Organized structures in turbulent jets can be modeled as wavepackets. These are characterized by spatial amplification and decay, both of which are related to stability mechanisms, and they are coherent over several jet diameters, thereby constituting a noncompact acoustic source that produces a distinctive directivity in the acoustic field. In this review, we use simplified model problems to discuss the salient features of turbulent-jet wavepackets and their modeling frameworks. Two classes of model are considered. The first, that we refer to as kinematic, is based on Lighthill's acoustic analogy, and allows an evaluation of the radiation properties of sound-source functions postulated following observation of jets. The second, referred to as dynamic, is based on the linearized, inhomogeneous Ginzburg–Landau equation, which we use as a surrogate for the linearized, inhomogeneous Navier–Stokes system. Both models are elaborated in the framework of resolvent analysis, which allows the dynamics to be viewed in terms of an input–ouput system, the input being either sound-source or nonlinear forcing term, and the output, correspondingly, either farfield acoustic pressure fluctuations or nearfield flow fluctuations. Emphasis is placed on the extension of resolvent analysis to stochastic systems, which allows for the treatment of wavepacket jitter, a feature known to be relevant for subsonic jet noise. Despite the simplicity of the models, they are found to qualitatively reproduce many of the features of turbulent jets observed in experiment and simulation. Sample scripts are provided and allow calculation of most of the presented results.

References

References
1.
Cavalieri
,
A. V. G.
,
Rodríguez
,
D.
,
Jordan
,
P.
,
Colonius
,
T.
, and
Gervais
,
Y.
,
2013
, “
Wavepackets in the Velocity Field of Turbulent Jets
,”
J. Fluid Mech.
,
730
(
9
), pp.
559
592
.
2.
Fuchs
,
H. V.
, and
Michel
,
U.
,
1978
, “
Experimental Evidence of Turbulent Source Coherence Affecting Jet Noise
,”
AIAA J.
,
16
(
9
), pp.
871
872
.
3.
Juvé
,
D.
,
Sunyach
,
M.
, and
Comte-Bellot
,
G.
,
1979
, “
Filtered Azimuthal Correlations in the Acoustic Far Field of a Subsonic Jet
,”
AIAA J.
,
17
, p.
112
.
4.
Kopiev
,
V.
,
Zaitsev
,
M.
,
Velichko
,
S.
,
Kotova
,
A.
, and
Belyaev
,
I.
,
2008
, “
Cross-Correlations of Far Field Azimuthal Modes in Subsonic Jet Noise
,”
AIAA
Paper No. 2008-2887.
5.
Cavalieri
,
A. V. G.
,
Jordan
,
P.
,
Colonius
,
T.
, and
Gervais
,
Y.
,
2012
, “
Axisymmetric Superdirectivity in Subsonic Jets
,”
J. Fluid Mech.
,
704
, p.
388
.
6.
Faranosov
,
G. A.
,
Belyaev
,
I. V.
,
Kopiev
,
V. F.
,
Zaytsev
,
M. Y.
,
Aleksentsev
,
A. A.
,
Bersenev
,
Y. V.
,
Chursin
,
V. A.
, and
Viskova
,
T. A.
,
2016
, “
Adaptation of the Azimuthal Decomposition Technique to Jet Noise Measurements in Full-Scale Tests
,”
AIAA J.
,
55
(
2
), pp.
572
584
.
7.
Brès
,
G. A.
,
Jordan
,
P.
,
Jaunet
,
V.
,
Le Rallic
,
M.
,
Cavalieri
,
A. V.
,
Towne
,
A.
,
Lele
,
S. K.
,
Colonius
,
T.
, and
Schmidt
,
O. T.
,
2018
, “
Importance of the Nozzle-Exit Boundary-Layer State in Subsonic Turbulent Jets
,”
J. Fluid Mech.
,
851
, pp.
83
124
.
8.
Brès
,
G. A.
,
Ham
,
F. E.
,
Nichols
,
J. W.
, and
Lele
,
S. K.
,
2017
, “
Unstructured Large-Eddy Simulations of Supersonic Jets
,”
AIAA J.
,
55
(4), pp.
1164
1184
.
9.
Mollo-Christensen
,
E.
,
1967
, “
Jet Noise and Shear Flow Instability Seen From an Experimenter's Viewpoint (Similarity Laws for Jet Noise and Shear Flow Instability as Suggested by Experiments)
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
1
7
.
10.
Lau
,
J. C.
,
Fisher
,
M. J.
, and
Fuchs
,
H. V.
,
1972
, “
The Intrinsic Structure of Turbulent Jets
,”
J. Sound Vib.
,
22
(
4
), pp.
379
384
.
11.
Michalke
,
A.
