(
4
), pp.
361
383
.10.1007/s11071-005-8200-z
246.
Flores
,
P.
,
Leine
,
R. I.
, and
Glocker
,
C.
,
2010
, “
Modeling and Analysis of Planar Rigid Multibody Systems With Translational Clearance Joints Based on the Nonsmooth Dynamics Approach
,”
Multibody Syst. Dyn.
,
23
(
2
), pp.
165
190
.10.1007/s11044-009-9178-y
247.
Dimitrakopoulos
,
E. G.
,
2010
, “
Analysis of a Frictional Oblique Impact Observed in Skew Bridges
,”
Nonlinear Dyn.
,
60
(
4
), pp.
575
595
.10.1007/s11071-009-9616-7
248.
Giouvanidis
,
A. L.
, and
Dimitrakopoulos
,
E. G.
,
2017
, “
Nonsmooth Dynamics Analysis of Sticking Impacts in Rocking Structures
,”
Bull. Earthq. Eng.
,
15
(
5
), pp.
2273
2304
.10.1007/s10518-016-0068-4
249.
Jeffrey
,
M. R.
,
2016
, “
Hidden Degeneracies in Piecewise Smooth Dynamical Systems
,”
Int. J. Bifur. Chaos Appl. Sci. Eng.
,
26
(
5
), p.
1650087
.10.1142/S0218127416500875
250.
Jones
,
C. K. R. T.
,
1995
, “
Geometric Singular Perturbation Theory
,”
Lecture Notes in Mathematics
, Vol.
1609
,
Springer-Verlag
,
New York
, pp.
44
120
.
251.
Jeffrey
,
M. R.
,
2016
, “
Hidden Bifurcations and Attractors in Nonsmooth Dynamical System
,”
Int. J. Bifur. Chaos Appl. Sci. Eng.
,
26
(
4
), p.
1650068
.10.1142/S0218127416500681
252.
Llibre
,
J.
,
da Silva
,
P. R.
, and
Teixeira
,
M. A.
,
2007
, “
Regularization of Discontinuous Vector Fields on R3 Via Singular Perturbation
,”
J. Dyn. Differ. Equations
,
19
(
2
), pp.
309
331
.10.1007/s10884-006-9057-7
253.
Novaes
,
D. N.
, and
Jeffrey
,
M. R.
,
2015
, “
Regularization of Hidden Dynamics in Piecewise Smooth Flows
,”
J. Differ. Equations
,
259
(
9
), pp.
4615
4633
.10.1016/j.jde.2015.06.005
254.
Jeffrey
,
M. R.
,
2016
, “
Exit From Sliding in Piecewise-Smooth Flows: Deterministic vs. Determinacy-Breaking
,”
Chaos
,
26
(
3
), p.
033108
.10.1063/1.4943386
255.
Colombo
,
A.
, and
Jeffrey
,
M. R.
,
2013
, “
The Two-Fold Singularity: Leading Order Dynamics in n-Dimensions
,”
Phys. D
,
265
, pp.
1
10
.10.1016/j.physd.2013.07.015
256.
Jeffrey
,
M. R.
,
2014
, “
Dynamics at a Switching Intersection: Hierarchy, Isonomy, and Multiple Sliding
,”
SIAM J. Appl. Dyn. Syst.
,
13
(
3
), pp.
1082
1105
.10.1137/13093368X
257.
Szalai
,
R.
,
2014
, “
Modelling Elastic Structures With Strong Nonlinearities With Application to Stick-Slip Friction
,”
Proc. R. Soc. A
,
470
(
2161
), p.
20130593
.10.1098/rspa.2013.0593
258.
Szalai
,
R.
,
2014
, “
Impact Mechanics of Elastic Structures With Point Contact
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041002
.10.1115/1.4027242
259.
Szalai
,
R.
,
2018
, “
Model Reduction of Non-Densely Defined Piecewise-Smooth Systems in Banach Spaces
,”
J. Nonlinear Sci.
,
29
(
3
), pp.
897
960
.
260.
Paraskevopoulos
,
E.
, and
Natsiavas
,
S.
,
2017
, “
A Geometric Solution to the General Single Contact Frictionless Problem by Combining Concepts of Analytical Dynamics and b-Calculus
,”
Int. J. Non-Linear Mech.
,
95
, pp.
117
131
.10.1016/j.ijnonlinmec.2017.05.007
261.
Natsiavas
,
S.
, and
Paraskevopoulos
,
E.
,
2018
, “
An Analytical Dynamics Approach for Mechanical Systems Involving a Single Frictional Contact Using b-Geometry
,”
Int. J. Solids Struct.
,
148–149
, pp.
140
156
.10.1016/j.ijsolstr.2018.05.008
262.
Natsiavas
,
S.
