Nonlinear convective terms pose the most critical issues when a numerical discretization of the Navier–Stokes equations is performed, especially at high Reynolds numbers. They are indeed responsible for a nonlinear instability arising from the amplification of aliasing errors that come from the evaluation of the products of two or more variables on a finite grid. The classical remedy to this difficulty has been the construction of difference schemes able to reproduce at a discrete level some of the fundamental symmetry properties of the Navier–Stokes equations. The invariant character of quadratic quantities such as global kinetic energy in inviscid incompressible flows is a particular symmetry, whose enforcement typically guarantees a sufficient control of aliasing errors that allows the fulfillment of long-time integration. In this paper, a survey of the most successful approaches developed in this field is presented. The incompressible and compressible cases are both covered, and treated separately, and the topics of spatial and temporal energy conservation are discussed. The theory and the ideas are exposed with full details in classical simplified numerical settings, and the extensions to more complex situations are also reviewed. The effectiveness of the illustrated approaches is documented by numerical simulations of canonical flows and by industrial flow computations taken from the literature.

References

References
1.
Phillips
,
N. A.
,
1959
, “
An Example of Nonlinear Computational Instability
,”
The Atmosphere and the Sea in Motion
,
Rockefeller Institute Press, Oxford University Press
,
Oxford, UK
, pp.
501
504
.
2.
Lorenz
,
E. N.
,
1960
, “
Energy and Numerical Weather Prediction
,”
Tellus
,
12
(
4
), pp.
364
373
.
3.
Bryan
,
K.
,
1966
, “
A Scheme for Numerical Integration of the Equations of Motion on an Irregular Grid Free of Nonlinear Instability
,”
Mon. Weather Rev.
,
94
(
1
), pp.
39
40
.
4.
Perot
,
J. B.
,
2011
, “
Discrete Conservation Properties of Unstructured Mesh Schemes
,”
Annu. Rev. Fluid. Mech.
,
43
(
1
), pp.
299
318
.
5.
Koren
,
B.
,
Abgrall
,
R.
,
Bochev
,
P.
,
Frank
,
J.
, and
Perot
,
B.
,
2013
, “
Physics–Compatible Numerical Methods
,”
J. Comput. Phys.
,
257
(Pt B), p.
1039
.
6.
Arakawa
,
A.
,
1966
, “
Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow—Part I
,”
J. Comput. Phys.
,
1
(
1
), pp.
119
143
.
7.
Coppola
,
G.
,
Capuano
,
F.
, and
de Luca
,
L.
,
2017
, “
Energy-Preserving Discretizations of the Navier-Stokes Equations. Classical and Modern Approaches
,”
XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA)
, Salerno, Italy, Sept. 4–7, pp.
2284
2310
.
8.
Sanderse
,
B.
, and
Koren
,
B.
,
2012
, “
Accuracy Analysis of Explicit Runge-Kutta Methods Applied to the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
231
(
8
), pp.
3041
3063
.
9.
Morinishi
,
Y.
,
Lund
,
T. S.
,
Vasilyev
,
O. V.
, and
Moin
,
P.
,
1998
, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flows
,”
J. Comput. Phys.
,
143
(
1
), pp.
90
124
.
10.
Felten
,
F.
, and
Lund
,
T.
,
2006
, “
Kinetic Energy Conservation Issues Associated With the Collocated Mesh Scheme for Incompressible Flow
,”
J. Comput. Phys.
,
215
(
2
), pp.
465
484
.
11.
Verstappen
,
R. W. C. P.
, and
Veldman
,
A. E. P.
,
2003
, “
Symmetry—Preserving Discretization of Turbulent Flow
,”
J. Comput. Phys.
,
187
(
1
), pp.
343
368
.
12.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral–Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.
13.
Horiuti
,
K.
,
1987
, “
Comparison of Conservative and Rotational Forms in Large Eddy Simulation of Turbulent Channel Flow
,”
J. Comput. Phys
,
71
(
2
), pp.
343
370
.
14.
Blaisdell
,
G. A.
,
Spyropoulos
,
E. T.
, and
Qin
,
J. H.
,
1996
, “
The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods
,”
Appl. Numer. Math.
