Wearable robotics is a field receiving increasing attention from the scientific community. It has great potential to improve rehabilitation process or increase the human capabilities but faces a number of challenges. On the one side, powerful actuation is required, leading to considerable system weight. On the other side, due to the close physical interaction with a human and taking into consideration safety requirements, the displacement of the actuators is crucial to the operational efficiency and functionality of exoskeleton devices. One possible solution for the design of an operational and efficient wearable device is to relocate its actuators out of joints and transmit the force by means of cable-based transmission systems. This paper presents an overview of various cable-based configurations correlated to conventional mechanical designs and their implementation in exoskeleton's structures and an overview of exoskeleton robots including comparison and trend analyses.

References

References
1.
Bogue
,
R.
,
2015
, “
Robotic Exoskeletons: A Review of Recent Progress
,”
Ind. Rob.
,
42
(
1
), pp.
5
10
.
2.
Makinson
,
B. J.
,
1971
, “
Research and Development Prototype for Machine Augmentation of Human Strength and Endurance
, Hardiman I Prototype Project,” General Electric Co., Schenectady, NY, Report No. S-71-1056.
3.
Ergin
,
M. A.
, and
Volkan
,
P.
,
2012
, “
ASSISTON-SE: A Self-Aligning Shoulder-Elbow Exoskeleton
,”
IEEE
International Conference on Robotics and Automation
, Saint Paul, MN, May 14–18, pp.
2479
2485
.
4.
Esquenazi
,
A.
,
Talaty
,
M.
,
Packel
,
A.
, and
Saulino
,
M.
,
2012
, “
The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals With Thoracic-Level Motor-Complete Spinal Cord Injury
,”
Am. J. Phys. Med. Rehabil.
,
91
(
11
), pp.
911
921
.
5.
Guizzo
,
E.
, and
Goldstein
,
H.
,
2005
, “
The Rise of the Body Bots
,”
IEEE Spectrum
,
42
(
10
), pp.
50
56
.
6.
Ha
,
K.
,
Murray
,
S.
, and
Goldfarb
,
M.
,
2015
, “
An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
4
), pp.
455
466
.
7.
Marcheschi
,
S.
,
Salsedo
,
F.
,
Fontana
,
M.
, and
Bergamasco
,
M.
,
2011
, “
Body Extender: Whole Body Exoskeleton for Human Power Augmentation
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
611
616
.
8.
Yamamoto
,
K.
,
Hyodo
,
K.
,
Ishii
,
M.
, and
Matsuo
,
T.
,
2002
, “
Development of Power Assisting Suit for Assisting Nurse Labor
,”
JSME
,
45
(
3
), pp.
703
711
.https://doi.org/10.1299/jsmec.45.703
9.
Fontana
,
M.
,
Dettori
,
A.
, and
Salsedo
,
F.
,
2009
, “
Mechanical Design of a Novel Hand Exoskeleton for Accurate Force Displaying
,”
IEEE
International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
1704
1709
.
10.
Fontana
,
M.
,
Fabio
,
S.
,
Marcheschi
,
S.
, and
Bergamasco
,
M.
,
2013
, “
Haptic Hand Exoskeleton for Precision Grasp Simulation
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041014
.
11.
Garrec
,
P.
,
2010
, “
Design of an Anthropomorphic Upper Limb Exoskeleton Actuated by Ball-Screws and Cables
,”
UPB Sci. Bull. Ser. D
,
72
, pp.
23
34
.
12.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2013
, “
Tendon Transmission Efficiency of a Two-Finger Haptic Glove
,”
IEEE International Symposium on Robotic and Sensors Environments
(
ROSE
), Washington, DC, Oct. 21–23, pp.
13
18
.
13.
Schiele
,
A.
, and
Hirzinger
,
G.
,
2011
, “
A New Generation of Ergonomic Exoskeletons—The High Performance X-Arm-2 for Space Robotics Telepresence
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
2158
2165
.
14.
Stergiopoulos
,
P.
,
Fuchs
,
P.
, and
Laurgeau
,
C.
,
2003
, “
Design of a 2-Finger Hand Exoskeleton for VR Grasping Simulation
,”
Eurohaptics
, Dublin, Ireland, July 6–9, pp.
80
93
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.8309&rep=rep1&type=pdf
15.
Buongiorno
,
D.
,
Sotgiu
,
E.
,
Leonardis
,
D.
,
Marcheschi
,
S.
,
Solazzi
,
M.
, and
Frisoli
,
A.
,
2018
, “
WRES: A Novel 3DoF WRist ExoSkeleton With Tendon-Driven Differential Transmission for Neuro-Rehabilitation and Teleoperation
,”
IEEE Rob. Autom. Lett.
,
3
(3), pp.
2152
2159
.
16.
Garrec
,
P.
,
Friconneau
,
J.-P.
,
Méasson
,
Y.
, and
Perrot
,
Y.
,
2008
, “
ABLE—An Innovative Transparent Exoskeleton for the Upper-Limb
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
1483
1488
.
17.