, and
Paraskevopoulos
,
E.
,
2018
, “
A Boundary Layer Approach to Multibody Systems Involving Single Frictional Impacts
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
1
), p.
011002
.10.1115/1.4041775
263.
Lanczos
,
C.
,
1952
,
The Variational Principles of Mechanics
,
University of Toronto Press
,
Toronto, ON, Canada
.
264.
Pars
,
L. A.
,
1965
,
A Treatise on Analytical Dynamics
,
Heinemann Educational Books
,
London
.
265.
Papastavridis
,
J. G.
,
1999
,
Tensor Calculus and Analytical Dynamics
,
CRC Press
,
Boca Raton, FL
.
266.
Frankel
,
T.
,
1997
,
The Geometry of Physics: An Introduction
,
Cambridge University Press
,
New York
.
267.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
,
Springer-Verlag
,
New York
.
268.
Melrose
,
R. B.
,
1993
,
The Atiyah-Patodi-Singer Index Theorem, Research Notes in Mathematics
, Vol.
4
,
A.K. Peters
,
Wellesley, MA
.
269.
Kevorkian
,
J.
, and
Cole
,
J. D.
,
1985
,
Perturbation Methods in Applied Mathematics
, 2nd ed.,
Springer-Verlag
,
New York
.
270.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzhold
,
L. R.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
271.
Geradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
272.
Panagiotopoulos
,
P. D.
, and
Glocker
,
C.
,
2000
, “
Inequality Constraints With Elastic Impacts in Deformable Bodies. The Convex Case
,”
Arch. Appl. Mech.
,
70
(
5
), pp.
349
365
.10.1007/s004199900067
273.
Glocker
,
C.
,
1998
, “
The Principles of D'Alembert, Jourdain and Gauss in Nonsmooth Mechanics—Part I: Scleronomic Multibody Systems
,”
ZAMM
,
78
(
1
), pp.
21
37
.10.1002/(SICI)1521-4001(199801)78:1<21::AID-ZAMM21>3.0.CO;2-W
274.
Kövecses
,
J.
, and
Cleghorn
,
W. L.
,
2003
, “
Finite and Impulsive Motion of Constrained Mechanical Systems Via Jourdain's Principle: Discrete and Hybrid Parameter Models
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
935
956
.10.1016/S0020-7462(02)00039-2
275.
Hjiaj
,
M.
,
de Saxcé
,
G.
, and
Mróz
,
Z.
,
2002
, “
A Variational Inequality-Based Formulation of the Frictional Contact Law With a Non-Associated Sliding Rule
,”
Eur. J. Mech. A/Solids
,
21
(
1
), pp.
49
59
.10.1016/S0997-7538(01)01183-4
276.
Genot
,
F.
, and
Brogliato
,
B.
,
1999
, “
New Results on Painlevé Paradoxes
,”
Eur. J. Mech. A/Solids
,
18
, pp.
653
677
.10.1016/S0997-7538(99)00144-8
277.
Ballard
,
P.
,
2000
, “
The Dynamics of Discrete Mechanical Systems With Perfect Unilateral Constraints
,”
Arch. Ration. Mech. Appl.
,
154
(
3
), pp.
199
274
.10.1007/s002050000105
278.
Leine
,
R. I.
, and
van de Wouw
,
N.
,
2008
,
Stability and Convergence of Mechanical Systems With Unilateral Constraints
(Lecture Notes in Applied and Computational Mechanics), Vol.
36
,
Springer Verlag
,
Berlin
.
279.
Jeffrey
,
M. R.
,
Kafanas
,
G.
, and
Simpson
,
D. J. W.
,
2018
, “
Jitter in Dynamical Systems With Intersecting Discontinuity Surfaces
,”
Int. J. Bifur. Chaos
,
28
(
6
), p.
1830020
.10.1142/S0218127418300203
280.
Szalai
,
R.
, and
Jeffrey
,
M. R.
,
2014
, “
Nondeterministic Dynamics of a Mechanical System
,”
Phys. Rev. E
,
90
(
2
), p.
022914
.10.1103/PhysRevE.90.022914
281.
Antali
,
M.
, and
Stepan
,
G.
,
2018
, “
Sliding and Crossing Dynamics in Extended Filippov Systems
,”
SIAM J. Appl. Dyn. Syst.
,
17
(
1
), pp.
823
858
.10.1137/17M1110328
282.
Simic
,
S. N.
,
Johansson
,
K. H.
,
Lygeros
,
J.
, and
Sastry
,
S.
,
2005
, “
Towards a Geometric Theory of Hybrid Systems
,”
Dyn. Contin. Discret. Impulsive Syst. B
,
12,
pp.
649
687
.
283.