,
21
(
3
), pp.
207
219
.
15.
Kravhcenko
,
A. G.
, and
Moin
,
P.
,
1997
, “
On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows
,”
J. Comput. Phys.
,
131
, pp.
310
322
.
16.
Laizet
,
S.
, and
Lamballais
,
E.
,
2009
, “
High-Order Compact Schemes for Incompressible Flows: A Simple and Efficient Method With Quasi-Spectral Accuracy
,”
J. Comput. Phys.
,
228
(
16
), pp.
5989
6015
.
17.
Gibson
,
J. F.
,
2014
, “
Channel flow: A Spectral Navier-Stokes Simulator in C++
,” University of New Hampshire, Durham, NH.
18.
Mahesh
,
K.
,
Constantinescu
,
G.
, and
Moin
,
P.
,
2004
, “
A Numerical Method for Large-Eddy Simulation in Complex Geometries
,”
J. Comput. Phys.
,
197
(
1
), pp.
215
240
.
19.
Vallefuoco
,
D.
,
Capuano
,
F.
, and
Coppola
,
G.
,
2019
, “
Discrete Conservation of Helicity in Numerical Simulations of Incompressible Turbulent Flows
,”
Direct and Large-Eddy Simulation XI
, Vol.
25
,
Springer
,
Cham, Switzerland
, pp.
17
22
.
20.
Brachet
,
M. E.
,
Meiron
,
D. I.
,
Orszag
,
S. A.
,
Nickel
,
B. G.
,
Morf
,
R. H.
, and
Frisch
,
U.
,
1983
, “
Small-Scale Structure of the Taylor-Green Vortex
,”
J. Fluid Mech.
,
130
(
1
), pp.
411
452
.
21.
Canuto
,
C.
,
Hussaini
,
M.
,
Quarteroni
,
A.
, and
Zang
,
T.
,
2006
,
Spectral Methods. Fundamentals in Single Domains
,
Springer
, Berlin.
22.
Capuano
,
F.
,
Coppola
,
G.
,
Balarac
,
G.
, and
de Luca
,
L.
,
2015
, “
Energy Preserving Turbulent Simulations at a Reduced Computational Cost
,”
J. Comput. Phys.
,
298
, pp.
480
494
.
23.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
24.
Harlow
,
F.
, and
Welch
,
J.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.
25.
Ham
,
F. E.
,
Lien
,
F. S.
, and
Strong
,
A. B.
,
2002
, “
A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grid
,”
J. Comput. Phys.
,
177
(
1
), pp.
117
133
.
26.
Feiereisen
,
W. J.
,
Reynolds
,
W. C.
, and
Ferziger
,
J. H.
,
1981
, “
Numerical Simulation of Compressible, Homogeneous Turbulent Shear Flow
,” Stanford University, Stanford, CA, Report No. TF-13.
27.
Kennedy
,
C. A.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier-Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.
28.
Pirozzoli
,
S.
,
2010
, “
Generalized Conservative Approximations of Split Convective Derivative Operators
,”
J. Comput. Phys.
,
229
(
19
), pp.
7180
7190
.
29.
Coppola
,
G.
,
Capuano
,
F.
,
Pirozzoli
,
S.
, and
de Luca
,
L.
,
2019
, “
Numerically Stable Formulations of Convective Terms for Turbulent Compressible Flows
,”
J. Comput. Phys.
,
382
, pp.
86
104
.
30.
Honein
,
A. E.
, and
Moin
,
P.
,
2004
, “
Higher Entropy Conservation and Numerical Stability of Compressible Turbulence Simulations
,”
J. Comput. Phys.
,
201
(
2
), pp.
531
545
.
31.
Zang
,
T. A.
,
1991
, “
On the Rotation and Skew-Symmetric Forms for Incompressible Flow Simulations
,”
Appl. Numer. Math.
,
7
(
1
), pp.
27
40
.
32.
Kerr
,
R. M.
,
1985
, “
Higher-Order Derivative Correlations and the Alignment of Small-Scale Structures in Isotropic Numerical Turbulence
,”
J. Fluid Mech.
,
153
(
1
), pp.
