This paper presents a thorough review of the initiatives carried out in the last 10 years toward the development of active knee prostheses (AKP) for transfemoral amputees. Three selection criteria were employed to filter the works to be considered in the review: (1) a prototype of the prosthesis is available; (2) the mechanical design, instrumentation, and control strategy of such a prototype have been presented in a scientific disclosure media; and (3) the prototype has been subjected to clinical assessment at least in a preliminary way. After applying such criteria, 16 projects were selected and further reviewed through a total of 31 scientific papers, considering the following six aspects: (1) actuators, (2) instrumentation, (3) control, (4) testing trials, (5) performance metrics, and (6) limitations. Then, in addition, the chronological appearance of the aforesaid papers is also shown and quantified regarding each of the previously mentioned issues, to initiate discussion on the related topics. Thus, the present review results in a specialized summary of all these developments in a structured format, offering additional understanding of the recent advances achieved in this field.

References

References
1.
Kapp
,
S.
, and
Miller
,
J.
,
2009
, “
Lower Limb Prosthetics
,”
Care of the Combat Amputee: Textbooks of Military Medicine
,
Government Printing Office
, Washington, DC, pp.
553
580
.
2.
Van
,
D.
,
Linde
,
H.
,
Hofstad
,
C. J.
,
Guerts
,
A. C. H.
,
Postema
,
K.
,
Geertzen
,
J. H. B.
, and
Van Limbeek
,
J.
,
2004
, “
A Systematic Literature Review of the Effect of Different Prosthetic Components on Human Functioning With a Lower Limb Prosthesis
,”
J. Rehabil. Res. Dev.
,
41
(4), pp.
555
570
.https://www.rehab.research.va.gov/jour/04/41/4/pdf/contents.pdf
3.
Radcliffe
,
C.
,
1977
, “
Above Knee Prosthetics
,”
Prosthet. Orthot. Int.
,
1
(
3
), pp.
146
160
.https://journals.sagepub.com/doi/pdf/10.3109/03093647709164629
4.
Näder
,
M.
, and
Näder
,
H.
,
1993
,
Otto Bock Prostheses Compendium: Prostheses for Lower Limbs
,
Schiele & Schön GmbH
,
Berlin, Germany
.
5.
Staros
,
A.
,
1964
, “
The Principles of Swing-Phase Control: The Advantages of Fluid Mechanisms
,”
Prostheses, Braces Tech. Aids
,
13
, pp.
11
16
.
6.
Lewis
,
E.
,
1965
, “
Fluid-Control Knee Mechanisms: Clinical Considerations
,”
Bull. Prosthet. Res.
,
10
, pp.
24
56
.https://www.rehab.research.va.gov/jour/65/2/1/24.pdf
7.
Mauch
,
H.
,
1968
, “
Stance Control for Above-Knee Artificial Legs—Design Considerations in the S-N-S Knee
,”
Bull. Prosthet. Res.
,
10
, pp.
61
72
.https://www.rehab.research.va.gov/jour/68/5/2/61.pdf
8.
Flowers
,
W.
, and
Mann
,
R.
,
1977
, “
An Electrohydraulic Knee-Torque Controller for a Prosthesis Simulator
,”
ASME J. Biomech. Eng.
,
99
(
1
), pp.
3
8
.
9.
Darling
,
D.
,
1978
, “
Automatic Damping Profile Optimization for Computer Controlled Above-Knee Prostheses
,”
Master thesis
, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA.https://dspace.mit.edu/handle/1721.1/16251
10.
Grimes
,
D.
,
1979
, “
An Active Multi-Mode Above-Knee Prosthesis Controller
,”
Ph.D. thesis
, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA.https://dspace.mit.edu/handle/1721.1/15998
11.
Popovic
,
D.
, and
Schwirtlich
,
L.
,
1988
, “
Belgrade Active A/K Prosthesis
,”
Electrophysiological Kinesiology
(International Congress Series No. 804),
J.
De Vries
, ed.,
Excerpta Medica
,
Amsterdam, The Netherlands
, pp.
337
343
.
12.
Dietl
,
H.
, and
Bargehr
,
H.
,
1997
, “
Der Einsatz Von Elektronik Bei Prothesen Zur Versorgung Der Unteren Extremitäten (the Application of Electronics in Prosthetics for Lower Extremities)
,”
Med.-Orthopädische Tech.
,
117
(1), pp.
31
35
.
13.
Winter
,
D. A.
,
1990
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
14.
Jaegers
,
S. M.
,
Arendzen
,
J. H.
, and
de Jongh
,
H. J.
,
1995
, “
Prosthetic Gait of Unilateral Transfemoral Amputees: A Kinematic Study
,”
Arch. Phys. Med. Rehabil.
,
76
(
8
), pp.
736
743
.
15.
Seroussi
,
R. E.
,
Gitter
,
A.
,
Czerniecki
,
J. M.
, and
Weaver
,
K.
,
1996
, “
Mechanical Work Adaptations of Above-Knee Amputee Ambulation
,”
Arch. Phys. Med. Rehabil.
,
77
(
11
), pp.
1209
1214
.
16.
Genin
,
J. J.
,
Bastien
,
G. J.
,
Franck
,
B.
,
Detrembleur
,
C.
, and
Willems
,
P. A.
,
2008
, “
Effect of Speed on the Energy Cost of Walking in Unilateral Traumatic Lower Limb Amputees
,”
Eur. J. Appl. Physiol.
,
103
(
6
), pp.
655
663
.
17.
Schmalz
,
T.
,
Blumentritt
,
S.
, and
Jarasch
,
R.
,
2002
, “
Energy Expenditure and Biomechanical Characteristics of Lower Limb Amputee Gait: The Influence of Prosthetic Alignment and Different Prosthetic Components
,”
Gait Posture
,
16
(
3
), pp.
255
263
.
18.
Miller
,
W. C.
,
Deathe
,
A. B.
,
Speechley
,
M.