, and
Fuchs
,
H. V.
,
1975
, “
On Turbulence and Noise of an Axisymmetric Shear Flow
,”
J. Fluid Mech.
,
70
(
1
), pp.
179
205
.
12.
Armstrong
,
R. R.
,
Fuchs
,
H. V.
, and
Michalke
,
A.
,
1977
, “
Coherent Structures in Jet Turbulence and Noise
,”
AIAA J.
,
15
(
7
), pp.
1011
1017
.
13.
Tinney
,
C. E.
, and
Jordan
,
P.
,
2008
, “
The Near Pressure Field of Co-Axial Subsonic Jets
,”
J. Fluid Mech.
,
611
, pp.
175
204
.
14.
Breakey
,
D. E.
,
Jordan
,
P.
,
Cavalieri
,
A. V.
,
Nogueira
,
P. A.
,
Léon
,
O.
,
Colonius
,
T.
, and
Rodríguez
,
D.
,
2017
, “
Experimental Study of Turbulent-Jet Wave Packets and Their Acoustic Efficiency
,”
Phys. Rev. Fluids
,
2
(
12
), p.
124601
.
15.
Jung
,
D.
,
Gamard
,
S.
, and
George
,
W. K.
,
2004
, “
Downstream Evolution of the Most Energetic Modes in a Turbulent Axisymmetric Jet at High Reynolds Number—Part 1: The Near-Field Region
,”
J. Fluid Mech.
,
514
, pp.
173
204
.
16.
Suzuki
,
T.
, and
Colonius
,
T.
,
2006
, “
Instability Waves in a Subsonic Round Jet Detected Using a Near-Field Phased Microphone Array
,”
J. Fluid Mech.
,
565
, pp.
197
226
.
17.
Jaunet
,
V.
,
Jordan
,
P.
, and
Cavalieri
,
A.
,
2017
, “
Two-Point Coherence of Wave Packets in Turbulent Jets
,”
Phys. Rev. Fluids
,
2
(
2
), p.
024604
.
18.
Crow
,
S. C.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.
19.
Moore
,
C. J.
,
1977
, “
The Role of Shear-Layer Instability Waves in Jet Exhaust Noise
,”
J. Fluid Mech.
,
80
(
2
), pp.
321
367
.
20.
Michalke
,
A.
,
1971
, “
Instabilitat Eines Kompressiblen Runden Freistrahls Unter Berucksichtigung Des Einflusses Der Strahlgrenzschichtdicke
,”
Z. Flugwiss.
,
19
, pp.
319
328
.
21.
Crighton
,
D. G.
, and
Gaster
,
M.
,
1976
, “
Stability of Slowly Diverging Jet Flow
,”
J. Fluid Mech.
,
77
(
2
), pp.
397
413
.
22.
Sasaki
,
K.
,
Cavalieri
,
A. V.
,
Jordan
,
P.
,
Schmidt
,
O. T.
,
Colonius
,
T.
, and
Brès
,
G. A.
,
2017
, “
High-Frequency Wavepackets in Turbulent Jets
,”
J. Fluid Mech.
,
830
, p. R2.
23.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2001
,
Stability and Transition in Shear Flows
, Vol.
142
,
Springer
, New York.
24.
Criminale
,
W. O.
,
Jackson
,
T. L.
, and
Joslin
,
R. D.
,
2003
,
Theory and Computation of Hydrodynamic Stability
,
Cambridge University Press, Cambridge, UK
.
25.
Schmid
,
P. J.
,
2007
, “
Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
129
162
.
26.
Juniper
,
M. P.
,
Hanifi
,
A.
, and
Theofilis
,
V.
,
2014
, “
Modal Stability Theory—Lecture Notes From the Flow-Nordita Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p.
024804
.
27.
Schmid
,
P. J.
, and
Brandt
,
L.
,
2014
, “
Analysis of Fluid Systems: Stability, Receptivity, Sensitivity
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p.
024803
.
28.
Kim
,
J.
, and
Bewley
,
T. R.
,
2007
, “
A Linear Systems Approach to Flow Control
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
383
417
.
29.
Bagheri
,
S.
,
Henningson
,
D.
,
Hoepffner
,
J.
, and
Schmid
,
P.
,
2009
, “
Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows
,”
ASME Appl. Mech. Rev.
,
62
(
2
), p.
020803
.
30.
Fabbiane
,
N.
,
Semeraro
,
O.
,
Bagheri
,
S.
, and
Henningson
,
D. S.
,
2014
, “
Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows
,”
ASME Appl. Mech. Rev.
,
66
(
6
), p.
060801
.
31.
Sipp
,
D.