31
58
.
33.
Capuano
,
F.
,
Coppola
,
G.
, and
de Luca
,
L.
,
2015
, “
An Efficient Time Advancing Strategy for Energy-Preserving Simulations
,”
J. Comput. Phys.
,
295
, pp.
209
229
.
34.
Capuano
,
F.
,
Coppola
,
G.
,
Balarac
,
G.
,
Bae
,
H.
, and
de Luca
,
L.
,
2014
, “
A Low-Cost Time-Advancing Strategy for Energy-Preserving Turbulent Simulations
,”
Summer Program, Center for Turbulence Research Stanford
, Stanford, CA, July 6–Aug. 1, pp.
377
386
.
35.
Capuano
,
F.
,
Coppola
,
G.
, and
de Luca
,
L.
,
2016
, “
Low-Cost Energy-Preserving RK Schemes for Turbulent Simulations
,”
Progress in Turbulence VI: Proceedings of the iTi Conference on Turbulence 2014
,
J.
Peinke
,
G.
Kampers
,
M.
Oberlack
,
M.
Wacławczyk
, and
A.
Talamelli
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
65
68
.
36.
Pirozzoli
,
S.
,
2011
, “
Numerical Methods for High-Speed Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
163
194
.
37.
Kaltenbach
,
H.-J.
, and
Driller
,
D.
,
2001
, “
LES of Wall-Bounded Turbulence Based on a 6th-Order Compact Scheme
,”
Direct and Large-Eddy Simulation IV
(ERCOFTAC Series, Vol. 8), B. J. Geurts, R. Friedrich, and O. Métais, eds., Springer, Dordrecht, The Netherlands, pp.
37
44
.
38.
Knikker
,
R.
,
2009
, “
Study of a Staggered Fourth-Order Compact Scheme for Unsteady Incompressible Viscous Flows
,”
Int. J. Numer. Methods Fluids
,
59
(
10
), pp.
1063
1092
.
39.
Vasilyev
,
O. V.
,
2000
, “
High Order Finite Difference Schemes on Non-Uniform Meshes With Good Conservation Properties
,”
J. Comput. Phys.
,
157
(
2
), pp.
746
761
.
40.
Verzicco
,
R.
, and
Orlandi
,
P.
,
1996
, “
A Finite Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates
,”
J. Comput. Phys.
,
123
(
2
), pp.
402
414
.
41.
Fukagata
,
K.
, and
Kasagi
,
N.
,
2002
, “
Highly Energy-Conservative Finite Difference Method for the Cylindrical Coordinate System
,”
J. Comput. Phys.
,
181
(
2
), pp.
478
498
.
42.
Morinishi
,
Y.
,
Vasilyev
,
O. V.
, and
Ogi
,
T.
,
2004
, “
Fully Conservative Finite Difference Scheme in Cylindrical Coordinates for Incompressible Flow Simulations
,”
J. Comput. Phys.
,
197
(
2
), pp.
686
710
.
43.
Desjardins
,
O.
,
Blanquart
,
G.
,
Balarac
,
G.
, and
Pitsch
,
H.
,
2008
, “
High Order Conservative Finite Difference Scheme for Variable Density Low Mach Number Turbulent Flows
,”
J. Comput. Phys.
,
227
(
15
), pp.
7125
7159
.
44.
Ducros
,
F.
,
Laporte
,
F.
,
Souleres
,
T.
,
Guinot
,
V.
,
Moinat
,
P.
, and
Caruelle
,
B.
,
2000
, “
High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows
,”
J. Comput. Phys.
,
161
(
1
), pp.
114
139
.
45.
Kok
,
J. C.
,
2009
, “
A High-Order Low-Dispersion Symmetry-Preserving Finite Volume Method for Compressible Flow on Curvilinear Grids
,”
J. Comput. Phys.
,
228
(
18
), pp.
6811
6832
.
46.
Pirozzoli
,
S.
,
2011
, “
Stabilized Non-Dissipative Approximations of Euler Equations in Generalized Curvilinear Coordinates
,”
J. Comput. Phys.
,
230
(
8
), pp.