, and
Koval
,
J.
,
2001
, “
The Influence of Falling, Fear of Falling, and Balance Confidence on Prosthetic Mobility and Social Activity Among Individuals With a Lower Extremity Amputation
,”
Arch. Phys. Med. Rehabil.
,
82
(
9
), pp.
1238
1244
.
19.
Miller
,
W. C.
,
Speechley
,
M.
, and
Deathe
,
B.
,
2001
, “
The Prevalence and Risk Factors of Falling and Fear of Falling Among Lower Extremity Amputees
,”
Arch. Phys. Med. Rehabil.
,
82
(
8
), pp.
1031
1037
.
20.
Orendurff
,
M. S.
,
Segal
,
A. D.
,
Klute
,
G. K.
,
McDowell
,
M. L.
,
Pecoraro
,
J. A.
, and
Czerniecki
,
J. M.
,
2006
, “
Gait Efficiency Using the C-Leg
,”
J. Rehabil. Res. Dev.
,
43
(
2
), pp.
239
246
.
21.
Segal
,
A. D.
,
Orendurff
,
M. S.
,
Klute
,
G. K.
,
McDowell
,
M. L.
,
Pecoraro
,
J. A.
,
Shofer
,
J.
, and
Czerniecki
,
J. M.
,
2006
, “
Kinematic and Kinetic Comparisons of Transfemoral Amputee Gait Using C-Leg and Mauch SNS Prosthetic Knees
,”
J. Rehabil. Res. Dev.
,
43
(
7
), pp.
857
870
.
22.
Seymour
,
R.
,
Engbretson
,
B.
,
Kott
,
K.
,
Ordway
,
N.
,
Brooks
,
G.
,
Crannell
,
J.
,
Hickernell
,
E.
, and
Wheeler
,
K.
,
2007
, “
Comparison Between the C-Leg Microprocessor-Controlled Prosthetic Knee and Non-Microprocessor Control Prosthetic Knees: A Preliminary Study of Energy Expenditure, Obstacle Course Performance, and Quality of Life Survey
,”
Prosthet. Orthot. Int.
,
31
, pp.
51
61
.
23.
Datta
,
D.
,
Heller
,
B.
, and
Howitt
,
J.
,
2005
, “
A Comparative Evaluation of Oxygen Consumption and Gait Pattern in Amputees Using Intelligent Prostheses and Conventionally Damped Knee Swing-Phase Control
,”
Clin. Rehabil.
,
19
(
4
), pp.
398
403
.
24.
Chin
,
T.
,
Sawamura
,
S.
,
Shiba
,
R.
,
Oyabu
,
H.
,
Nagakura
,
Y.
,
Takase
,
I.
,
Machida
,
K.
, and
Nakagawa
,
A.
,
2003
, “
Effect of an Intelligent Prosthesis (IP) on the Walking Ability of Young Transfemoral Amputees: Comparison of IP Users With Able-Bodied People
,”
Am. J. Phys. Med. Rehabil.
,
82
(
6
), pp.
447
451
.
25.
Kaufman
,
K. R.
,
Levine
,
J. A.
,
Brey
,
R. H.
,
McCrady
,
S. K.
,
Padgett
,
D. J.
, and
Joyner
,
M. J.
,
2008
, “
Energy Expenditure and Activity of Transfemoral Amputees Using Mechanical and Microprocessor-Controlled Prosthetic Knees
,”
Arch. Phys. Med. Rehabil.
,
89
(
7
), pp.
1380
1385
.
26.
Hafner
,
B. J.
,
Willingham
,
L. L.
,
Buell
,
N. C.
,
Allyn
,
K. J.
, and
Smith
,
D. G.
,
2007
, “
Evaluation of Function, Performance, and Preference as Transfemoral Amputees Transition From Mechanical to Microprocessor Control of the Prosthetic Knee
,”
Arch. Phys. Med. Rehabil.
,
88
(
2
), pp.
207
217
.
27.
Blumentritt
,
S. T.
,
Schmalz
,
T.
, and
Jarasch
,
R.
,
2009
, “
Safety of C-Leg: Biomechanical Tests
,”
J. Prosthet. Orthot.
,
21
(
1
), pp.
2
17
.
28.
Kaufman
,
K. R.
,
Levine
,
J. A.
,
Brey
,
R. H.
,
Iverson
,
B. K.
,
McCrady
,
S. K.
,
Padgett
,
D. J.
, and
Joyner
,
M. J.
,
2007
, “
Gait and Balance of Transfemoral Amputees Using Passive Mechanical and Microprocessor-Controlled Prosthetic Knees
,”
Gait Posture
,
26
(
4
), pp.
489
493
.
29.
Mâaref
,
K.
,
Martinet
,
N.
,
Grumillier
,
C.
,
Ghannouchi
,
S.
,
André
,
J. M.
, and
Paysant
,
J.
,
2010
, “
Kinematics in the Terminal Swing Phase of Unilateral Transfemoral Amputees: Microprocessor-Controlled Versus Swing-Phase Control Prosthetic Knees
,”
Arch. Phys. Med. Rehabil.
,
91
(
6
), pp.
919
925
.
30.
Johansson
,
J. L.
,
Sherrill
,
D. M.
,
Riley
,
P. O.
,
Bonato
,
P.
, and
Herr
,
H.
,
2005
, “
A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices
,”
Am. J. Phys. Med. Rehabil.
,
84
(
8
), pp.
563
575
.
31.
Burke
,
M. J.
,
Roman
,
V.
, and
Wright
,
V.
,
1978
, “
Bone and Joint Changes in Lower Limb Amputees
,”
Ann. Rheum. Dis.
,
37
(
3
), pp.
252
254
.
32.
Nolan
,
L.
,
Wit
,
A.
,
Dudziñski
,
K.
,
Lees
,
A.
,
Lake
,
M.
, and
Wychowañski
,
M.