Melrose
,
R. B.
,
1996
, “
Differential Analysis on Manifolds With Corners
,” MIT, Boston, MA.
284.
Kottke
,
C.
, and
Melrose
,
R. B.
,
2014
, “
Generalized Blow Up of Corners and Fiber Products
,”
Trans. AMS
,
367
(
1
), pp.
651
705
.10.1090/S0002-9947-2014-06222-3
285.
Joyce
,
D.
,
2016
, “
A Generalization of Manifolds With Corners
,”
Adv. Math.
,
299
), pp.
760
862
.10.1016/j.aim.2016.06.004
286.
Huang
,
J.
, and
Luo
,
A. C. J.
,
2017
, “
Complex Dynamics of Bouncing Motions at Boundaries and Corners in a Discontinuous Dynamical System
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
6
), p.
061014
.10.1115/1.4036518
287.
Quinn
,
D. D.
, and
Bairavarasu
,
K.
,
2006
, “
Near-Simultaneous Impacts
,”
Int. J. Impact Eng.
,
32
(
6
), pp.
889
904
.10.1016/j.ijimpeng.2004.09.014
288.
Nguyen
,
N. S.
, and
Brogliato
,
B.
,
2014
,
Multiple Impacts in Dissipative Granular Chains
(Lecture Notes in Applied and Computational Mechanics), Vol.
72
,
Springer
,
Berlin
.
289.
Piiroinen
,
P.
,
Virgin
,
L.
, and
Champneys
,
A.
,
2004
, “
Chaos and Period-Adding; Experimental and Numerical Verification of the Grazing Bifurcation
,”
J. Nonlinear Sci.
,
14
, pp.
383
404
.10.1007/s00332-004-0616-y
290.
Chakraborty
,
I.
, and
Balachandran
,
B.
,
2012
, “
Near-Grazing Dynamics of Base Excited Cantilevers With Nonlinear Tip Interactions
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1297
1310
.10.1007/s11071-012-0534-8
291.
Akhadkar
,
N.
,
Acary
,
V.
, and
Brogliato
,
B.
,
2018
, “
Multibody Systems With 3D Revolute Joint Clearances: An Industrial Case Study With an Experimental Validation
,”
Multibody Syst. Dyn.
,
42
(
3
), pp.
249
282
.10.1007/s11044-017-9584-5
292.
Acary
,
V.
,
2013
, “
Projected Event-Capturing Time-Stepping Schemes for Nonsmooth Mechanical Systems With Unilateral Contact and Coulomb's Friction
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
224
250
.10.1016/j.cma.2012.12.012
293.
Brüls
,
O.
,
Acary
,
V.
, and
Cardona
,
A.
,
2014
, “
Simultaneous Enforcement of Constraints at Position and Velocity Levels in the Nonsmooth Generalized-α Scheme
,”
Comput. Methods Appl. Eng.
,
281
, pp.
131
161
.10.1016/j.cma.2014.07.025
294.
Piiroinen
,
P. T.
, and
Kuznetsov
,
Y. A.
,
2008
, “
An Event-Driven Method to Simulate Filippov Systems With Accurate Computing of Sliding Motions
,”
ACM Trans. Math. Software
,
34
(
3
), pp.
1
24
.10.1145/1356052.1356054
295.
Schreyer
,
F.
, and
Leine
,
R. I.
,
2016
, “
A Mixed Shooting–Harmonic Balance Method for Unilaterally Constrained Mechanical Systems
,”
Arch. Mech. Eng.
,
LXIII
, pp.
297
313
.10.1515/meceng-2016-0017
296.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2011
, “
An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031003
.10.1115/1.4002684
297.
Renouf
,
M.
,
Dubois
,
F.
, and
Alart
,
P.
,
2004
, “
A Parallel Version of the Non Smooth Contact Dynamics Algorithm Applied to the Simulation of Granular Media
,”
J. Comput. Appl. Math.
,
168
(
1–2
), pp.
375
382
.10.1016/j.cam.2003.05.019
298.
Papalukopoulos
,
C.
, and
Natsiavas
,
S.
,
2007
, “
Dynamics of Large Scale Mechanical Models Using Multi-Level Substructuring
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
40
51
.10.1115/1.2389043
299.
Theodosiou
,
C.
, and
Natsiavas
,
S.
,
2009
, “
Dynamics of Finite Element Structural Models With Multiple Unilateral Constraints
,”
Int. J. Non-Linear Mech.
,
44
(
4
), pp.
371
382
.10.1016/j.ijnonlinmec.2009.01.006
300.
Moreau
,
J. J.
,
1965
, “
Proximité et Dualité Dans un Espace Hilbertien
,”
Bull. Soc. Math. France
,
93
, pp.
273
299
.10.24033/bsmf.1625
301.
Parikh
,
N.