2997
3014
.
47.
Rozema
,
W.
,
2015
, “
Low-Dissipation Methods and Models for the Simulation of Turbulent Subsonic Flow: Theory and Applications
,”
Ph.D. thesis
, University of Groningen, Groningen, The Netherlands.https://www.rug.nl/research/portal/publications/lowdissipation-methods-and-models-for-the-simulation-of-turbulent-subsonic-flow(ff59f2cb-9999-4166-955c-eac96e786e34).html
48.
Rozema
,
W.
,
Kok
,
J. C.
,
Verstappen
,
R. W. C. P.
, and
Veldman
,
A. E. P.
,
2014
, “
A Symmetry-Preserving Discretisation and Regularisation Model for Compressible Flow With Application to Turbulent Channel Flow
,”
J. Turbul.
,
15
(
6
), pp.
386
410
.
49.
Brouwer
,
J.
,
Reiss
,
J.
, and
Sesterhenn
,
J.
,
2014
, “
Conservative Time Integrators of Arbitrary Order for Skew-Symmetric Finite Difference Discretizations of Compressible Flow
,”
Comput. Fluids
,
100
, pp.
1
12
.
50.
Morinishi
,
Y.
,
2010
, “
Skew-Symmetric Form of Convective Terms and Fully Conservative Finite Difference Schemes for Variable Density Low-Mach Number Flows
,”
J. Comput. Phys.
,
229
(
2
), pp.
276
300
.
51.
Perot
,
B.
,
2000
, “
Conservation Properties of Unstructured Staggered Mesh Schemes
,”
J. Comput. Phys.
,
159
(
1
), pp.
58
89
.
52.
Zhang
,
X.
,
Schmidt
,
D.
, and
Perot
,
B.
,
2002
, “
Accuracy and Conservation Properties of a Three-Dimensional Unstructured Staggered Mesh Scheme for Fluid Dynamics
,”
J. Comput. Phys.
,
175
(
2
), pp.
764
791
.
53.
Trias
,
F. X.
,
Lehmkuhl
,
O.
,
Oliva
,
A.
,
Pérez-Segarra
,
C. D.
, and
Verstappen
,
R. W. C. P.
,
2014
, “
Symmetry-Preserving Discretization of Navier-Stokes Equations on Collocated Unstructured Grids
,”
J. Comput. Phys.
,
258
, pp.
246
267
.
54.
Modesti
,
D.
, and
Pirozzoli
,
S.
,
2017
, “
A Low-Dissipative Solver for Turbulent Compressible Flows on Unstructured Meshes, With Openfoam Implementation
,”
Comput. Fluids
,
152
, pp.
14
23
.
55.
Svärd
,
M.
, and
Nordström
,
J.
,
2014
, “
Review of Summation-by-Parts Schemes for Initial–Boundary-Value Problems
,”
J. Comput. Phys.
,
268
, pp.
17
38
.
56.
Fernández
,
D. C. D. R.
,
Hicken
,
J. E.
, and
Zingg
,
D. W.
,
2014
, “
Review of Summation-by-Parts Operators With Simultaneous Approximation Terms for the Numerical Solution of Partial Differential Equations
,”
Comput. Fluids
,
95
, pp.
171
196
.
57.
Sanderse
,
B.
,
Verstappen
,
R. W. C. P.
, and
Koren
,
B.
,
2014
, “
Boundary Treatment for Fourth-Order Staggered Mesh Discretizations of the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
257
, pp.
1472
1505
.
58.
Olver
,
P. J.
,
1982
, “
A Nonlinear Hamiltonian Structure for the Euler Equations
,”
J. Math. Anal. Appl.
,
89
(
1
), pp.
233
250
.
59.
Moffatt
,
H.
, and
Tsinober
,
A.
,
1992
, “
Helicity in Laminar and Turbulent Flow
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
281
312
.
60.
Palha
,
A.
, and
Gerritsma
,
M.
,
2017
, “
A Mass, Energy, Enstrophy and Vorticity Conserving (MEEVC) Mimetic Spectral Element Discretization for the 2D Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
328
, pp.
200
220
.
61.
Lee
,
D.