,
2003
, “
Adjustments in Gait Symmetry With Walking Speeds in Trans-Femoral and Trans-Tibial Amputees
,”
Gait Posture
,
17
(
2
), pp.
142
151
.
33.
Nolan
,
L.
, and
Lees
,
A.
,
2000
, “
The Functional Demands on the Intact Limb During Walking for Active Trans-Femoral and Trans-Tibial Amputees
,”
Prosthet. Orthot. Int.
,
24
(2), pp. 117–125.https://journals.sagepub.com/doi/pdf/10.1080/03093640008726534
34.
Ehde
,
D. M.
,
Smith
,
D. G.
,
Czerniecki
,
J. M.
,
Campbell
,
K. M.
,
Malchow
,
D. M.
, and
Robinson
,
L. R.
,
2001
, “
Back Pain as a Secondary Disability in Persons With Lower Limb Amputations
,”
Arch. Phys. Med. Rehabil.
,
82
(
6
), pp.
731
734
.
35.
Morgenroth
,
D. C.
,
Orendurff
,
M. S.
,
Shakir
,
A.
,
Segal
,
A. D.
,
Shofer
,
J.
, and
Czerniecki
,
J. M.
,
2010
, “
The Relationship Between Lumbar Spine Kinematics During Gait and Lowback Pain in Transfemoral Amputees
,”
Am. J. Phys. Med. Rehabil.
,
89
(
8
), pp.
635
643
.
36.
Norvell
,
D. C.
,
Czerniecki
,
J. M.
,
Reiber
,
G. E.
,
Maynard
,
C.
,
Pecoraro
,
J. A.
, and
Weiss
,
N. S.
,
2005
, “
The Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis Among Veteran Traumatic Amputees and Nonamputees
,”
Arch. Phys. Med. Rehabil.
,
86
(
3
), pp.
487
493
.
37.
Waters
,
R.
,
Perry
,
J.
,
Antonelli
,
D.
, and
Hislop
,
H.
,
1976
, “
Energy Cost of Walking Amputees: The Influence of Level of Amputation
,”
J. Bone Jt. Surg.
,
58
(
1
), pp.
42
46
.
38.
Ziegler-Graham
,
K.
,
MacKenzie
,
E. J.
,
Ephraim
,
P. L.
,
Travison
,
T. G.
, and
Brookmeyer
,
R.
,
2008
, “
Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050
,”
Arch. Phys. Med. Rehabil.
,
89
(
3
), pp.
422
429
.
39.
Torrealba
,
R. R.
,
Fernández-López
,
G.
, and
Grieco
,
J. C.
,
2008
, “
Towards the Development of Knee Prostheses: Review of Current Researches
,”
Kybernetes
,
37
(
9/10
), pp.
1561
1576
.
40.
Össur Dynamic Solutions,
2017
, “
Power Knee
,” Össur Dynamic Solutions, Össur, Iceland, accessed Apr. 12, 2019, http://www.ossur.com/prosthetic-solutions/products/dynamic-solutions/power-knee
41.
Lambrecht
,
B. G. A.
, and
Kazerooni
,
H.
,
2009
, “
Design of a Semi-Active Knee Prosthesis
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
639
645
.
42.
Freedom Innovations,
2012
, “
First Neutrally Controlled, Powered Prosthetic Limb is 2,109 Steps Closer to Realization
,” Freedom Innovations, Irvine, CA, accessed Apr. 12, 2019, http://www.freedom-innovations.com/first-neurally-controlled-powered-prosthetic-limb-is-2109-steps-closer-to-realization/
43.
El-Sayed
,
A. M.
,
Hamzaid
,
N. A.
, and
Osman
,
N. A. A.
,
2014
, “
Technology Efficacy in Active Prosthetic Knees for Transfemoral Amputees: A Quantitative Evaluation
,”
Sci. World J.
,
2014
, p.
297431
.
44.
Windrich
,
M.
,
Grimmer
,
M.
,
Christ
,
O.
,
Rinderknecht
,
S.
, and
Beckerle
,
P.
,
2016
, “
Active Lower Limb Prosthetics: A Systematic Review of Design Issues and Solutions
,”
Biomed. Eng. OnLine
,
15
(3), pp.
1
19
.
45.
Elery
,
T.
,
Rezazadeh
,
S.
,
Nesler
,
C.
,
Doan
,
J.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Brisbane, Australia, May 21–25, pp.
1341
1347
.
46.
Dabiri
,
Y.
,
Najarian
,
S.
,
Eslami
,
M. R.
,
Zahedi
,
S.
,
Moser
,
D.
,
Shirzad
,
E.
, and
Moradihaghighat
,
R.
,
2011
, “
Simulation of the Effect of Amputation Level on Individual Muscle Forces of Transfemoral Amputees
,”
Biomed. Eng. Appl. Basis Commun.
,
23
(
05
), pp.
369
376
.
47.
Awad
,
M.
,
Dehghani
,
A.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2013
, “
Dynamic Coupling Characteristics of a Semi-Active Knee Prosthesis
,”
16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
, Sydney, Australia, July 14–17, pp.
43
50
.
48.
Awad
,
M. I.
,
Dehghani-Sanij
,
A. A.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2016
, “
Motor Electrical Damping for Back-Drivable Prosthetic Knee
,”
11th France-Japan and 9th Europe-Asia Congress on Mechatronics (MECATRONICS)/17th International Conference on Research and Education in Mechatronics (REM)
, Compiegne, France, June 15–17, pp.
348
353
.
49.
Pieringer
,
D. S.
,
Grimmer
,
M.
,
Russold
,
M. F.
, and
Riener
,
R.
,
2017
, “
Review of the Actuators of Active Knee Prostheses and Their Target Design Outputs for Activities of Daily Living
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), London, July 17–20, pp.
1246
1253
.
50.
Hoover
,
C. D.
,
Fulk
,
G. D.
, and
Fite
,
K. B.
,
2012
, “
The Design and Initial Experimental Validation of an Active Myoelectric Transfemoral Prosthesis
,”
ASME J. Med. Devices
,
6
(
1
), p.