Shields
,
B. L.
,
Main
,
J. A.
,
Peterson
,
S. W.
, and
Strauss
,
A. M.
,
1997
, “
An Anthropomorphic Hand Exoskeleton to Prevent Astronaut Hand Fatigue During Extravehicular Activities
,”
IEEE Trans. Syst. Man Cybern.
,
27
(
5
), pp.
668
673
.
18.
Pons
,
J. L.
,
2008
,
Wearable Robots: Biomechatronic Exoskeletons
,
Wiley
,
Hoboken, NJ
.
19.
Gopura
,
R.
,
Kiguchi
,
K.
, and
Li
,
Y.
,
2009
, “
SUEFUL-7: A 7DOF Upper-Limb Exoskeleton Robot With Muscle-Model-Oriented EMG-Based Control
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, St. Louis, MO, Oct. 10–15, pp.
1126
1131
.
20.
Heo
,
P.
,
Gu
,
G. M.
,
Lee
,
S.-J.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
.
21.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
22.
Herr
,
H.
,
2009
, “
Exoskeletons and Orthoses: Classification, Design Challenges and Future Directions
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
21
.
23.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
(
3
), pp.
261
268
.
24.
Harman
,
E.
,
Han
,
K. H.
,
Frykman
,
P.
, and
Pandorf
,
C.
,
2000
, “
The Effects of Backpack Weight on the Biomechanics of Load Carriage
,” U.S. Army Research Institute of Environmental Medicine, Natick, MA, Technical Report No.
T00/17
.https://www.researchgate.net/publication/235127918_The_Effects_of_backpack_weight_on_the_biomechanics_of_load_carriage
25.
Teunissen
,
L. P. J.
,
Grabowski
,
A.
, and
Kram
,
R.
,
2007
, “
Effects of Independently Altering Body Weight and Body Mass on the Metabolic Cost of Running
,”
J. Exp. Biol.
,
210
(
24
), pp.
4418
4427
.
26.
Asbeck
,
A. T.
,
De Rossi
,
S. M. M.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2015
, “
A Biologically Inspired Soft Exosuit for Walking Assistance
,”
Int. J. Rob. Res.
,
34
(
6
), pp.
744
762
.
27.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exercise
,
39
(
3
), pp.
515
525
.
28.
Vallery
,
H.
,
Veneman
,
J.
,
van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
van Der Kooij
,
H.
,
2008
, “
Compliant Actuation of Rehabilitation Robots
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
60
69
.
29.
Schiele
,
A.
,
2008
, “
Performance Difference of Bowden Cable Relocated and Non-Relocated Master Actuators in Virtual Environment Applications
,”
IEEE
International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
3507
3512
.
30.
Copaci
,
D.
,
Cano
,
E.
,
Moreno
,
L.
, and
Blanco
,
D.
,
2017
, “
New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators
,”
Hindawi Appl. Bionics Biomech.
,
2017
, p.
1605101
.
31.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.
32.
Agrawal
,
S. K.
,
Dubey
,
V. N.
,
Gangloff
,
J. J.
,
Brackbill
,
E.
,
Mao
,
Y.
, and
Sangwan
,
V.
,
2009
, “
Design and Optimization of a Cable Driven Upper Arm Exoskeleton
,”
ASME J. Med. Devices
,
3
(
3
), p.
031004
.
33.
Brackbill
,
E. A.
,
Mao
,
Y.
,
Agrawal
,
S. K.
,
Annapragada
,
M.
, and
Dubey
,
V. N.
,
2009
, “
Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton
,”
IEEE
International Conference on Robotics and Automation, Kobe, Japan, May 12–17, pp.
2300
2305.
34.
Huang
,
M. Z.
,
1993
, “
Efficient Coordination of an Anthropomorphic Telemanipulation System
,” U.S. Air Force, WrightPatterson AFB, OH, Technical Report No.
AL/CF-TR-1995-0120
.https://www.researchgate.net/publication/235205606_Efficient_Coordination_of_an_Anthropomorphic_Telemanipulation_System
35.
Le
,
H. M.
,
Do
,
T. N.
, and
Phee
,
S. J.
,
2016
, “
A Survey on Actuators-Driven Surgical Robots
,”
Sens. Actuators A
,
247
, pp.
323
354
.
36.
Townsend
,
W. T.
, and
Kenneth Salisbury
,
J.
,
1988
, “
The Efficiency Limit of Belt and Cable Drives
,”
J. Mech. Transm. Autom. Des.
,
110
(
3
), pp.
303
307
.
37.
Hurst
,
J. W.
,
Chestnutt
,
J. E.
, and
Rizzi
,
A. A.
,
2007
, “
Design and Philosophy of the BiMASC: A Highly Dynamic Biped
,”
IEEE
International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
1863
1868
.
38.
Tsai
,
L.-W.
,
1995
, “
Design of Tendon-Driven Manipulators
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
80
86
.
39.
Witte
,
K. A.
,
Zhang
,
J.
,
Jackson
,
R. W.
, and
Collins
,
S. H.
,
2015
, “
Design of Two Lightweight, High-Bandwidth Torque-Controlled Ankle Exoskeletons
,”
IEEE
International Conference of Robotics and Automation,
Seattle, WA, May 26–30, pp. 1223–1228.
40.
Frisoli
,
A.