, and
Schmid
,
P. J.
,
2016
, “
Linear Closed-Loop Control of Fluid Instabilities and Noise-Induced Perturbations: A Review of Approaches and Tools
,”
ASME Appl. Mech. Rev.
,
68
(
2
), p.
020801
.
32.
Farrell
,
B. F.
, and
Ioannou
,
P. J.
,
1993
, “
Stochastic Forcing of the Linearized Navier–Stokes Equations
,”
Phys. Fluids A
,
5
(
11
), pp.
2600
2609
.
33.
Jovanović
,
M. R.
, and
Bamieh
,
B.
,
2005
, “
Componentwise Energy Amplification in Channel Flows
,”
J. Fluid Mech.
,
534
, pp.
145
183
.
34.
McKeon
,
B.
, and
Sharma
,
A.
,
2010
, “
A Critical-Layer Framework for Turbulent Pipe Flow
,”
J. Fluid Mech.
,
658
, pp.
336
382
.
35.
Hwang
,
Y.
, and
Cossu
,
C.
,
2010
, “
Linear Non-Normal Energy Amplification of Harmonic and Stochastic Forcing in the Turbulent Channel Flow
,”
J. Fluid Mech.
,
664
, pp.
51
73
.
36.
Semeraro
,
O.
,
Jaunet
,
V.
,
Jordan
,
P.
,
Cavalieri
,
A. V.
, and
Lesshafft
,
L.
,
2016
, “
Stochastic and Harmonic Optimal Forcing in Subsonic Jets
,”
AIAA
Paper No. 2016-2935.
37.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.
38.
Schmidt
,
O. T.
,
Towne
,
A.
,
Rigas
,
G.
,
Colonius
,
T.
, and
Brès
,
G. A.
,
2018
, “
Spectral Analysis of Jet Turbulence
,”
J. Fluid Mech.
,
855
, pp.
953
982
.
39.
Garnaud
,
X.
,
Lesshafft
,
L.
,
Schmid
,
P.
, and
Huerre
,
P.
,
2013
, “
The Preferred Mode of Incompressible Jets: Linear Frequency Response Analysis
,”
J. Fluid Mech.
,
716
, pp.
189
202
.
40.
Jordan
,
P.
, and
Colonius
,
T.
,
2013
, “
Wave Packets and Turbulent Jet Noise
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp. 173–195.
41.
Waleffe
,
F.
,
1997
, “
On a Self-Sustaining Process in Shear Flows
,”
Phys. Fluids
,
9
(
4
), pp.
883
900
.
42.
Moehlis
,
J.
,
Faisst
,
H.
, and
Eckhardt
,
B.
,
2004
, “
A Low-Dimensional Model for Turbulent Shear Flows
,”
New J. Phys.
,
6
(
1
), p.
56
.
43.
Barkley
,
D.
,
2016
, “
Theoretical Perspective on the Route to Turbulence in a Pipe
,”
J. Fluid Mech.
,
803
, p. P1.
44.
Lighthill
,
M. J.
,
1952
, “
On Sound Generated Aerodynamically—I: General Theory
,”
Proc. R. Soc. London, Ser. A
,
211
(1107), pp.
564
587
.
45.
Crighton
,
D. G.
,
1975
, “
Basic Principles of Aerodynamic Noise Generation
,”
Prog. Aerosp. Sci.
,
16
(
1
), pp.
31
96
.
46.
Goldstein
,
M. E.
,
2003
, “
A Generalized Acoustic Analogy
,”
J. Fluid Mech.
,
488
, pp.
315
333
.
47.
McKeon
,
B.
,
2017
, “
The Engine Behind (Wall) Turbulence: Perspectives on Scale Interactions
,”
J. Fluid Mech.
,
817
, p. P1.
48.
Garnaud
,
X.
,
Sandberg
,
R. D.
, and
Lesshafft
,
L.
,
2013
, “
Global Response to Forcing in a Subsonic Jet: Instability Wavepackets and Acoustic Radiation
,”
AIAA
Paper No. 2013-2232.
49.
Jeun
,
J.
,
Nichols
,
J. W.
, and
Jovanović
,
M. R.
,
2016
, “
Input-Output Analysis of High-Speed Axisymmetric Isothermal Jet Noise
,”
Phys. Fluids
,
28
(
4
), p.
047101
.
50.
Tissot
,
G.
,
Zhang
,
M.
,
Lajús
,
F. C.
,
Cavalieri
,
A. V.
, and
Jordan
,
P.
,
2017
, “
Sensitivity of Wavepackets in Jets to Nonlinear Effects: The Role of the Critical Layer
,”
J. Fluid Mech.
,
811
, pp.
95
137
.
51.
Lesshafft
,
L.