011005
.
51.
Hoover
,
C. D.
,
Fulk
,
G. D.
, and
Fite
,
K. B.
,
2013
, “
Stair Ascent With a Powered Transfemoral Prosthesis Under Direct Myoelectric Control
,”
IEEE ASME Trans. Mechatronics
,
18
(
3
), pp.
1191
1200
.
52.
Du
,
L.
,
Zhang
,
F.
,
Liu
,
M.
, and
Huang
,
H.
,
2012
, “
Toward Design of an Environment-Aware Adaptive Locomotion-Mode-Recognition System
,”
IEEE Trans. Biomed. Eng.
,
59
(10), pp.
2716
2725
.
53.
Liu
,
M.
,
Datseris
,
P.
, and
Huang
,
H.
,
2011
, “
A Prototype for Smart Prosthetic Legs: Analysis and Mechanical Design
,”
IEEE International Conference on Control, Robotics and Cybernetics
, New Delhi, India, Mar. 19–21, pp.
139
143
.
54.
Fite
,
K.
,
Mitchell
,
J.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2007
, “
Design and Control of an Electrically Powered Knee Prosthesis
,”
IEEE Tenth International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 13–15, pp.
902
905
.
55.
Nadeau
,
S.
,
McFadyen
,
B. J.
, and
Malouin
,
F.
,
2003
, “
Frontal and Sagittal Plane Analyses of the Stair Climbing Task in Healthy Adults Aged Over 40 Years: What Are the Challenges Compared to Level Walking?
,”
Clin. Biomech.
,
18
(
10
), pp.
950
959
.
56.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
1999
, “
Joint Powers in Stair Climbing at Different Slopes
,”
IEEE
International Conference on Engineering in Medicine and Biology
, Atlanta, Georgia, Oct. 13–16, p.
530
.
57.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of an Active Electrical Knee and Ankle Prosthesis
,”
IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
523
528
.
58.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee
,”
IEEE
International Conference on Rehabilitation Robotics
, Kyoto, Japan, June 23–26, pp.
638
644
.
59.
Ha
,
K. H.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2010
, “
Myoelectric Control of a Powered Knee Prosthesis for Volitional Movement During Non-Weight-Bearing Activities
,”
32nd Annual IEEE EMBS International Conference
, Buenos Aires, Argentina, August 31–September 4, pp.
3515
3518
.
60.
Lawson
,
B. E.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Standing Stability Enhancement With an Intelligent Powered Transfemoral Prosthesis
,”
IEEE Trans. Biomed. Eng.
,
58
(
9
), pp.
2617
2624
.
61.
Sup
,
F.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Upslope Walking With a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
1
), pp.
71
78
.
62.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE ASME Trans. Mechatron.
,
14
(
6
), pp.
667
676
.
63.
Vrieling
,
A. H.
,
Van Keeken
,
H. G.
,
Schoppen
,
T.
,
Otten
,
E.
,
Halbertsma
,
J. P. K.
,
Hof
,
A. L.
, and
Postema
,
K.
,
2008
, “
Uphill and Downhill Walking in Unilateral Lower Limb Amputees
,”
Gait Posture
,
28
(
2
), pp.
235
242
.
64.
Lawson
,
B. E.
,
Varol
,
H. A.
,
Huff
,
A.
,
Erdemir
,
E.
, and
Goldfarb
,
M.
,
2013
, “
Control of Stair Ascent and Descent With a Powered Transfemoral Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
3
), pp.
466
473
.
65.
Shultz
,
A. H.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2015
, “
Running With a Powered Knee and Ankle Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
3
), pp.
403
412
.
66.
Mensch
,
G.
, and
Ellis
,
P. E.
,
1986
, “
Running Patterns of Transfemoral Amputees: A Clinical Analysis
,”
Prosthet. Orthot. Int.
,
10
(3), pp.
129
134
.https://journals.sagepub.com/doi/pdf/10.3109/03093648609164516
67.
DiAngelo
,
D. J.
,
Winter
,
D. A.
,
Ghista
,
D. N.
, and
Newcombe
,
W. R.
,
1989
, “
Performance Assessment of the Terry Fox Jogging Prosthesis for Above-Knee Amputees
,”
J. Biomech.
,
22
(
6–7
), pp.
543
558
.
68.
Lawson
,
B. E.
,
Ruhe
,
B.
,
Shultz
,
A.
, and
Goldfarb
,
M.
,
2015
, “
A Powered Prosthetic Intervention for Bilateral Transfemoral Amputees
,”
IEEE Trans. Biomed. Eng.
,
62
(
4
), pp.
1042
1050
.
69.
Laferrier
,
J. Z.
,
McFarland
,
L. V.
,
Boninger
,
M. L.
,
Cooper
,
R. A.
, and
Reiber
,
G. E.
,
2010
, “
Wheeled Mobility: Factors Influencing Mobility and Assistive Technology in Veterans and Service Members With Major Traumatic Limb Loss From Vietnam War and OIF/OEF Conflicts
,”
J. Rehabil. Res. Dev.
,
47
(
4
), pp.
349
360
.
70.
Datta
,
D.
,
Nair
,
P. N.
, and
Payne
,
J.
,
1992
, “
Outcome of Prosthetic Management of Bilateral Lower-Limb Amputees
,”
Disabil. Rehabil.
,
14
(
2
), pp.
98
102
.
71.
Lawson
,
B. E.
,
Mitchell
,
J. E.
,
Truex
,
D.
,
Shultz
,
A.
,
Ledoux
,
E.
, and
Goldfarb
,
M.
,
2014
, “
A Robotic Leg Prosthesis: Design, Control, and Implementation
,”
IEEE Robot. Autom. Mag.
,
21
(
4
), pp.
70
81
.
72.