,
Rocchi
,
F.
,
Marcheschi
,
S.
,
Dettori
,
A.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
,
2005
, “
A New Force-Feedback Arm Exoskeleton for Haptic Interaction in Virtual Environments
,”
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Pisa, Italy, Mar. 18–20, pp.
195
201
.
41.
Islam
,
R.
,
Spiewak
,
C.
,
Rahman
,
M. H.
, and
Fareh
,
R.
,
2017
, “
A Brief Review on Robotic Exoskeletons for Upper Extremity Rehabilitation to Find the Gap Between Research Prototype and Commercial Type
,”
Adv. Rob. Autom.
,
6
(
3
), p. 177.
42.
Homma
,
K.
,
Fukuda
,
O.
,
Sugawara
,
J.
,
Nagata
,
Y.
, and
Usuba
,
M.
,
2003
, “
A Wire-Driven Leg Rehabilitation System: Development of a 4-DOF Experimental System
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics,
Kobe, Japan, July 20–24, pp. 908–913.
43.
Gosselin
,
C.
,
2014
, “
Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,”
Mech. Eng. Rev.
,
1
(
1
), p. DSM0004.
44.
Sandretto
,
J. A.
,
Daney
,
D.
, and
Gouttefarde
,
M.
,
2013
, “
Calibration of a Fully-Constrained Parallel Cable-Driven Robot
,”
Romansy 19: Robot Design, Dynamics and Control
, Paris, France, June 12–15, pp.
77
84
.
45.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
408
417
.
46.
Bergamasco
,
M.
,
Allotta
,
B.
,
Bosio
,
L.
,
Ferretti
,
L.
,
Parrini
,
G.
,
Prisco
,
G. M.
,
Salsedo
,
F.
, and
Sartini
,
G.
,
1994
, “
An Arm Exoskeleton System for Teleoperation and Virtual Environments Applications
,”
IEEE
International Conference on Robotics and Automation
, San Diego, CA, May 8–13, pp.
1449
1454
.
47.
Phee
,
S. J.
,
Low
,
S. C.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2010
, “
Tendon Sheath Analysis for Estimation of Distal End Force and Elongation for Sensorless Distal End
,”
Robotica
,
28
(
7
), pp.
1073
1082
.
48.
Carlson Lawrence
,
E.
,
Veatch
,
B. D.
, and
Frey
,
D. D.
,
1995
, “
Efficiency of Prosthetic Cable and Housing
,”
J. Prosthet. Orthotics
,
7
(
3
), p.
96
.https://journals.lww.com/jpojournal/Abstract/1995/00730/Efficiency_of_Prosthetic_Cable_and_Housing.6.aspx
49.
Letier
,
P.
,
Schiele
,
A.
,
Avraam
,
M.
,
Horodinca
,
M.
, and
Preumont
,
A.
,
2006
, “
Bowden Cable Actuator for Torque-Feedback in Haptic Applications
,”
Eurohaptics
,
Paris, France, July 3–6, pp. 251–256.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.585.5079&rep=rep1&type=pdf
50.
Fred
,
S.
,
1983
, “
The Use of Low Friction Housing Liner in Upper-Extremity Prostheses
,”
Bull. Prosthet. Res.
,
10
(
4
), pp.
77
81
.https://www.rehab.research.va.gov/jour/65/2/2/77.pdf
51.
LeBlanc
,
M.
,
1990
, “
Current Evaluation of Hydraulics to Replace the Cable Force Transmission System for Body-Powered Upper-Limb Prostheses
,”
Assistive Technol.
,
2
(
3
), pp.
101
108
.
52.
Peine
,
J. W.
,
Agrawal
,
V.
, and
Peine
,
W. J.
,
2012
, “
Effect of Backlash on Surgical Robotic Task Proficiency
,”
Fourth IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics,
Rome, Italy, June 24–27, pp.
799
804
.
53.
Do
,
T. N.
,
Tjahjowidodo
,
T.
,
Lau
,
M. W. S.
, and
Phee
,
S. J.
,
2016
, “
Real-Time Enhancement of Tracking Performances for Cable-Conduit Mechanisms-Driven Flexible Robots
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
197
207
.
54.
Veneman
,
J. F.
,
2006
, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Rob. Res.
,
25
(
3
), pp.
261
281
.
55.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
, and
Van Der Kooij
,
H.
,
2005
, “
Design of a Series Elastic- and Bowden Cable-Based Actuation System for Use as Torque-Actuator in Exoskeleton-Type Training
,”
Ninth International Conference on Rehabilitation Robotics
(
ICORR
), Chicago, IL, June 28–July 1, pp.
496
499
.
56.
Grosu
,
S.
,
Verheul
,
C.
,
Rodriguez-guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
Towards the Elaboration of 3D Dynamic Model for Push/Pull Cable (PPC) Actuation System
,”
International Conference on Multibody System Dynamics
, Busan, Korea, June 30–July 3, pp. 101–110.
57.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism With Actuator Redundancy
,”
IEEE Trans. Rob. Autom.
,
8
(5), pp.
644
651
.
58.
Oh
,
S.-R.