,
Palha
,
A.
, and
Gerritsma
,
M.
,
2017
, “
Discrete Conservation Properties for Shallow Water Flows Using Mixed Mimetic Spectral Elements
,”
J. Comput. Phys.
,
357
, pp.
282
304
.
62.
Liu
,
J.-G.
, and
Wang
,
W.-C.
,
2004
, “
Energy and Helicity Preserving Schemes for Hydro- and Magnetohydro-Dynamics Flows With Symmetry
,”
J. Comput. Phys.
,
200
(
1
), pp.
8
33
.
63.
Rebholz
,
L. G.
,
2007
, “
An Energy- and Helicity-Conserving Finite Element Scheme for the Navier-Stokes Equations
,”
SIAM J. Numer. Anal.
,
45
(
4
), pp.
1622
1638
.
64.
Olshanskii
,
M. A.
, and
Rebholz
,
L. G.
,
2010
, “
Velocity–Vorticity–Helicity Formulation and a Solver for the Navier–Stokes Equations
,”
J. Comput. Phys.
,
229
(
11
), pp.
4291
4303
.
65.
Olshanskii
,
M.
, and
Rebholz
,
L. G.
,
2010
, “
Note on Helicity Balance of the Galerkin Method for the 3D Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
17–20
), pp.
1032
1035
.
66.
Capuano
,
F.
, and
Vallefuoco
,
D.
,
2018
, “
Effects of Discrete Energy and Helicity Conservation in Numerical Simulations of Helical Turbulence
,”
Flow Turbul. Combust.
,
101
(
2
), pp.
343
364
.
67.
Fuster
,
D.
,
2013
, “
An Energy Preserving Formulation for the Simulation of Multiphase Turbulent Flows
,”
J. Comput. Phys.
,
235
, pp.
114
128
.
68.
Morinishi
,
Y.
, and
Koga
,
K.
,
2014
, “
Skew-Symmetric Convection Form and Secondary Conservative Finite Difference Methods for Moving Grids
,”
J. Comput. Phys.
,
257
, pp.
1081
1112
.
69.
Charnyi
,
S.
,
Heister
,
T.
,
Olshanskii
,
M. A.
, and
Rebholz
,
L. G.
,
2017
, “
On Conservation Laws of Navier–Stokes Galerkin Discretizations
,”
J. Comput. Phys.
,
337
, pp.
289
308
.
70.
Pastrana
,
D.
,
Cajas
,
J.
,
Lehmkuhl
,
O.
,
Rodríguez
,
I.
, and
Houzeaux
,
G.
,
2018
, “
Large-Eddy Simulations of the Vortex-Induced Vibration of a Low Mass Ratio Two-Degree-of-Freedom Circular Cylinder at Subcritical Reynolds Numbers
,”
Comput. Fluids
,
173
, pp.
118
132
.
71.
Moura
,
R.
,
Mengaldo
,
G.
,
Peirò
,
J.
, and
Sherwin
,
S.
,
2017
, “
On the Eddy-Resolving Capability of High-Order Discontinuous Galerkin Approaches to Implicit LES/Under-Resolved DNS of Euler Turbulence
,”
J. Comput. Phys.
,
330
, pp.
615
623
.
72.
Gassner
,
G. J.
,
Winters
,
A. R.
, and
Kopriva
,
D. A.
,
2016
, “
Split Form Nodal Discontinuous Galerkin Schemes With Summation-by-Parts Property for the Compressible Euler Equations
,”
J. Comput. Phys.
,
327
, pp.
39
66
.
73.
Gassner
,
G. J.
,
2014
, “
A Kinetic Energy Preserving Nodal Discontinuous Galerkin Spectral Element Method
,”
Int. J. Numer. Methods Fluids
,
76
(
1
), pp.
28
50
.
74.
Winters
,
A. R.
,
Moura
,
R. C.
,
Mengaldo
,
G.
,
Gassner
,
G. J.
,
Walch
,
S.
,
Peiro
,
J.
, and
Sherwin
,
S. J.
,
2018
, “
A Comparative Study on Polynomial Dealiasing and Split Form Discontinuous Galerkin Schemes for Under-Resolved Turbulence Computations
,”
J. Comput. Phys.
,
372
, pp.