Ledoux
,
E. D.
,
Lawson
,
B. E.
,
Shultz
,
A. H.
,
Bartlett
,
H. L.
, and
Goldfarb
,
M.
,
2015
, “
Metabolics of Stair Ascent With a Powered Transfemoral Prosthesis
,”
Annual IEEE EMBS International Conference
, Milan, Italy, Aug. 25–29, pp.
5307
5310
.
73.
Quintero
,
D.
,
Villarreal
,
D. J.
, and
Gregg
,
R. D.
,
2016
, “
Preliminary Experiments With a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Daejeon, South Korea, Oct. 9–14, pp.
1
8
.
74.
Chen
,
G.
,
Liu
,
Z.
,
Chen
,
L.
, and
Yang
,
P.
,
2015
, “
Control of Powered Knee Joint Prosthesis Based on Finite-State Machine
,”
Lecture Notes in Electrical Engineering
,
Z.
Deng
and
H.
Li
, eds., Vol.
337
,
Springer-Verlag
,
Berlin
, pp.
395
403
.
75.
Radcliffe
,
C. W.
,
1994
, “
Four-Bar Linkage Prosthetic Knee Mechanisms: Kinematics, Alignment and Prescription Criteria
,”
Prosthet. Orthot. Int.
,
18
(
3
), pp. 159–173.
76.
Awad
,
M.
,
Tee
,
K. S.
,
Dehghani
,
A.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2011
, “
Design of a Back-Drivable Semi-Active Above Knee Prosthesis
,”
14th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR)
, Paris, France, Sept. 6–8, pp.
35
42
.
77.
Zhao
,
H.
,
Horn
,
J.
,
Reher
,
J.
,
Paredes
,
V.
, and
Ames
,
A. D.
,
2016
, “
First Steps Towards Translating Robotic Walking to Prostheses: A Nonlinear Optimization Based Control Approach
,”
Auton. Robots
,
41
(3), pp.
725
742
.
78.
Zhao
,
H.
,
Kolathaya
,
S.
, and
Ames
,
A. D.
,
2014
, “
Quadratic Programming and Impedance Control for Transfemoral Prosthesis
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
1341
1347
.
79.
Lenzi
,
T.
,
Sensinger
,
J.
,
Lipsey
,
J.
,
Hargrove
,
L.
, and
Kuiken
,
T.
,
2015
, “
Design and Preliminary Testing of the RIC Hybrid Knee Prosthesis
,”
Annual IEEE EMBS International Conference
, Milan, Italy, Aug. 25–29, pp.
1683
1686
.
80.
Park
,
J.
,
Yoon
,
G.-H.
,
Kang
,
J.-W.
, and
Choi
,
S.-B.
,
2016
, “
Design and Control of a Prosthetic Leg for Above-Knee Amputees Operated in Semi-Active and Active Modes
,”
Smart Mater. Struct.
,
25
(
8
), p.
085009
.
81.
Merewether
,
G.
, and
Hsieh
,
T. H.
,
2015
, “
Impedance Control of a Knee-Ankle Prosthesis
,” Carnegie Mellon University, Pittsburgh, PA, pp.
1
4
.
82.
Pfeifer
,
S.
,
Pagel
,
A.
,
Riener
,
R.
, and
Vallery
,
H.
,
2015
, “
Actuator With Angle-Dependent Elasticity for Biomimetic Transfemoral Prostheses
,”
IEEE ASME Trans. Mechatronics
,
20
(
3
), pp.
1384
1394
.
83.
Martinez-Villalpando
,
E. C.
, and
Herr
,
H.
,
2009
, “
Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehabil. Res. Dev.
,
46
, pp.
361
374
.
84.
Martinez-Villalpando
,
E. C.
,
Mooney
,
L.
,
Elliott
,
G.
, and
Herr
,
H.
,
2011
, “
Antagonist Active Knee Prosthesis. A Metabolic Cost of Walking Comparison With a Variable-Damping Prosthetic Knee
,”
33rd Annual IEEE EMBS International Conference
, Boston, MA, Aug. 30–Sept. 3, pp.
8519
8522
.
85.
Rouse
,
E. J.
,
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2014
, “
Clutchable Series-Elastic Actuator: Implications for Prosthetic Knee Design
,”
Int. J. Rob. Res.
,
33
(13), pp.
1611
1625
.
86.
Flynn
,
L.
,
Geeroms
,
J.
,
Jimenez-Fabian
,
R.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2015
, “
CYBERLEGS Beta-Prosthesis Active Knee System
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14, pp.
410
415
.
87.
Ambrožič
,
L.
,
Goršič
,
M.
,
Geeroms
,
J.
,
Flynn
,
L.
,
Lova
,
R. M.
,
Kamnik
,
R.
,
Munih
,
M.
, and
Vitiello
,
N.
,
2014
, “
CYBERLEGs a User-Oriented Robotic Transfemoral Prosthesis With Whole-Body Awareness Control
,”
IEEE Robot. Autom. Mag.
,
21
, pp.
82
93
.
88.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2007
, “
Design and Control of a Powered Knee and Ankle Prosthesis
,”
IEEE
International Conference on Robotics and Automation
, Roma, Italy, Apr. 10–14, pp.
4134
4139
.
89.
Goldfarb
,
M.
,
Barth
,
E. J.
,
Gogola
,
M. A.
, and
Wehrmeyer
,
J. A.
,
2003
, “
Design and Energetic Characterization of a Liquid-Propellant-Powered Actuator for Self-Powered Robots
,”
IEEE ASME Trans. Mechatron.
,
8
(
2
), pp.
254
262
.
90.
Fite
,
K. B.
,
Mitchell
,
J.
,
Barth
,
E. J.
, and
Goldfarb
,
M.
,
2006
, “
A Unified Force Controller for a Proportional-Injector Direct-Injection Monopropellant-Powered Actuator
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
159
164
.
91.
Dabiri
,
Y.
,
Najarian
,
S.
,
Eslami
,
M. R.
,
Zahedi
,
S.