,
Semeraro
,
O.
,
Jaunet
,
V.
,
Cavalieri
,
A. V. G.
, and
Jordan
,
P.
,
2018
, “
Resolvent-Based Modelling of Coherent Wavepackets in a Turbulent Jet
,” arXiv preprint arXiv:1810.09340.
52.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.
53.
Monkewitz
,
P. A.
,
Huerre
,
P.
, and
Chomaz
,
J.-M.
,
1993
, “
Global Linear Stability Analysis of Weakly Non-Parallel Shear Flows
,”
J. Fluid Mech.
,
251
(
1
), pp.
1
20
.
54.
Goldstein
,
M. E.
, and
Leib
,
S. J.
,
2005
, “
The Role of Instability Waves in Predicting Jet Noise
,”
J. Fluid Mech.
,
525
, pp.
37
72
.
55.
Cohen
,
J.
, and
Wygnanski
,
I.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet—Part 1: The Linear Growth of Disturbances Near the Nozzle
,”
J. Fluid Mech.
,
176
(
1
), pp.
191
219
.
56.
Bendat
,
J.
, and
Piersol
,
A.
,
1986
,
Random Data: Analysis and Measurement Procedures
,
Wiley-Interscience
, New York.
57.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
58.
Rowley
,
C. W.
, and
Dawson
,
S. T.
,
2017
, “
Model Reduction for Flow Analysis and Control
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
387
417
.
59.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
, (
12
), pp.
4013
4041
.
60.
Picard
,
C.
, and
Delville
,
J.
,
2000
, “
Pressure Velocity Coupling in a Subsonic Round Jet
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
359
364
.
61.
Chomaz
,
J. M.
,
2005
, “
Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
357
392
.
62.
Farrell
,
B. F.
, and
Ioannou
,
P. J.
,
2014
, “
Statistical State Dynamics: A New Perspective on Turbulence in Shear Flow
,” arXiv preprint arXiv:1412.8290.
63.
Beneddine
,
S.
,
Sipp
,
D.
,
Arnault
,
A.
,
Dandois
,
J.
, and
Lesshafft
,
L.
,
2016
, “
Conditions for Validity of Mean Flow Stability Analysis
,”
J. Fluid Mech.
,
798
, pp.
485
504
.
64.
Wu
,
X.
, and
Huerre
,
P.
,
2009
, “
Low-Frequency Sound Radiated by a Nonlinearly Modulated Wavepacket of Helical Modes on a Subsonic Circular Jet
,”
J. Fluid Mech.
,
637
, pp.
173
211
.
65.
Suponitsky
,
V.
,
Sandham
,
N.
, and
Morfey
,
C.
,
2010
, “
Linear and Nonlinear Mechanisms of Sound Radiation by Instability Waves in Subsonic Jets
,”
J. Fluid Mech.
,
658
, pp.
509
538
.
66.
Suponitsky
,
V.
,
Sandham
,
N.
, and
Agarwal
,
A.
,
2011
, “
On the Mach Number and Temperature Dependence of Jet Noise: Results From a Simplified Numerical Model
,”
J. Sound Vib.
,
330
(17), pp. 4123–4138.
67.
Towne
,
A.
,
Bres
,
G. A.
, and
Lele
,
S. K.
,
2017
, “
A Statistical Jet-Noise Model Based on the Resolvent Framework
,”
AIAA
Paper No. 2017-3706.
68.
Mollo-Christensen
,
E.
,
1963
, “
Measurements of Near Field Pressure of Subsonic Jets
,” Advisory Group for Aeronautical Research and Development, Paris, France, Report No. 449.
69.
Mollo-Christensen
,
E.
,
Kolpin
,
M. A.
, and
Martucelli
,
J. R.
,
1964
, “
Experiments on Jet Flows and Jet Noise Far-Field Spectra and Directivity Patterns
,”
J. Fluid Mech.
,
18
(
2
), pp.
285
301
.
70.
Crow
,
S. C.
,
1972
, “
Acoustic Gain of a Turbulent Jet
,” Meeting of Division of Fluid Dynamics, American Physical Society, University of Colorado, Boulder, CO, Nov., Paper No. IE.6.
71.
Ffowcs Williams
,
J. E.
, and
Kempton
,
A. J.
,
1978
, “
The Noise From the Large-Scale Structure of a Jet
,”
J. Fluid Mech.
,
84
(
4
), pp.
673
694
.
72.
Crighton
,
D. G.
, and
Huerre
,
P.
,
1990
, “
Shear-Layer Pressure Fluctuations and Superdirective Acoustic Sources
,”
J. Fluid Mech.
,
220
(
1
), pp.
355
368
.
73.