, and
Agrawal
,
S. K.
,
2003
, “
Cable-Suspended Planar Parallel Robots With Redundant Cables: Controllers With Positive Cable Tensions
,”
IEEE
International Conference on Robotics and Automation,
Taipei, Taiwan, Sept. 14–19, pp.
3023
3028
.
59.
Jung
,
Y.
, and
Bae
,
J.
,
2016
, “
An Asymmetric Cable-Driven Mechanism for Force Control of Exoskeleton Systems
,”
Mechatronics
,
40
, pp.
41
50
.
60.
Nakai
,
A.
,
Ohashi
,
T.
, and
Hashimoto
,
H.
,
1998
, “
7 DOF Arm Type Haptic Interface for Teleoperation and Virtual Reality Systems
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications
, Victoria, BC, Canada, Oct. 17, pp.
1266
1271
.
61.
Yang
,
G.
,
Lin
,
W.
,
Kurbanhusen
,
M. S.
,
Pham
,
C. B.
, and
Yeo
,
S. H.
,
2005
, “
Kinematic Design of a 7-DOF Cable-Driven Humanoid Arm: A Solution-in-Nature Approach
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, July 24–28, pp.
444
449
.
62.
Man
,
Z.
,
Yu
,
S.
, and
Wu
,
X.
,
2006
, “
Kinematic Analysis for a 7-DOF Modular Hybrid-Driven Manipulator
,”
IEEE
International Conference on Industrial Informatics
, Singapore, Aug. 16–18, pp.
1363
1368
.
63.
Albus
,
J.
,
Bostelman
,
R.
, and
Dagalakis
,
N.
,
1992
, “
The NIST Spider: A Robot Crane
,”
J. Res. Natl. Inst. Stand. Technol.
,
97
(
3
), pp.
373
385
.
64.
Stienen
,
A.
,
Hekman
,
E. E. G.
,
Van Der Helm
,
F. C. T.
,
Prange
,
G. B.
,
Jannink
,
M. J. A.
,
Aalsma
,
A. M. M.
, and
Der Van Kooij
,
H.
,
2007
, “
Freebal: Dedicated Gravity Compensation for the Upper Extremities
,”
IEEE
Tenth International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 13–15, pp.
804
808
.
65.
Yang
,
G.
,
Ho
,
H. L.
,
Chen
,
W.
,
Lin
,
W.
,
Yeo
,
S. H.
, and
Kurbanhusen
,
M. S.
,
2004
, “
A Haptic Device Wearable on a Human Arm
,”
IEEE
Conference on Robotics, Automation and Mechatronics
, Singapore, Dec. 1–3, pp.
243
247
.
66.
Vallery
,
H.
,
Lutz
,
P.
,
Von Zitzewitz
,
J.
,
Rauter
,
G.
,
Fritschi
,
M.
,
Everarts
,
C.
,
Ronsse
,
R.
,
Curt
,
A.
, and
Bolliger
,
M.
,
2013
, “
Multidirectional Transparent Support for Overground Gait Training
,”
IEEE
International Conference on Rehabilitation Robotics
, Seattle, WA, June 24–26.
67.
Yang
,
G.
,
Hui
,
E.
,
Leong
,
H.
,
Lin
,
W.
, and
Chen
,
I.-M.
,
2003
, “
A Differential Geometry Approach for the Workspace Analysis of Spherical Parallel Manipulators
,”
11th World Congress in Mechanism and Machine Science
, Tianjin, China, Aug. 18–21, pp.
2060
2065
.https://www.researchgate.net/publication/228844860_A_Differential_Geometry_Approach_for_the_Workspace_Analysis_of_Spherical_Parallel_Manipulators
68.
Verhoeven
,
R.
,
2004
, “
Analysis of the Workspace of Tendon-Based Stewart Platforms
,”
Ph.D. thesis
, Universität Duisburg-Essen, Duisburg, Germany.https://pdfs.semanticscholar.org/7643/2d1ff61b669aadfe2ed720eea7446faa9fd8.pdf
69.
Alp
,
A. B.
, and
Agrawal
,
S. K.
,
2002
, “
Cable Suspended Robots: Design, Planning and Control
,”
IEEE
International Conference on Robotics and Automation
, Washington, DC, May 11–15, pp.
4275
4280
.
70.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2017
, “
Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp. 161–172.
71.
Mao
,
Y.
,
Jin
,
X.
,
Gera Dutta
,
G.
,
Scholz
,
J.
, and
Agrawal
,
S. K.
,
2015
, “
Human Movement Training With a Cable Driven Arm Exoskeleton (CAREX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
.
72.
Jin
,
X.
,
Cui
,
X.
, and
Agrawal
,
S. K.
,
2015
, “
Design of a Cable-Driven Active Leg Exoskeleton (C-ALEX) and Gait Training Experiments With Human Subjects
,”
IEEE
International Conference on Robotics and Automation, Seattle, WA, May 26–30, pp.
5578
5583
.
73.
Jin
,
X.
,
Prado
,
A.
, and
Agrawal
,
S. K.
,
2018
, “
Retraining of Human Gait—Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective?
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
4
), pp.
847
855
.
74.
Xiao
,
F.
,
Gao
,
Y.