, and
Moser
,
D.
,
2013
, “
A Powered Prosthetic Knee Joint Inspired From Musculoskeletal System
,”
Biocybern. Biomed. Eng.
,
33
(
2
), pp.
118
124
.
92.
Waycaster
,
G.
,
Wu
,
S. K.
, and
Shen
,
X.
,
2011
, “
Design and Control of a Pneumatic Artificial Muscle Actuated Above-Knee Prosthesis
,”
ASME J. Med. Devices
,
5
(
3
), p.
031003
9.
93.
Caldwell
,
D. G.
,
Razak
,
A.
, and
Goodwin
,
M. J.
,
1993
, “
Braided Pneumatic Muscle Actuators
,”
IFAC Conference on Intelligent Autonomous Vehicles
, Brisbane, Australia, June 26–28, pp.
507
512
.
94.
Hannaford
,
B.
, and
Winters
,
J. M.
,
1990
, “
Actuator Properties and Movement Control: Biological and Technological Models
,”
Multiple Muscle Systems: Biomechanics and Movement Organization
,
J. M.
Winters
and
S. L.
Woo
, eds.,
Springer-Verlag
,
New York
, pp.
101
120
.
95.
Isermann
,
R.
, and
Raab
,
U.
,
1993
, “
Intelligent Actuators−Ways to Autonomous Systems
,”
Automatica
,
29
(
5
), pp.
1315
1331
.
96.
Pillai
,
M. V.
,
Kazerooni
,
H.
, and
Hurwich
,
A.
,
2011
, “
Design of a Semi-Active Knee-Ankle Prosthesis
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
5293
5300
.
97.
Crea
,
S.
,
Donati
,
M.
,
de Rossi
,
S. M. M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2014
, “
A Wireless Flexible Sensorized Insole for Gait Analysis
,”
Sensors
,
14
(
1
), pp.
1073
1093
.
98.
Herr
,
H.
, and
Wilkenfeld
,
A.
,
2003
, “
User-Adaptive Control of a Magnetorheological Prosthetic Knee
,”
Ind. Robot: Int. J.
,
30
(
1
), pp.
42
55
.
99.
Tucker
,
M. R.
,
Olivier
,
J.
,
Pagel
,
A.
,
Bleuler
,
H.
,
Bouri
,
M.
,
Lambercy
,
O.
,
Millán
,
J. D. R.
,
Riener
,
R.
,
Vallery
,
H.
, and
Gassert
,
R.
,
2015
, “
Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review
,”
J. Neuroeng. Rehabil.
,
12
(
1
), pp.
1
29
.
100.
Lawson
,
B.
, and
Goldfarb
,
M.
,
2014
, “
Impedance & Admittance-Based Coordination Control Strategies for Robotic Lower Limb Prostheses
,”
Mech. Eng.
,
136
(9), pp. S12–S17.
101.
Mochon
,
S.
, and
McMahon
,
T. A.
,
1980
, “
Ballistic Walking
,”
J. Biomech.
,
13
(
1
), pp.
49
57
.
102.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.
103.
Varol
,
H. A.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2008
, “
Real-Time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking
,”
IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
66
72
.
104.
Segers
,
V.
,
Lenoir
,
M.
,
Aerts
,
P.
, and
Clercq
,
D. D.
,
2007
, “
Kinematics of the Transition Between Walking and Running When Gradually Changing Speed
,”
Gait Posture
,
26
(
3
), pp.
349
361
.
105.
Gordon
,
K. E.
, and
Ferris
,
D. P.
,
2007
, “
Learning to Walk With a Robotic Ankle Exoskeleton
,”
J. Biomech.
,
40
(
12
), pp.
2636
2644
.
106.
Huang
,
H.
,
Kuiken
,
T. A.
, and
Lipschutz
,
R. D.
,
2009
, “
A Strategy for Identifying Locomotion Modes Using Surface Electromyography
,”
IEEE Trans. Biomed. Eng.
,
56
, pp.
65
73
.
107.
Ha
,
K. H.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Volitional Control of a Prosthetic Knee Using Surface Electromyography
,”
IEEE Trans. Biomed. Eng.
,
58
(
1
), pp.
144
151
.
108.
Hargrove
,
L. J.
,
Simon
,
A. M.
,
Lipschutz
,
R. D.
,
Finucane
,
S. B.
, and
Kuiken
,
T. A.
,
2011
, “
Real-Time Myoelectric Control of Knee and Ankle Motions for Transfemoral Amputees
,”
JAMA
,
305
(
15
), pp.
1542
1544
.
109.
Huang
,
H.
,
Zhang
,
F.
,
Hargrove
,
L. J.
,
Dou
,
Z.
,
Rogers
,
D. R.
, and
Englehart
,
K. B.
,
2011
, “
Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular-Mechanical Fusion
,”
IEEE Trans. Biomed. Eng.
,
58
, pp.
2867
2875
.
110.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
,”
PLoS One
,
8
(
3
), p.
e59993
.
111.
Lenzi
,
T.
,
Hargrove
,
L.
, and
Sensinger
,
J. W.
,
2014
, “
Minimum Jerk Swing Control Allows Variable Cadence in Powered Transfemoral Prostheses
,”
Annual IEEE EMBS International Conference
, Chicago, IL, Aug. 26–30, pp.
2492
2495
.
112.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
Neural Networks
,
21
(
4
), pp.
654
666
.
113.
Boehler
,
A.
,
Hollander
,
K.
,
Sugar
,
T.
, and
Shin
,
D.
,
2008
, “
Design, Implementation and Test Results of a Robust Control Method for a Powered Ankle Foot Orthosis (AFO)
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
2025
2030
.
114.
Blaya
,
J. A.
, and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.
115.
Hollander
,
K.
, and
Sugar
,
T.
,
2007
, “
A Robust Control Concept for Robotic Ankle Gait Assistance
,”
IEEE
International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 13–15, pp.
119
123
.
116.