1
21
.
75.
Capuano
,
F.
,
Coppola
,
G.
,
Chiatto
,
M.
, and
de Luca
,
L.
,
2016
, “
Approximate Projection Method for the Incompressible Navier-Stokes Equations
,”
AIAA J.
,
54
(7), pp.
2178
2181
.
76.
Rosenbaum
,
J.
,
1976
, “
Conservation Properties of Numerical Integration Methods for Systems of Ordinary Differential Equations
,”
J. Comput. Phys.
,
20
(
3
), pp.
259
267
.
77.
Iserles
,
A.
, and
Zanna
,
A.
,
2000
, “
Solving ODEs Numerically While Preserving a First Integral
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
69
81
.
78.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2006
,
Geometric Numerical Integration
,
Springer
, Berlin.
79.
Rogallo, R. S.
, and
Moin, P.
,
1984
, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid. Mech.
,
16
(
1
), pp.
99
137
.
80.
Orlandi
,
P.
,
2000
,
Fluid Flow Phenomena: A Numerical Toolkit
,
Springer, Dordrecht
, The Netherlands.
81.
Griffiths
,
D. F.
, and
Higham
,
D. J.
,
2010
,
Numerical Methods for Ordinary Differential Equations
,
Springer
, London.
82.
Le
,
H.
, and
Moin
,
P.
,
1991
, “
An Improvement of Fractional Step Methods for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
92
(
2
), pp.
369
379
.
83.
Butcher
,
J. C.
,
2004
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
, Hoboken, NJ.
84.
Sanz-Serna
,
J. M.
,
1988
, “
Runge-Kutta Schemes for Hamiltonian Systems
,”
BIT
,
28
(
4
), pp.
877
883
.
85.
Sanderse
,
B.
,
2013
, “
Energy Conserving Runge-Kutta Methods for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
233
, pp.
100
131
.
86.
Duponcheel
,
M.
,
Orlandi
,
P.
, and
Winckelmans
,
G.
,
2008
, “
Time-Reversibility of the Euler Equations as a Benchmark for Energy Conserving Schemes
,”
J. Comput. Phys.
,
227
(
19
), pp.
8736
8752
.
87.
Verstappen
,
R. W. C. P.
, and
Veldman
,
A. E. P.
,
1997
, “
Direct Numerical Simulation of Turbulence at Lower Costs
,”
J. Eng. Math.
,
32
(
2/3
), pp.
143
159
.
88.
Aubry
,
A.
, and
Chartier
,
P.
,
1998
, “
Pseudo-Symplectic Runge-Kutta Methods
,”
BIT Numer. Math.
,
38
(
3
), pp.
439
461
.
89.
Capuano
,
F.
,
Coppola
,
G.
,
Rández
,
L.
, and
de Luca
,
L.
,
2017
, “
Explicit Runge-Kutta Schemes for Incompressible Flow With Improved Energy-Conservation Properties
,”
J. Comput. Phys.
,
328
, pp.
86
94
.
90.
Calvo
,
M.
,
Laburta
,
M.
,
Montijano
,
J.
, and
Rández
,
L.
,
2010
, “
Approximate Preservation of Quadratic First Integrals by Explicit Runge-Kutta Methods
,”
Adv. Comput. Math.
,
32
(
3
), pp.
255
274
.
91.
Capuano
,
F.
,
De Angelis
,
E. M.
,
Coppola
,
G.
, and
de Luca
,
L.
,
2019
, “
An Analysis of Time-Integration Errors in Large-Eddy Simulation of Incompressible Turbulent Flows
,”
Direct and Large-Eddy Simulation XI
,
M.
Salvetti
,
V.
Armenio
,
J.
Fröhlich
,
B.
Geurts
, and
H.
Kuerten
, eds., Vol.
25
,
Springer
,
Cham, Switzerland
, pp.
31
37
.
92.
Capuano
,
F.
,
Sanderse
,
B.
,
De Angelis
,
E. M.
, and
Coppola
,
G.