Cavalieri
,
A. V. G.
,
Jordan
,
P.
,
Agarwal
,
A.
, and
Gervais
,
Y.
,
2011
, “
Jittering Wave-Packet Models for Subsonic Jet Noise
,”
J. Sound Vib.
,
330
(
18–19
), pp.
4474
4492
.
74.
Cavalieri
,
A. V. G.
, and
Agarwal
,
A.
,
2014
, “
Coherence Decay and Its Impact on Sound Radiation by Wavepackets
,”
J. Fluid Mech.
,
748
, pp.
399
415
.
75.
Ffowcs Williams
,
J. E.
,
1963
, “
The Noise From Turbulence Convected at High Speed
,”
Philos. Trans. R. Soc. London, Ser. A
,
255
(
1061
), pp.
469
503
.
76.
Freund
,
J. B.
,
2001
, “
Noise Sources in a Low-Reynolds-Number Turbulent Jet at Mach 0.9
,”
J. Fluid Mech.
,
438
, pp.
277
305
.
77.
Cabana
,
M.
,
Fortuné
,
V.
, and
Jordan
,
P.
,
2008
, “
Identifying the Radiating Core of Lighthill's Source Term
,”
Theor. Comput. Fluid Dyn.
,
22
(
2
), pp.
87
106
.
78.
Baqui
,
Y. B.
,
Agarwal
,
A.
,
Cavalieri
,
A. V.
, and
Sinayoko
,
S.
,
2015
, “
A Coherence-Matched Linear Source Mechanism for Subsonic Jet Noise
,”
J. Fluid Mech.
,
776
, pp.
235
267
.
79.
Nogueira
,
P. A.
,
Cavalieri
,
A. V.
, and
Jordan
,
P.
,
2017
, “
A Model Problem for Sound Radiation by an Installed Jet
,”
J. Sound Vib.
,
391
, pp.
95
115
.
80.
Kopiev
,
V.
,
Chernyshev
,
S.
,
Faranosov
,
G.
,
Zaitsev
,
M.
, and
Belyaev
,
I.
,
2010
, “
Correlations of Jet Noise Azimuthal Components and Their Role in Source Identification
,”
AIAA
Paper No. 2010-4018.
81.
Reba
,
R.
,
Narayanan
,
S.
, and
Colonius
,
T.
,
2010
, “
Wave-Packet Models for Large-Scale Mixing Noise
,”
Int. J. Aeroacoustics
,
9
(
4–5
), pp.
533
558
.
82.
Suzuki
,
T.
,
2013
, “
Coherent Noise Sources of a Subsonic Round Jet Investigated Using Hydrodynamic and Acoustic Phased-Microphone Arrays
,”
J. Fluid Mech.
,
730
, pp.
659
698
.
83.
Freund
,
J. B.
,
2003
, “
Noise-Source Turbulence Statistics and the Noise From a Mach 0.9 Jet
,”
Phys. Fluids
,
15
(
6
), pp.
1788
1799
.
84.
Morris
,
P. J.
,
2009
, “
A Note on Noise Generation by Large Scale Turbulent Structures in Subsonic and Supersonic Jets
,”
Int. J. Aeroacoustics
,
8
(
4
), pp.
301
315
.
85.
Papamoschou
,
D.
,
2018
, “
Wavepacket Modeling of the Jet Noise Source
,”
Int. J. Aeroacoustics
,
17
(
1–2
), pp.
52
69
.
86.
McLaughlin
,
D. K.
,
Morrison
,
G. L.
, and
Troutt
,
T. R.
,
1975
, “
Experiments on the Instability Waves in a Supersonic Jet and Their Acoustic Radiation
,”
J. Fluid Mech.
,
69
(
1
), pp.
73
95
.
87.
Papamoschou
,
D.
,
1997
, “
Mach Wave Elimination in Supersonic Jets
,”
AIAA J.
,
35
(
10
), pp.
1604
1611
.
88.
Tam
,
C. K.
,
Chen
,
P.
, and
Seiner
,
J.
,
1992
, “
Relationship Between the Instability Waves and Noise of High-Speed Jets
,”
AIAA J.
,
30
(
7
), pp.
1747
1752
.
89.
Tam
,
C. K.
,
1995
, “
Supersonic Jet Noise
,”
Annu. Rev. Fluid Mech.
,
27
(
1
), pp.
17
43
.
90.
Laufer
,
J.
, and
Yen
,
T.-C.
,
1983
, “
Noise Generation by a Low-Mach-Number Jet
,”
J. Fluid Mech.
,
134
(
1
), pp.
1
31
.
91.
Sinha
,
A.
,
Rodríguez
,
D.
,
Brès
,
G. A.
, and
Colonius
,
T.