Fey
,
N.
,
Simon
,
A.
,
Young
,
A.
, and
Hargrove
,
L.
,
2014
, “
Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds
,”
IEEE J. Trans. Eng. Health Med.
,
2
, pp.
1
12
.
117.
Aghasadeghi
,
N.
,
Zhao
,
H.
,
Hargrove
,
L. J.
,
Ames
,
A. D.
,
Perreault
,
E. J.
, and
Bretl
,
T.
,
2013
, “
Learning Impedance Controller Parameters for Lower-Limb Prostheses
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
4268
4274
.
118.
Ames
,
A. D.
,
Galloway
,
K.
, and
Grizzle
,
J. W.
,
2012
, “
Control Lyapunov Functions and Hybrid Zero Dynamics
,”
IEEE Annual Conference on Decision and Control
(
CDC
), Maui, Hawaii, Dec. 10–13, pp.
6837
6842
.
119.
Sreenath
,
K.
,
Park
,
H. W.
,
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2011
, “
A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL
,”
Int. J. Rob. Res.
,
30
(
9
), pp.
1170
1193
.
120.
Ramezani
,
A.
,
Hurst
,
J.
,
Hamed
,
K.
, and
Grizzle
,
J.
,
2013
, “
Performance Analysis and Feedback Control of ATRIAS, a Three-Dimensional Bipedal Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021012
.
121.
Buss
,
B.
,
Ramezani
,
A.
,
Hamed
,
K.
,
Griffin
,
B.
,
Galloway
,
K.
, and
Grizzle
,
J.
,
2014
, “
Preliminary Walking Experiments With Underactuated 3D Bipedal Robot MARLO
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
2529
2536
.
122.
Hamed
,
K. A.
, and
Grizzle
,
J. W.
,
2014
, “
Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry
,”
IEEE Trans. Robot.
,
30
(
2
), pp.
365
381
.
123.
Martin
,
A. E.
,
Post
,
D. C.
, and
Schmiedeler
,
J. P.
,
2014
, “
Design and Experimental Implementation of a Hybrid Zero Dynamics-Based Controller for Planar Bipeds With Curved Feet
,”
Int. J. Rob. Res.
,
33
(
7
), pp.
988
1005
.
124.
Villarreal
,
D. J.
,
Poonawala
,
H.
, and
Gregg
,
R. D.
,
2017
, “
A Robust Parameterization of Human Joint Patterns Across Phase-Shifting Perturbations
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
3
), pp.
265
278
.
125.
Vallery
,
H.
,
Burgkart
,
R.
,
Hartmann
,
C.
,
Mitternacht
,
J.
,
Riener
,
R.
, and
Buss
,
M.
,
2011
, “
Complementary Limb Motion Estimation for the Control of Active Knee Prostheses
,”
Biomed. Tech./Biomed. Eng.
,
56
(
1
), pp.
45
51
.
126.
Dabiri
,
Y.
,
Najarian
,
S.
,
Zahedi
,
S.
,
Moser
,
D.
, and
Shirzad
,
E.
,
2009
, “
Muscle Contribution in the Swing Phase of Transfemoral Amputee Gait: An Inverse Dynamics Approach
,”
Res. J. Biol. Sci.
,
4
(10), pp.
1076
1084
.http://docsdrive.com/pdfs/medwelljournals/rjbsci/2009/1076-1084.pdf
127.
Blumentritt
,
S.
,
Scherer
,
H.
,
Wellershaus
,
U.
, and
Michael
,
J.
,
1997
, “
Design Principles, Biomechanical Data and Clinical Experience With a Polycentric Knee Offering Controlled Stance Phase Knee Flexion: A Preliminary Report
,”
J. Prosthet. Orthot.
,
9
(
1
), pp.
18
24
.
128.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
2002
, “
Stair Ascent and Descent at Different Inclinations
,”
Gait Posture
,
15
(
1
), pp.
32
44
.
129.
Lenzi
,
T.
,
Hargrove
,
L.
, and
Sensinger
,
J.
,
2014
, “
Speed-Adaptation Mechanism: Robotic Prostheses Can Actively Regulate Joint Torque
,”
IEEE Robot. Autom. Mag.
,
21
(
4
), pp.
94
107
.
130.
Torrealba
,
R. R.
,
Cappelletto
,
J.
,
Fermín
,
L.
,
Fernández-López
,
G.
, and
Grieco
,
J. C.
,
2012
, “
Cybernetic Knee Prosthesis: Application of an Adaptive Central Pattern Generator
,”
Kybernetes
,
41
(
1/2
), pp.
192
205
.
131.
Össur Bionic Technology,
2007
, “
Power Knee
,” Össur Bionic Technology, Ossur, Iceland, accessed Apr. 19, 2019, https://www.ossur.com/prosthetic-solutions/products/dynamic-solutions/power-knee
132.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sport. Exercise
,
39
(
3
), pp.
515
525
[InsertedFromOnline.
133.
Gitter
,
A. M. D.
,
Czerniecki
,
J. M. D.
, and
Meinders
,
M. M. S.
,
1997
, “
Effects of Prosthetic Mass on Swing Phase Work During Above-Knee Amputee Ambulation
,”
Am. J. Phys. Med. Rehabil.
,
76
(
2
), pp.
114
121.
134.
Narang
,
Y. S.
,
Arelekatti
,
V. N. M.
, and
Winter
,
A. G.
,
2016
, “
The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
7
), pp.
754
763
.
135.
Awad
,
M. I.
,
Deghani-Sanij
,
A. A.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2015
, “
Inertia Properties of a Prosthetic Knee Mechanism
,”
16th Annual Conference Towards Autonomous Robotic Systems (TAROS)
, Liverpool, UK, Sept. 8–10, pp.
38
43
.
136.
