This paper aims at reviewing linear and nonlinear approaches to study the stability of fluid flows. We provide a concise but self-contained exposition of the main concepts and specific numerical methods designed for global stability studies, including the classical linear stability analysis, the adjoint-based sensitivity, and the most recent nonlinear developments. Regarding numerical implementation, a number of ideas making resolution particularly efficient are discussed, including mesh adaptation, simple shift-invert strategy instead of the classical Arnoldi algorithm, and a simplification of the recent nonlinear self-consistent (SC) approach proposed by Mantič-Lugo et al. (2014, “Self-Consistent Mean Flow Description of the Nonlinear Saturation of the Vortex Shedding in the Cylinder Wake,” Phys. Rev. Lett., 113(8), p. 084501). An open-source software implementing all the concepts discussed in this paper is provided. The software is demonstrated for the reference case of the two-dimensional (2D) flow around a circular cylinder, in both incompressible and compressible cases, but is easily customizable to a variety of other flow configurations or flow equations.

References

References
1.
Drazin
,
P.
, and
Reid
,
W.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
2.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.
3.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.
4.
Sipp
,
D.
, and
Lebedev
,
A.
,
2007
, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
,
593
, pp.
333
358
.
5.
Mantič-Lugo
,
V.
,
Arratia
,
C.
, and
Gallaire
,
F.
,
2014
, “
Self-Consistent Mean Flow Description of the Nonlinear Saturation of the Vortex Shedding in the Cylinder Wake
,”
Phys. Rev. Lett.
,
113
(
8
), p.
084501
.
6.
Sipp
,
D.
,
Marquet
,
O.
,
Meliga
,
P.
, and
Barbagallo
,
A.
,
2010
, “
Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030801
.
7.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
493
517
.
8.
Schmid
,
P. J.
, and
Brandt
,
L.
,
2014
, “
Analysis of Fluid Systems: Stability, Receptivity, SensitivityLecture Notes From the FLOW-NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p.
024803
.
9.
Hecht
,
F.
,
2012
, “
New Development in FreeFem
++,”
J. Numer. Math.
,
20
(
3–4
), pp.
251
265
.https://pdfs.semanticscholar.org/549b/bc057248bfbc67b15d65d8a7f22432ed7c43.pdf
10.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2001
,
Stability and Transition in Shear Flows
,
Springer-Verlag
,
New York
.
11.
Chomaz
,
J.-M.
,
2005
, “
Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
357
392
.
12.
Schmid
,
P. J.
,
2007
, “
Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
129
162
.
13.
Hill
,
D.
,
1992
, “
A Theoretical Approach for Analyzing the Restabilization of Wakes
,”
30th Aerospace Sciences Meeting and Exhibit
, Reno, NV, p.
67
.
14.
Arnoldi
,
W. E.
,
1951
, “
The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem
,”
Q. Appl. Math.
,
9
(
1
), pp.
17
29
.
15.
Hecht
,
F.
,
1998
, “
The Mesh Adapting Software: Bamg
,” INRIA, Rocquencourt, France.
16.
Kouhi
,
M.
,
Onate
,
E.
, and
Mavriplis
,
D.
,
2015
, “
Adjoint-Based Adaptive Finite Element Method for the Compressible Euler Equations Using Finite Calculus
,”
Aerosp. Sci. Technol.
,
46
, pp.
422
435
.
17.
Marquet
,
O.
, and
Lesshafft
,
L.
,
2015
, “
Identifying the Active Flow Regions That Drive Linear and Nonlinear Instabilities
,”
arXiv:1508.07620
.https://arxiv.org/abs/1508.07620
18.
Luchini
,
P.
,
Giannetti
,
F.
, and
Citro
,
V.
,
2017
, “
Error Sensitivity to Refinement: A Criterion for Optimal Grid Adaptation
,”
Theor. Comput. Fluid Dyn.
,
31
(
5–6
), pp.
595
605
.
19.
Fani
,
A.
,
Citro
,
V.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2018
, “
Computation of the Bluff-Body Sound Generation by a Self-Consistent Mean Flow Formulation
,”
Phys. Fluids
,
30
(
3
), p.
036102
.
20.
Gallaire
,
F.
,
Boujo
,
E.
,
Mantic-Lugo
,
V.
,
Arratia
,
C.
,
Thiria
,
B.
, and
Meliga
,
P.