,
2014
, “
Wavepacket Models for Supersonic Jet Noise
,”
J. Fluid Mech.
,
742
, pp.
71
95
.
92.
Lighthill
,
M. J.
,
1954
, “
On Sound Generated Aerodynamically—II: Turbulence as a Source of Sound
,”
Proc. R. Soc. London, Ser. A
,
222
(
1148
), p.
19540049
.
93.
Freund
,
J. B.
, and
Colonius
,
T.
,
2009
, “
Turbulence and Sound-Field POD Analysis of a Turbulent Jet
,”
Int. J. Aeroacoustics
,
8
(
4
), pp.
337
354
.
94.
Towne
,
A.
,
Colonius
,
T.
,
Jordan
,
P.
,
Cavalieri
,
A. V. G.
, and
Brès
,
G. A.
,
2015
, “
Stochastic and Nonlinear Forcing of Wavepackets in a Mach 0.9 Jet
,”
AIAA
Paper No. 2015-2217.
95.
Huerre
,
P.
,
2000
, “
Open Shear Flow Instabilities
,”
Perspectives in Fluid Dynamics
,
G.
Batchelor
,
H.
Moffatt
, and
M.
Worster
, eds.,
Cambridge University Press
, Cambridge, UK, pp.
159
229
.
96.
Lesshafft
,
L.
, and
Huerre
,
P.
,
2007
, “
Linear Impulse Response in Hot Round Jets
,”
Phys. Fluids
,
19
(
2
), p.
024102
.
97.
Rodríguez
,
D.
,
Cavalieri
,
A. V.
,
Colonius
,
T.
, and
Jordan
,
P.
,
2015
, “
A Study of Linear Wavepacket Models for Subsonic Turbulent Jets Using Local Eigenmode Decomposition of Piv Data
,”
Eur. J. Mech. B/Fluids
,
49
, pp.
308
321
.
98.
Monkewitz
,
P. A.
, and
Sohn
,
K. D.
,
1988
, “
Absolute Instability in Hot Jets
,”
AIAA J.
,
26
(
8
), pp.
911
916
.
99.
Chomaz
,
J.
,
Huerre
,
P.
, and
Redekopp
,
L.
,
1988
, “
Bifurcations to Local and Global Modes in Spatially Developing Flows
,”
Phys. Rev. Lett.
,
60
(
1
), p.
25
.
100.
Weideman
,
J. A.
, and
Reddy
,
S. C.
,
2000
, “
A Matlab Differentiation Matrix Suite
,”
ACM Trans. Math. Software
,
26
(
4
), pp.
465
519
.
101.
Lesshafft
,
L.
,
2018
, “
Artificial Eigenmodes in Truncated Flow Domains
,”
Theor. Comput. Fluid Dyn.
,
32
(
3
), pp.
245
262
.
102.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
EPL (Europhys. Lett.)
,
75
(
5
), p.
750
.
103.
Coenen
,
W.
,
Lesshafft
,
L.
,
Garnaud
,
X.
, and
Sevilla
,
A.
,
2017
, “
Global Instability of Low-Density Jets
,”
J. Fluid Mech.
,
820
, pp.
187
207
.
104.
Chakravarthy
,
R.
,
Lesshafft
,
L.
, and
Huerre
,
P.
,
2018
, “
Global Stability of Buoyant Jets and Plumes
,”
J. Fluid Mech.
,
835
, pp.
654
673
.
105.
Schmidt
,
O. T.
,
Towne
,
A.
,
Colonius
,
T.
,
Cavalieri
,
A. V.
,
Jordan
,
P.
, and
Brès
,
G. A.
,
2017
, “
Wavepackets and Trapped Acoustic Modes in a Turbulent Jet: Coherent Structure Education and Global Stability
,”
J. Fluid Mech.
,
825
, pp.
1153
1181
.
106.
Trefethen
,
L. N.
,
2000
,
Spectral Methods in MATLAB
, Vol.
10
,
Society for Industrial Mathematics
, Philadelphia, PA.
107.
Tissot
,
G.
,
Lajús
,
F. C.
, Jr.
,
Cavalieri
,
A. V.
, and
Jordan
,
P.
,
2017
, “
Wave Packets and Orr Mechanism in Turbulent Jets
,”
Phys. Rev. Fluids
,
2
(
9
), p.
093901
.
108.
Colonius
,
T.
, and
Lele
,
S. K.
,
2004
, “
Computational Aeroacoustics: Progress on Nonlinear Problems of Sound Generation
,”
Prog. Aerosp. Sci.
,
40
(
6
), pp.
345
416
.
109.
Wang
,
M.