,
2017
, “
A Minimum-Dissipation Time-Integration Strategy for Large-Eddy Simulation of Incompressible Turbulent Flows
,”
XXIII Conference of the Italian Association of Theoretical and Applied Mechanics
(
AIMETA
), Salerno, Italy, Sept. 4–7, pp.
2311
2323
.https://ir.cwi.nl/pub/27216/AIMETA_2017_proceedings_n_5-129-141.pdf
93.
Gottlieb
,
S.
,
Shu
,
C.-W.
, and
Tadmor
,
E.
,
2001
, “
Strong Stability-Preserving High-Order Time Discretization Methods
,”
SIAM Rev.
,
43
(
1
), pp.
89
112
.
94.
Hu
,
F.
,
Hussaini
,
M.
, and
Manthey
,
J.
,
1996
, “
Low-Dissipation and Low-Dispersion Runge–Kutta Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
124
(
1
), pp.
177
191
.
95.
Colonius
,
T.
, and
Lele
,
S. K.
,
2004
, “
Computational Aeroacoustics: Progress on Nonlinear Problems of Sound Generation
,”
Prog. Aerosp. Sci.
,
40
(
6
), pp.
345
416
.
96.
Subbareddy
,
P. K.
, and
Candler
,
G. V.
,
2009
, “
A Fully Discrete, Kinetic Energy Consistent Finite Volume Scheme for Compressible Flows
,”
J. Comput. Phys.
,
228
(
5
), pp.
1347
1364
.
97.
Canuto
,
C.
,
Hussaini
,
M.
,
Quarteroni
,
A.
, and
Zang
,
T.
,
2007
,
Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics
,
Springer
, Berlin.
98.
Cook
,
A. W.
, and
Cabot
,
W. H.
,
2004
, “
A High-Wavenumber Viscosity for High-Resolution Numerical Methods
,”
J. Comput. Phys.
,
195
(
2
), pp.
594
601
.
99.
Kawai
,
S.
, and
Lele
,
S. K.
,
2008
, “
Localized Artificial Diffusivity Scheme for Discontinuity Capturing on Curvilinear Meshes
,”
J. Comput. Phys.
,
227
(
22
), pp.
9498
9526
.
100.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2002
, “
On the Use of Higher-Order Finite Difference Schemes on Curvilinear and Deforming Meshes
,”
J. Comput. Phys.
,
181
(
1
), pp.
155
185
.
101.
Visbal
,
M. R.
, and
Rizzetta
,
D.
,
2002
, “
Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
836
847
.
102.
Mittal
,
R.
, and
Moin
,
P.
,
1997
, “
Suitability of Upwind–Biased Finite Difference Schemes for Large–Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
35
, pp.
1415
1417
.
103.
Ghosal
,
S.
,
1996
, “
An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence
,”
J. Comput. Phys.
,
125
(
1
), pp.
187
206
.
104.
You
,
D.
,
Ham
,
F.
, and
Moin
,
P.
,
2008
, “
Discrete Conservation Principles in Large-Eddy Simulation With Application to Separation Control Over an Airfoil
,”
Phys. Fluids
,
20
(
10
), p.
101515
.
105.
Davidson
,
L.
,
Cokljat
,
D.
,
Fröhlich
,
J.
,
Leschziner
,
M. A.
,
Mellen
,
C.
, and
Rodi
,
W.
,
2003
,
LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil: Results of the Project LESFOIL Supported by the European Union 1998–2001
, Vol.
83
,
Springer Science & Business Media
, Berlin.
106.
Schmitt
,
V.
,
1979
, “
Pressure Distributions on the Onera M6-Wing at Transonic Mach Numbers, Experimental Data Base for Computer Program Assessment
,” Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, Report No. AGARD-AR-138.
107.
Liou
,
M.-S.
, and
Steffen
,
C. J.
, Jr.
,
1993
, “
A New Flux Splitting Scheme
,”
J. Comput. Phys.
,
107
(
1
), pp.
23
39
.
108.
Ducros
,
F.
,
Ferrand
,
V.
,
Nicoud
,
F.
,
Weber
,
C.
,
Darracq
,
D.
,
Gacherieu
,
C.