,
Wang
,
Y.
,
Zhu
,
Y.
, and
Zhao
,
J.
,
2017
, “
Design of a Wearable Cable-Driven Upper Limb Exoskeleton Based on Epicyclic Gear Trains Structure
,”
Technol. Health Care
,
25
(
S1
), pp.
3
11
.
75.
Ball
,
S. J.
,
Brown
,
I. E.
, and
Scott
,
S. H.
,
2007
, “
MEDARM: A Rehabilitation Robot With 5DOF at the Shoulder Complex
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland, Sept. 4–7.
76.
Kobayashi
,
H.
,
Hyodo
,
K.
, and
Ogane
,
D.
,
1998
, “
On Tendon-Driven Robotic Mechanisms With Redundant Tendons
,”
Int. J. Rob. Res.
,
17
(
5
), pp.
561
571
.
77.
Mustafa
,
S. K.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Lin
,
W.
,
2006
, “
Optimal Design of a Bio-Inspired Anthropocentric Shoulder Rehabilitator
,”
Appl. Bionics Biomech.
,
3
(
3
), pp.
199
208
.
78.
Pehlivan
,
A. U.
,
Sergi
,
F.
,
Erwin
,
A.
,
Yozbatiran
,
N.
,
Francisco
,
G. E.
,
O Malley
,
M. K.
,
Pehlivan
,
A. U.
,
Sergi
,
F.
,
Erwin
,
A.
, and
O Malley
,
K.
,
2014
, “
Design and Validation of the RiceWrist-S Exoskeleton for Robotic Rehabilitation After Incomplete Spinal Cord Injury
,”
Robotica
,
32
(
8
), pp.
1415
1431
.
79.
Perry
,
J. C.
, and
Rosen
,
J.
,
2006
, “
Design of a 7 Degree-of-Freedom Upper-Limb Powered Exoskeleton
,”
IEEE RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, Feb. 20–22, pp. 805–810.
80.
Whitney
,
J. P.
,
Glisson
,
M. F.
,
Brockmeyer
,
E. L.
, and
Hodgins
,
J. K.
,
2014
, “
A Low-Friction Passive Fluid Transmission and Fluid-Tendon Soft Actuator
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp. 2801–2808.
81.
Kong
,
K.
, and
Jeon
,
D.
,
2006
, “
Design and Control of an Exoskeleton for the Elderly and Patients
,”
IEEE/ASME Trans. Mechatronics
,
11
(
4
), pp.
428
432
.
82.
Williams
,
R. L.
,
Murphy
,
M. A.
,
North
,
D.
,
Berlin
,
J.
, and
Krier
,
M.
,
1998
, “
Kinesthetic Force/Moment Feedback Via Active Exoskeleton
,”
Image Society Conference
, Scottsdale, AZ, Aug. 2–7.https://pdfs.semanticscholar.org/cd45/80613b8455bf58a8ebc0b7bae84fc36c1382.pdf
83.
Takahashi
,
Y.
, and
Kobayashi
,
T.
,
1999
, “
Upper Limb Motion Assist Robot Using Wire Driven Control System
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vol.
3
, Kyongju, South Korea, Oct. 17–21, pp.
1598
1603
.
84.
Agrawal
,
V.
,
Peine
,
W. J.
, and
Yao
,
B.
,
2010
, “
Modeling of Transmission Characteristics Across a Cable-Conduit System
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
914
924
.
85.
Chen
,
L.
,
Wang
,
X.
, and
Xu
,
W.
,
2014
, “
Inverse Transmission Model and Compensation Control of a Single-Tendon-Sheath Actuator
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1424
1433
.
86.
Wu
,
Q.
,
Wang
,
X.
,
Du
,
F.
, and
Zhang
,
X.
,
2015
, “
Design and Control of a Powered Hip Exoskeleton for Walking Assistance
,”
Int. J. Adv. Rob. Syst.
,
12
(
3
), p.
1
.
87.
Chen
,
W.
,
Xiong
,
C.
,
Sun
,
R.
, and
Huang
,
X.
,
2011
, “
Rehabilitation Robot With Ergonomic Shoulder Actuation Mechanism
,”
Int. J. Humanoid Rob.
,
8
(
1
), pp.
47
71
.
88.
Li
,
J.
,
Zheng
,
R.
, and
Zhang
,
Y.
,
2011
, “
iHandRehab: An Interactive Hand Exoskeleton for Active and Passive Rehabilitation
,”
IEEE International Conference on Rehabilitation Robotics
, ETH Zurich Science City, Switzerland, June 29–July 1.
89.
Wang
,
J.
,
Li
,
J.
,
Zhang
,
Y.
, and
Wang
,
S.
,
2009
, “
Design of an Exoskeleton for Index Finger
Rehabilitation,”
31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, Sept. 3–6, pp. 5957–5960.
90.
Zhang
,
Y.
,
Wu
,
X.
, and
Liu
,
H.
,
2014
, “
Modeling and Simulation of Lower Extremity Exoskeleton
,”
Appl. Mech. Mater.
,
487
, pp.
504
508
.
91.
Wu
,
Q.
,
Wang
,
X.
,
Du
,
F.