,
Freund
,
J. B.
, and
Lele
,
S. K.
,
2006
, “
Computational Prediction of Flow-Generated Sound
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
483
512
.
110.
Freund
,
J. B.
,
2019
, “
Nozzles, Turbulence, and Jet Noise Prediction
,”
J. Fluid Mech.
,
860
, pp.
1
4
.
111.
Neilsen
,
T. B.
,
Gee
,
K. L.
,
Harker
,
B. M.
, and
James
,
M. M.
,
2016
, “
Level-Educed Wavepacket Representation of Noise Radiation From a High-Performance Military Aircraft
,”
AIAA
Paper No. 2016-1880.
112.
Zaman
,
K.
,
Bridges
,
J.
, and
Huff
,
D.
,
2011
, “
Evolution From ‘Tabs' to ‘Chevron Technology'—A Review
,”
Int. J. Aeroacoustics
,
10
(
5–6
), pp.
685
709
.
113.
Henderson
,
B.
,
2010
, “
Fifty Years of Fluidic Injection for Jet Noise Reduction
,”
Int. J. Aeroacoustics
,
9
(
1–2
), pp.
91
122
.
114.
Shur
,
M. L.
,
Spalart
,
P. R.
, and
Strelets
,
M. K.
,
2011
, “
Les-Based Evaluation of a Microjet Noise Reduction Concept in Static and Flight Conditions
,”
J. Sound Vib.
,
330
(
17
), pp.
4083
4097
.
115.
Kopiev
,
V.
, and
Ostrikov
,
N.
,
2012
, “
Axisymmetrical Instability Wave Control Due to Resonance Coupling of Azimuthal Modes in High-Speed Jet Issuing From Corrugated Nozzle
,”
AIAA
Paper No. 2012-2144.
116.
Lajús
,
F. C.
,
Cavalieri
,
A. V.
, and
Deschamps
,
C. J.
,
2015
, “
Spatial Stability Characteristics of Non-Circular Jets
,”
AIAA
Paper No. 2015-2537.
117.
Sinha
,
A.
,
Xia
,
H.
, and
Colonius
,
T.
,
2016
, “
Parabolized Stability Analysis of Jets Issuing From Serrated Nozzles
,”
Fluid-Structure-Sound Interactions and Control
, Springer, Berlin, Germany, pp. 211–215.
118.
Kœnig
,
M.
,
Sasaki
,
K.
,
Cavalieri
,
A. V. G.
,
Jordan
,
P.
, and
Gervais
,
Y.
,
2016
, “
Jet-Noise Control by Fluidic Injection From a Rotating Plug: Linear and Nonlinear Sound-Source Mechanisms
,”
J. Fluid Mech.
,
788
, pp.
358
380
.
119.
Le Rallic
,
M.
,
Jordan
,
P.
, and
Gervais
,
Y.
,
2016
, “
Jet-Noise Reduction: The Effect of Azimuthal Actuation Modes
,”
AIAA
Paper No. 2016-2868.
120.
Sinha
,
A.
,
Towne
,
A.
,
Colonius
,
T.
,
Schlinker
,
R. H.
,
Reba
,
R.
,
Simonich
,
J. C.
, and
Shannon
,
D. W.
,
2017
, “
Active Control of Noise From Hot Supersonic Jets
,”
AIAA J.
,
56
(
3
), pp.
933
948
.
121.
Sasaki
,
K.
,
Piantanida
,
S.
,
Cavalieri
,
A. V.
, and
Jordan
,
P.
,
2017
, “
Real-Time Modelling of Wavepackets in Turbulent Jets
,”
J. Fluid Mech.
,
821
, pp.
458
481
.
122.
Beneddine
,
S.
,
Yegavian
,
R.
,
Sipp
,
D.
, and
Leclaire
,
B.
,
2017
, “
Unsteady Flow Dynamics Reconstruction From Mean Flow and Point Sensors: An Experimental Study
,”
J. Fluid Mech.
,
824
, pp.
174
201
.
123.
Kopiev
,
V. F.
,
Belyaev
,
I. V.
,
Faranosov
,
G. A.
,
Kopiev
,
V. A.
,
Ostrikov
,
N.
,
Zaytsev
,
M. Y.
,
Akishev
,
Y. S.
,
Grushin
,
M.
,
Trushkin
,
N.
,
Bityurin
,
V.
,
Klimov
,
A. I.
,
Moralev
,
I. A.
,
Kossyi
,
I. A.
,
Berezhetskaya
,
N. K.
, and
Taktakishvili
,
M. I.
,
2015
, “
Instability Wave Control in Turbulent Jet by Acoustical and Plasma Actuators
,”
Prog. Flight Phys.
,
7
, pp.
211
228
.
124.