, and
Poinsot
,
T.
,
1999
, “
Large-Eddy Simulation of the Shock/Turbulence Interaction
,”
J. Comput. Phys.
,
152
(
2
), pp.
517
549
.
109.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
110.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2000
, “
New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations
,”
J. Comput. Phys.
,
160
(
1
), pp.
241
282
.
111.
Aljure
,
D.
,
Lehmkuhl
,
O.
,
Rodríguez
,
I.
, and
Oliva
,
A.
,
2014
, “
Flow and Turbulent Structures Around Simplified Car Models
,”
Comput. Fluids
,
96
, pp.
122
135
.
112.
Aljure
,
D.
,
Calafell
,
J.
,
Baez
,
A.
, and
Oliva
,
A.
,
2018
, “
Flow Over a Realistic Car Model: Wall Modeled Large Eddy Simulations Assessment and Unsteady Effects
,”
J. Wind Eng. Ind. Aerod.
,
174
, pp.
225
240
.
113.
Rodríguez
,
I.
,
Lehmkuhl
,
O.
,
Borrell
,
R.
, and
Oliva
,
A.
,
2013
, “
Direct Numerical Simulation of a NACA0012 in Full Stall
,”
Int. J. Heat Fluid Flow
,
43
, pp.
194
203
.
114.
Lehmkuhl
,
O.
,
Rodríguez
,
I.
,
Borrell
,
R.
, and
Oliva
,
A.
,
2013
, “
Low-Frequency Unsteadiness in the Vortex Formation Region of a Circular Cylinder
,”
Phys. Fluids
,
25
(
8
), p.
085109
.
115.
Rozema
,
W.
,
Kok
,
J. C.
,
Verstappen
,
R. W. C. P.
, and
Veldman
,
A. E. P.
,
2014
, “
DNS and LES of the Compressible Flow Over a Delta Wing With the Symmetry-Preserving Discretization
,”
ASME
Paper No. FEDSM2014-21374.
116.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
453
482
.
117.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K.-U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.
118.
Ham
,
F.
, and
Iaccarino
,
G.
,
2004
, “
Energy Conservation in Collocated Discretization Schemes on Unstructured Meshes
,” Annual Research Briefs 2004, Center for Turbulence Research, Stanford University, Stanford, CA, pp.
3
14
.
119.
Mahesh
,
K.
,
Constantinescu
,
G.
,
Apte
,
S.
,
Iaccarino
,
G.
,
Ham
,
F.
, and
Moin
,
P.
,
2006
, “
Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries
,”
ASME J. Appl. Mech.
,
73
(
3
), pp.
374
381
.
120.
Sitcom-b,
2018
, “
SiTCom-B
,” accessed Feb. 27, 2019, https://www.coria-cfd.fr/index.php/SiTCom-B
121.
Domingo
,
P.
,
Vervisch
,
L.
, and
Veynante
,
D.
,
2008
, “
Large-Eddy Simulation of a Lifted Methane Jet Flame in a Vitiated Coflow
,”
Combust. Flame
,
152
(
3
), pp.
415
432
.
122.
Petit
,
X.
,
Ribert
,
G.
,
Lartigue
,
G.
, and
Domingo
,
P.
,
2013
, “
Large-Eddy Simulation of Supercritical Fluid Injection
,”
J. Supercrit. Fluids
,
84
, pp.
61
73
.
123.
Vuorinen
,
V.
,
Keskinen
,
J.-P.
,
Duwig
,
C.
, and
Boersma
,
B.
,
2014
, “
On the Implementation of Low-Dissipative Runge-Kutta Projection Methods for Time Dependent Flows Using OpenFOAM®
,”
Comput. Fluids
,
93
, pp.
153
163
.
124.
D'Alessandro
,
V.
,
Zoppi
,
A.
,
Binci
,
L.
, and
Ricci
,
R.
,
2016
, “
Development of OpenFOAM Solvers for Incompressible Navier–Stokes Equations Based on High-Order Runge-Kutta Schemes
,”
Int. J. Comput. Methods Exp. Meas.
,
4
(
4
), pp.
594
603
.
You do not currently have access to this content.