Wolf
,
E. J.
,
Everding
,
V. Q.
,
Linberg
,
A. L.
,
Schnall
,
B. L.
,
Czerniecki
,
J. M.
, and
Gambel
,
J. M.
,
2012
, “
Assessment of Transfemoral Amputees Using C-Leg and Power Knee for Ascending and Descending Inclines and Steps
,”
JRRD
,
49
(
6
), pp.
831
842
.
137.
Highsmith
,
M. J.
,
Kahle
,
J. T.
,
Carey
,
S. L.
,
Lura
,
D. J.
,
Dubey
,
R. V.
, and
Quillen
,
W. S.
,
2010
, “
Kinetic Differences Using a Power Knee and C-Leg While Sitting Down and Standing Up: A Case Report
,”
J. Prosthet. Orthot.
,
22
(
4
), pp.
237
243
.
138.
Otto Bock,
2017
, “
Prosthetics: Above-Knee Prosthesis With Genium
,” Otto Bock, Germany, accessed Feb. 21, 2017, https://www.ottobockus.com/prosthetics/lower-limb-prosthetics/solution-overview/genium-above-knee-system/
139.
Össur
,
2017
, “
Prosthetic Solutions: Rheo Knee XC
,” Össur, Iceland, accessed Feb. 21, 2017, http://www.ossur.com/rheoknee-xc
140.
Freedom Innovations
,
2017
, “
Knees: Plié 3
,” Freedom Innovations, Irvine, CA, USA, accessed Feb. 21, 2017, http://www.freedom-innovations.com/plie-3/
141.
Endolite,
2017
, “
Prosthetic Products—Orion3
,” Endolite, UK, accessed Feb. 21, 2017, http://www.endolite.com/products/orion3
142.
Horn
,
G.
,
1972
, “
Electro-Control: An EMG-Controlled A/K Prosthesis
,”
Med. Biol. Eng. Comput.
,
10
(
1
), pp.
61
73.
143.
Saxena
,
S. C.
, and
Mukhopadhyay
,
P.
,
1977
, “
EMG Operated Electronic Artificial-Leg Controller
,”
Med. Biol. Eng. Comput.
,
15
(
5
), pp.
553
557.
144.
Peeraer
,
L.
,
Aeyels
,
B.
, and
Van der Perre
,
G.
,
1990
, “
Development of EMG-Based Mode and Intent Recognition Algorithms for a Computer-Controlled Above-Knee Prosthesis
,”
J. Biomed. Eng.
,
12
(
3
), pp.
178
182.
145.
Aeyels
,
B.
,
Peeraer
,
L.
,
Sloten
,
J. V.
, and
Van der Perre
,
G.
,
1992
, “
Development of an A/K Prosthesis Equipped With a Microcomputer-Controlled Knee Joint: First Test Results
,”
J. Biomed. Eng.
,
14
(
3
), pp.
199
202.
146.
Aeyels
,
B.
,
Van Petegem
,
W.
,
Sloten
,
J. V.
,
Van der Perre
,
G.
, and
Peeraer
,
L.
,
1995
, “
An EMG-Based Finite State Approach for a Microcomputer-Controlled Above-Knee Prosthesis
,”
IEEE
Annual Conference of the Engineering in Medicine and Biology Society
, Montréal, QC, Canada, Sept. 20–23, pp.
1315
1316
.
147.
Huang
,
H.
,
Zhou
,
P.
,
Li
,
G.
, and
Kuiken
,
T. A.
,
2008
, “
An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
, pp.
37
45
.
148.
Young
,
A. J.
,
Hargrove
,
L. G.
, and
Kuiken
,
T. A.
,
2012
, “
Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Changing Interelectrode Distance and Electrode Configuration
,”
IEEE Trans. Biomed. Eng.
,
59
(
3
), pp.
645
653.
149.
Au
,
S. K.
,
Bonato
,
P.
, and
Herr
,
H.
,
2005
, “
An EMG-Position Controlled System for an Active Ankle-Foot Prosthesis: An Initial Experimental Study
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Chicago, June 28–July 1, pp.
375
379
.
150.
Donath
,
M.
,
1974
, “
Proportional EMG Control for Above-Knee Prosthesis
,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA.
151.
Park
,
E.
, and
Meek
,
S.
,
1993
, “
Fatigue Compensation of the Electromyographic Signal for Prosthetics Control and Force Estimation
,”
IEEE Trans. Biomed. Eng.
,
40
(
10
), pp.
1019
1023
.
152.
Össur,
2017
, “
About Össur—News From Össur
,” Össur, Iceland, accessed Feb. 21, 2017, https://www.ossur.com/about-ossur/news-from-ossur/1396-ossur-introduces-first-mind-controlled-bionic-prosthetic-lower-limbs-for-amputees
153.
Chen
,
A.
,
Yao
,
J.
,
Kuiken
,
T. A.
, and
Dewald
,
J. P. A.
,
2013
, “
Cortical Motor Activity and Reorganization Following Upper-Limb Amputation and Subsequent Targeted Reinnervation
,”
Neuroimage Clin.
,
3
, pp.
498
506
.
154.
Elliott, J.
, 2005, “
Bionic Arm ‘Transformed My Life’
,” BBC News Health Reporter (UK), accessed Apr. 12, 2019, http://news.bbc.co.uk/2/hi/health/4648139.stm
155.
Torrealba
,
R. R.
,
Pérez-D'Arpino
,
C.
,
Cappelletto
,
J.
,
Fermín-León
,
L.
,
Fernández-López
,
G.
, and
Grieco
,
J. C.
,
2010
, “
Through the Development of a Biomechatronic Knee Prosthesis for Transfemoral Amputees: Mechanical Design and Manufacture, Human Gait Characterization, Intelligent Control Strategies and Tests
,”
IEEE
International Conference on Robotics and Automation
, Anchorage, AK, May 3–8, pp.
2934
2939
.
156.
Righetti
,
L.
, and
Ijspeert
,
A.
,
2006
, “
Programmable Central Pattern Generators: An Application to Biped Locomotion Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
1585
1590
.
You do not currently have access to this content.