Sasaki
,
K.
,
Tissot
,
G.
,
Cavalieri
,
A. V.
,
Silvestre
,
F. J.
,
Jordan
,
P.
, and
Biau
,
D.
,
2018
, “
Closed-Loop Control of a Free Shear Flow: A Framework Using the Parabolized Stability Equations
,”
Theor. Comput. Fluid Dyn.
,
32
(6), pp. 765–788.
125.
Cavalieri
,
A. V. G.
,
2016
, “
Jet-Noise Control Using Wavepacket Models
,”
Measurement, Simulation and Control of Subsonic and Supersonic Jet Noise
(
Von Karman Institute for Fluid Dynamics Lecture Series)
, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
126.
Semeraro
,
O.
,
Lusseyran
,
F.
,
Pastur
,
L.
, and
Jordan
,
P.
,
2017
, “
Qualitative Dynamics of Wave Packets in Turbulent Jets
,”
Phys. Rev. Fluids
,
2
(
9
), p.
094605
.
127.
Cavalieri
,
A. V.
,
Jordan
,
P.
,
Wolf
,
W. R.
, and
Gervais
,
Y.
,
2014
, “
Scattering of Wavepackets by a Flat Plate in the Vicinity of a Turbulent Jet
,”
J. Sound Vib.
,
333
(
24
), pp.
6516
6531
.
128.
Bychkov
,
O.
, and
Faranosov
,
G.
,
2014
, “
On the Possible Mechanism of the Jet Noise Intensification Near a Wing
,”
Acoust. Phys.
,
60
(
6
), pp.
633
646
.
129.
Faranosov
,
G. A.
, and
Bychkov
,
O. P.
,
2017
, “
Two-Dimensional Model of the Interaction of a Plane Acoustic Wave With Nozzle Edge and Wing Trailing Edge
,”
J. Acoust. Soc. Am.
,
141
(
1
), pp.
289
299
.
130.
Piantanida
,
S.
,
Jaunet
,
V.
,
Huber
,
J.
,
Wolf
,
W. R.
,
Jordan
,
P.
, and
Cavalieri
,
A. V.
,
2016
, “
Scattering of Turbulent-Jet Wavepackets by a Swept Trailing Edge
,”
J. Acoust. Soc. Am.
,
140
(
6
), pp.
4350
4359
.
131.
Towne
,
A.
,
Cavalieri
,
A. V.
,
Jordan
,
P.
,
Colonius
,
T.
,
Schmidt
,
O.
,
Jaunet
,
V.
, and
Brès
,
G. A.
,
2017
, “
Acoustic Resonance in the Potential Core of Subsonic Jets
,”
J. Fluid Mech.
,
825
, pp.
1113
1152
.
132.
Jordan
,
P.
,
Jaunet
,
V.
,
Towne
,
A.
,
Cavalieri
,
A. V.
,
Colonius
,
T.
,
Schmidt
,
O.
, and
Agarwal
,
A.
,
2018
, “
Jet–Flap Interaction Tones
,”
J. Fluid Mech.
,
853
, pp.
333
358
.
133.
Lawrence
,
J.
, and
Self
,
R. H.
,
2015
, “
Installed Jet-Flap Impingement Tonal Noise
,”
AIAA
Paper No. 2015-3118.https://arc.aiaa.org/doi/10.2514/6.2015-3118
134.
Tam
,
C. K.
, and
Ahuja
,
K.
,
1990
, “
Theoretical Model of Discrete Tone Generation by Impinging Jets
,”
J. Fluid Mech.
,
214
(
1
), pp.
67
87
.
135.
Bogey
,
C.
, and
Gojon
,
R.
,
2017
, “
Feedback Loop and Upwind-Propagating Waves in Ideally Expanded Supersonic Impinging Round Jets
,”
J. Fluid Mech.
,
823
, pp.
562
591
.
136.
Shen
,
H.
, and
W. Tam
,
C. K.
,
1998
, “
Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones
,”
AIAA J.
,
36
(
10
), pp.
1801
1807
.
137.
Edgington-Mitchell
,
D.
,
Jaunet
,
V.
,
Jordan
,
P.
,
Towne
,
A.
,
Soria
,
J.
, and
Honnery
,
D.
,
2018
, “
Upstream-Travelling Acoustic Jet Modes as a Closure Mechanism for Screech
,”
J. Fluid Mech.
,
855
, R1, pp. 1–12.
138.
Abreu
,
L. I.
,
Cavalieri
,
A. V.
, and
Wolf
,
W. R.
,
2017
, “
Coherent Hydrodynamic Waves and Trailing-Edge Noise
,”
AIAA
Paper No. 2017-3173.
You do not currently have access to this content.