, and
Xu
,
J.
,
2014
, “
Development and Control of a Bowden-Cable Actuated Exoskeleton for Upper-Limb Rehabilitation
,” IEEE
International Symposium on Robotic and Sensors Environments
(
ROSE
), Timisoara, Romania, Oct. 16–18, pp. 7–12.
92.
Lee
,
Y.
,
Kim
,
Y.-J.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
, and
Park
,
Y. J.
,
2016
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2058
2069
.
93.
Cherry
,
M. S.
,
Kota
,
S.
, and
Ferris
,
D. P.
,
2009
, “
An Elastic Exoskeleton for Assisting Human Running
,”
ASME
Paper No. DETC2009-87355.
94.
Goiriena
,
A.
,
Retolaza
,
I.
,
Cenitagoya
,
A.
,
Martinez
,
F.
,
Riano
,
S.
, and
Landaluze
,
J.
,
2009
, “
Analysis of Bowden Cable Transmission Performance for Orthosis Applications
,”
IEEE
International Conference on Mechatronics
, Malaga, Spain, Apr. 14–17.
95.
Schiele
,
A.
, and
Van Der Helm
,
F. C. T.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
.
96.
Dehez
,
B.
, and
Sapin
,
J.
,
2011
, “
ShouldeRo: An Alignment-Free Two-DOF Rehabilitation Robot for the Shoulder Complex
,”
IEEE
International Conference on Rehabilitation Robotics, ETH Zurich Science City, Switzerland, June 29–July 1, pp. 141–148.
97.
Stienen
,
A.
,
Hekman
,
E. E. G.
,
Braak
,
H. T.
,
Aalsma
,
A. M. M.
,
Van Der Helm
,
F. C. T.
, and
Van Der Kooij
,
H.
,
2010
, “
Design of a Rotational Hydroelastic Actuator for a Powered Exoskeleton for Upper Limb Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
57
(
3
), pp.
728
735
.
98.
Agrawal
,
V.
, and
Peine
,
W. J.
,
2008
, “
Modeling of a Closed Loop Cable-Conduit Transmission System
,”
IEEE
International Conference on Robotics and Automation, Pasadena, CA, May 19–23, pp.
3407
3412
.
99.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
, and
van Asseldonk
,
E. H. F.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.
100.
Andersen
,
J. B.
, and
Sinkjaer
,
T.
,
1995
, “
An Actuator System for Investigating Electrophysiological and Biomechanical Features Around the Human Ankle Joint During Gait
,”
IEEE Trans. Rehabil. Eng.
,
3
(
4
), pp.
299
306
.
101.
Shuang
,
W.
,
Jiting
,
L.
, and
Ruoyin
,
Z.
,
2010
, “
Active and Passive Control Algorithm for an Exoskeleton With Bowden Cable Transmission for Hand Rehabilitation
,”
IEEE International Conference on Robotics and Biomimetics
, Tianjin, China, Dec. 14–18, pp.
75
79
.
102.
Chiri
,
A.
,
Vitiello
,
N.
,
Giovacchini
,
F.
,
Roccella
,
S.
,
Vecchi
,
F.
, and
Carrozza
,
M. C.
,
2011
, “
Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
884
894
.
103.
Slavnić
,
S.
,
Ristic-Durrant
,
D.
,
Tschakarow
,
R.
,
Brendel
,
T.
,
Tüttemann
,
M.
,
Leu
,
A.
, and
Gräser
,
A.
,
2014
, “
Mobile Robotic Gait Rehabilitation System CORBYS: Overview and First Results on Orthosis Actuation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago, IL, Sept. 14–18, pp.
2087
2094
.
104.
Nycz
,
C. J.
,
Tobias
,
B.
,
Lambercy
,
O.
,
Arata
,
J.
,
Fischer
,
G. S.
, and
Gassert
,
R.
,
2016
, “
Design and Characterization of a Lightweight and Fully Portable Remote Actuation System for Use With a Hand Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
976
983
.
105.
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2014
, “
A Universal Ankle-Foot Prosthesis Emulator for Experiments During Human Locomotion
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
035002
.
106.
Witte
,
K. A.
, and
Collins
,
S. H.
,
2015
, “
Design of a Comfortable Pure Moment Knee Exoskeleton
,”
Conference on Dynamic Walking
, Columbus, OH, July 21--24, pp. 126–128.http://biomechatronics.cit.cmu.edu/publications/Witte_2015_DW.pdf
107.
Koo
,
I.
,
Yun
,
C.
,
Costa
,
M. V. O.
,
Scognamiglio
,
J. V. F.
,
Yangali
,
T. A.
,
Park
,
D.
, and
Cho
,
K.-J.
,
2014
, “
Development of a Meal Assistive Exoskeleton Made of Soft Materials for Polymyositis Patients
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
542
547
.
108.
Sulzer
,
J. S.
,
Roiz
,
R. A.
,
Peshkin
,
M.
, and
Patton
,
J.
,
2009
, “
A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
539
548
.
109.
Agarwal
,
P.
, and
Deshpande
,
A. D.
,
2017
, “
Series Elastic Actuators for Small-Scale Robotic Applications
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031016
.
110.