, and
Boyd
,
S.
,
2014
, “
Proximal Algorithms
,”
Found. Trends Optim.
,
1
(
3
), pp.
127
239
.10.1561/2400000003
302.
Acary
,
V.
,
Brémond
,
M.
, and
Huber
,
O.
,
2018
, “
On Solving Frictional Contact Problems: Formulations and Numerical Comparison
,”
Advanced Topics in Nonsmooth Dynamics
,
R.
Leine
,
V.
Acary
,
O.
Brüls
, eds.,
Springer
,
Berlin
, pp.
375
457
.
303.
Ryckman
,
R. A.
, and
Lew
,
A. J.
,
2012
, “
An Explicit Asynchronous Contact Algorithm for Elastic Body-Rigid Wall Interaction
,”
Int. J. Numer. Methods Eng.
,
89
(
7
), pp.
869
896
.10.1002/nme.3266
304.
Mijar
,
A. R.
, and
Arora
,
J. S.
,
2004
, “
An Augmented Lagrangian Optimization Method for Contact Analysis Problems—1: Formulation and Algorithm
,”
Struct. Multidisc. Optim.
,
28
, pp.
99
112
.10.1007/s00158-004-0423-y
305.
Harmon
,
D.
,
Vouga
,
E.
,
Smith
,
B.
,
Tamstorf
,
R.
, and
Grinspun
,
E.
,
2012
, “
Asynchronous Contact Mechanics
,”
Commun. ACM
,
55
(
4
), pp.
102
109
.10.1145/2133806.2133828
306.
Potosakis
,
N.
,
Paraskevopoulos
,
E.
, and
Natsiavas
,
S.
,
2019
, “
Application of an Augmented Lagrangian Approach to Multibody Systems With Equality Motion Constraints
,”
Nonlinear Dyn.
, Epub.
307.
Metallidis
,
P.
,
Stavrakis
,
I.
, and
Natsiavas
,
S.
,
2008
, “
Parametric Identification and Health Monitoring of Complex Ground Vehicle Models
,”
J. Vib. Control
,
14
(
7
), pp.
1021
1036
.10.1177/1077546307085823
308.
Georgiou
,
G.
, and
Natsiavas
,
S.
,
2009
, “
Optimal Selection of Suspension Parameters in Large Scale Vehicle Models
,”
Veh. Syst. Dyn.
,
47
(
9
), pp.
1147
1166
.10.1080/00423110802531075
309.
Lenci
,
S.
, and
Rega
,
G.
,
2006
, “
Optimal Control and Anti-Control of the Nonlinear Dynamics of a Rigid Block
,”
Philos. Trans. R. Soc. London A
,
364
(
1846
), pp.
2353
2381
.10.1098/rsta.2006.1829
310.
Dankowicz
,
H.
, and
Svahn
,
F.
,
2007
, “
On the Stabilizability of Near-Grazing in Impact Oscillators
,”
Int. J. Robust Nonlinear Control
,
17
(
15
), pp.
1405
1429
.10.1002/rnc.1252
311.
Tanwani
,
A.
,
Brogliato
,
B.
, and
Prieur
,
C.
,
2016
, “
Observer Design for Unilaterally Constrained Lagrangian Systems: A Passivity-Based Approach
,”
IEEE Trans. Autom. Control
,
61
(
9
), pp.
2386
2401
.10.1109/TAC.2015.2492098
312.
Heck
,
D.
,
Saccon
,
A.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2016
, “
Guaranteeing Stable Tracking of Hybrid Position-Force Trajectories for a Robot Manipulator Interacting With a Stiff Environment
,”
Automatica
,
63
, pp.
235
247
.10.1016/j.automatica.2015.10.029
313.
Baumann
,
M.
,
Biemond
,
J. J. B.
,
Leine
,
R. I.
, and
van de Wouw
,
N.
,
2018
, “
Synchronization of Impacting Mechanical Systems With a Single Constraint
,”
Phys. D
,
362
, pp.
9
23
.10.1016/j.physd.2017.10.002
314.
Gilbert
,
E.
,
Johnson
,
D.
, and
Keerthi
,
S.
,
1988
, “
A Fast Procedure for Computing the Distance Between Complex Objects in Three-Dimensional Space
,”
IEEE J. Robot. Autom.
,
4
(
2
), pp.
193
203
.10.1109/56.2083
315.
Baraff
,
D.
,
1993
, “
Issues in Computing Contact Forces for Nonpenetrating Rigid Bodies
,”
Algorithmica
,
8
, pp.
292
352
.10.1007/BF01891843
316.
van den Bergen
,
G.
,
2004
,
Collision Detection in Interactive 3D Environments
,
Morgan Kaufmann Publishers
,
San Francisco, CA
.
You do not currently have access to this content.