,
2016
, “
Pushing Amplitude Equations Far From Threshold: Application to the Supercritical Hopf Bifurcation in the Cylinder Wake
,”
Fluid. Dyn. Res.
,
48
(
6
), p.
061401
.
21.
Tchoufag
,
J.
,
Fabre
,
D.
, and
Magnaudet
,
J.
,
2015
, “
Weakly Nonlinear Model With Exact Coefficients for the Fluttering and Spiraling Motion of Buoyancy-Driven Bodies
,”
Phys. Rev. Lett.
,
115
, p.
114501
.
22.
Carte
,
G.
,
Dušek
,
J.
, and
Fraunié
,
P.
,
1995
, “
A Spectral Time Discretization for Flows With Dominant Periodicity
,”
J. Comput. Phys.
,
120
(
2
), pp.
171
183
.
23.
Carte
,
G.
,
Dušek
,
J.
, and
Fraunié
,
P.
,
1996
, “
Numerical Simulation of the Mechanisms Governing the Onset of the Bénard-Von Kármán Instability
,”
Int. J. Numer. Methods Fluids
,
23
(
8
), pp.
753
785
.
24.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
25.
Moulin
,
J.
,
Jolivet
,
P.
, and
Marquet
,
O.
,
2017
, “
Augmented Lagrangian Preconditioner for Linear Stability Analysis of Incompressible Fluid Flows on Large Configurations
,” FreeFem++ Days, Paris, France, Dec. 14–15.
26.
Williamson
,
C. H.
,
1988
, “
Defining a Universal and Continuous Strouhal–Reynolds Number Relationship for the Laminar Vortex Shedding of a Circular Cylinder
,”
Phys. Fluids
,
31
(
10
), pp.
2742
2744
.
27.
Navrose
,
N.
, and
Mittal
,
S.
,
2016
, “
Lock-In in Vortex-Induced Vibration
,”
J. Fluid Mech.
,
794
, pp.
565
594
.
28.
Tchoufag
,
J.
,
Fabre
,
D.
, and
Magnaudet
,
J.
,
2014
, “
Global Linear Stability Analysis of the Wake and Path of Buoyancy-Driven Disks and Thin Cylinders
,”
J. Fluid Mech.
,
740
, pp.
278
311
.
29.
Fabre
,
D.
,
Bonnefis
,
P.
,
Charru
,
F.
,
Russo
,
S.
,
Citro
,
V.
,
Giannetti
,
F.
, and
Luchini
,
P.
,
2014
, “
Application of Global Stability Approaches to Whistling Jets and Wind Instruments
,”
International Symposium on Musical Acoustics (ISMA'14)
, Le Mans, France, July, pp. 7–12.
30.
Longobardi
,
R.
,
Fabre
,
D.
,
Bonnefis
,
P.
,
Citro
,
V.
,
Giannetti
,
F.
, and
Luchini
,
P.
,
2018
, “
Studying Sound Production in the Hole-Tone Configuration Using Compressible and Incompressible Global Stability Analyses
,” IUTAM
Symposium on Critical Flow Dynamics Involving Moving/Deformable Structures With Design Applications
, Santorini, Greece, June 18–22.https://www.researchgate.net/publication/327894084_Studying_sound_production_in_the_hole-tone_configuration_using_compressible_and_incompressible_global_stability_analyses
31.
Meliga
,
P.
,
Sipp
,
D.
, and
Chomaz
,
J.-M.
,
2010
, “
Effect of Compressibility on the Global Stability of Axisymmetric Wake Flows
,”
J. Fluid Mech.
,
660
, pp.
499
526
.
32.
Chireux
,
V.
,
Fabre
,
D.
,
Risso
,
F.
, and
Tordjeman
,
P.
,
2015
, “
Oscillations of a Liquid Bridge Resulting From the Coalescence of Two Droplets
,”
Phys. Fluids
,
27
(
6
), p.
062103
.
33.
Mougel
,
J.
,
Fabre
,
D.
,
Lacaze
,
L.
, and
Bohr
,
T.
,
2017
, “
On the Instabilities of a Potential Vortex With a Free Surface
,”
J. Fluid Mech.
,
824
, pp.
230
264
.
34.
Fabre
,
D.
,
Auguste
,
F.
, and
Magnaudet
,
J.
,
2008
, “
Bifurcations and Symmetry Breaking in the Wake of Axisymmetric Bodies
,”
Phys. Fluids
,
20
(
5
), p.
051702
.
You do not currently have access to this content.