Agarwal
,
P.
,
Fox
,
J.
,
Yun
,
Y.
,
O'Malley
,
M. K.
, and
Deshpande
,
A. D.
,
2015
, “
An Index Finger Exoskeleton With Series Elastic Actuation for Rehabilitation: Design, Control and Performance Characterization
,”
Int. J. Rob. Res.
,
34
(
14
), pp.
1747
1772
.
111.
Agarwal
,
P.
,
Yun
,
Y.
,
Fox
,
J.
,
Madden
,
K.
, and
Deshpande
,
A. D.
,
2017
, “
Design, Control, and Testing of a Thumb Exoskeleton With Series Elastic Actuation
,”
Int. J. Rob. Res.
,
36
(
3
), pp.
355
375
.
112.
Erdogan
,
A.
,
Celebi
,
B.
,
Cihan
,
A.
, and
Satici
,
V.
,
2017
, “
AssistON-Ankle: A Reconfigurable Ankle Exoskeleton With Series-Elastic Actuation
,”
Auton. Rob.
,
41
(
3
), pp.
743
758
.
113.
Townsend
,
W. T.
, and
Kenneth Salisbury
,
J.
,
1987
, “
The Effect of Coulomb Friction and Stiction on Force Control
,”
IEEE
International Conference on Robotics and Automation
, Chicago, IL, Mar. 31–Apr. 3, pp.
883
889
.
114.
Vitiello
,
N.
,
Lenzi
,
T.
,
De Rossi
,
S. M. M.
,
Roccella
,
S.
, and
Carrozza
,
M. C.
,
2010
, “
A Sensorless Torque Control for Antagonistic Driven Compliant Joints
,”
Mechatronics
,
20
(
3
), pp.
355
367
.
115.
Yun
,
Y.
,
Agarwal
,
P.
,
Fox
,
J.
,
Madden
,
K. E.
, and
Deshpande
,
A. D.
,
2016
, “
Accurate Torque Control of Finger Joints With UT Hand Exoskeleton Through Bowden Cable SEA
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Daejeon, Korea, Oct. 9–14, pp. 390–397.
116.
Fu
,
Y.
,
Zhang
,
Q.
,
Zhang
,
F.
, and
Gan
,
Z.
,
2011
, “
Design and Development of a Hand Rehabilitation Robot for Patient-Cooperative Therapy Following Stroke
,”
IEEE
International Conference on Mechatronics and Automation
, Beijing, China, Aug. 7–10, pp.
112
117
.
117.
Martinez
,
F.
,
Retolaza
,
I.
,
Pujana-Arrese
,
A.
,
Cenitagoya
,
A.
,
Basurko
,
J.
, and
Landaluze
,
J.
,
2008
, “
Design of a Five Actuated DoF Upper Limb Exoskeleton Oriented to Workplace Help
,”
IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
169
174
.
118.
Martinez
,
F.
,
Pujana-Arrese
,
A.
,
Retolaza
,
I.
,
Sacristan
,
I.
,
Basurko
,
J.
, and
Landaluze
,
J.
,
2009
, “
IKO: A Five Actuated DoF Upper Limb Exoskeleton Oriented to Workplace Assistance
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
143
155
.
119.
Noda
,
T.
,
Teramae
,
T.
,
Ugurlu
,
B.
, and
Morimoto
,
J.
,
2014
, “
Development of an Upper Limb Exoskeleton Powered Via Pneumatic Electric Hybrid Actuators With Bowden Cable
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
3573
3578
.
120.
Celebi
,
B.
,
Yalcin
,
M.
, and
Patoglu
,
V.
,
2013
, “
AssistON-Knee: A Self-Aligning Knee Exoskeleton
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Tokyo, Japan, Nov. 3–7, pp.
996
1002
.
121.
Asbeck
,
A. T.
,
Dyer
,
R. J.
,
Larusson
,
A. F.
, and
Walsh
,
C. J.
,
2013
, “
Biologically-Inspired Soft Exosuit
,” IEEE
International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26.
122.
Rahman
,
T.
,
Sample
,
W.
,
Seliktar
,
R.
,
Alexander
,
M.
, and
Scavina
,
M.
,
2000
, “
A Body-Powered Upper Limb Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
675
680
.https://www.rehab.research.va.gov/jour/00/37/6/pdf/rahman.pdf
123.
Springer
,
S.
, and
Ferrier
,
N.
,
2002
, “
Design and Control of a Force-Reflecting Haptic Interface for Teleoperational Grasping
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
277
283
.
124.
Awad
,
L. N.
,
Bae
,
J.
,
O Donnell
,
K.
,
De Rossi
,
S. M. M.
,
Hendron
,
K.
,
Sloot
,
L. H.
,
Kudzia
,
P.
,
Allen
,
S.
,
Holt
,
K. G.
,
Ellis
,
T. D.
, and
Walsh
,
C. J.
,
2017
, “
A Soft Robotic Exosuit Improves Walking in Patients After Stroke
,”
Sci. Transl. Med.
,
9
(400), p. eaai9084.
125.
Leonardo
,
C.
,
Binh
,
D. K.
,
Yen
,
S.-C.
, and
Masia
,
L.
,
2016
, “
Design and Preliminary Characterization of a Soft Wearable Exoskeleton for Upper Limb
,”
IEEE-RAS/EMBS
International Conference on Biomedical Robotics and Biomechatronics, Singapore, June 26–29, pp. 623–630.
126.
Ding
,
Y.
,
Galiana
,
I.
,
Asbeck
,
A.
,
Quinlivan
,
B.
,
De Rossi
,
S. M. M.
, and
Walsh
,
C.
,
2014
, “
Multi-Joint Actuation Platform for Lower Extremity Soft Exosuits
,”
IEEE
International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp.
1327
1334
.
127.
Dinh
,
B. K.
,
Xiloyannis
,
M.
,
Cappello
,
L.
,
Antuvan
,
C. W.
,
Yen
,
S.-C.
, and
Masia
,
L.
,
2017
, “
Adaptive Backlash Compensation in Upper Limb Soft Wearable Exoskeletons
,”
Rob. Auton. Syst.
,
92
, pp.
173
186
.
128.
Dinh
,
K.
,
Cappello
,
L.
,
Xiloyannis
,
M.
, and
Masia
,
L.
,
2016
, “
Position Control Using Adaptive Backlash Compensation for Bowden Cable Transmission in Soft Wearable Exoskeleton
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Daejeon, Korea, Oct. 9–14, pp.
5670
5676
.
129.
Lee
,
G.
,
Ding
,
Y.
,
Bujanda
,
I. G.
,
Karavas
,
N.
,
Zhou
,
Y. M.
, and
Walsh
,
C. J.
,
2017
, “
Improved Assistive Profile Tracking of Soft Exosuits for Walking and Jogging With Off-Board Actuation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, Sept. 24–28, pp. 1699–1706.
130.
Panizzolo
,
F.
,
Galiana
,
I.
,
Asbeck
,
A.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
Neuroeng. Rehabil.
,
13
, p. 43.
131.
Schmidt
,
K.
,
Duarte
,
J. E.
,
Grimmer
,
M.
,
Sancho-Puchades
,
A.
,
Wei
,
H.
,
Easthope
,
C.
, and
Riener
,
R.
,
2017
, “
The Myosuit: Bi-Articular Anti-Gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers
,”
Front. Neurorobotics
,
11
, p. 57.
132.
Xiloyannis
,
M.
,
Cappello
,
L.
,
Dinh
,
B. K.
,
Antuvan
,
C. W.
, and
Masia
,
L.
,
2017
, “
Design and Preliminary Testing of a Soft Exosuit for Assisting Elbow Movements and Hand Grasping
,”
Biosyst. Biorobotics
,
15
, pp.
557
561
.
133.
Dinh
,
B. K.
,
Xiloyannis
,
M.
,
Antuvan
,
C. W.
,
Cappello
,
L.
, and
Masia
,
L.
,
2017
, “
Hierarchical Cascade Controller for Assistance Modulation in a Soft Wearable Arm Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1786
1793
.
134.
Delph
,
M. A.
,
Fischer
,
S. A.
,
Gauthier
,
P. W.
,
Luna
,
C. H.
,
Clancy
,
E. A.
, and
Fischer
,
G. S.
,
2013
, “
A Soft Robotic Exomusculature Glove With Integrated sEMG Sensing for Hand Rehabilitation
,”
International Conference on Rehabilitation Robotics
, Seattle, WA, June 24–26.
135.
Nycz
,
C. J.
,
Delph
,
M. A.
, and
Fischer
,
G. S.
,
2015
, “
Modeling and Design of a Tendon Actuated Soft Robotic Exoskeleton for Hemiparetic Upper Limb Rehabilitation
,”
IEEE
Engineering in Medicine and Biology Society
, Milan, Italy, Aug. 25–29, pp.
3889
3892
.
136.
Guerrero
,
C. R.
,
Grosu
,
V.
,
Grosu
,
S.
,
Leu
,
A.
, and
Ristic-Durrant
,
D.
,
2015
, “
Torque Control of a Push-Pull Cable Driven Powered Orthosis for the CORBYS Platform
,”
IEEE
International Conference on Rehabilitation Robotics
, Singapore, Aug. 11–14, pp.
25
30
.
137.
Winter
,
S. H.
, and
Bouzit
,
M.
,
2007
, “
Use of Magnetorheological Fluid in a Force Feedback Glove
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
1
), pp.
2
8
.
138.
Winter
,
S.
,
2006
, “
Design of a Force Feedback Glove Using Magnetorheological Fluid
,” EuroHaptics, Paris, France, July 3–6, pp. 635–639.
139.
Slavnic
,
S.
,
Leu
,
A.
,
Ristic-Durrant
,
D.
, and
Graser
,
A.
,
2013
, “
Modeling and Simulation of Human Walking With Wearable Powered Assisting
,”
ASME
Paper No. DSCC2013-4049.
140.
Xu
,
K.
,
Wang
,
Y.
, and
Yang
,
Z.
,
2014
, “
Design and Preliminary Experimentation of a Continuum Exoskeleton for Self-Provided Bilateral Rehabilitation
,” IEEE
International Conference on Information and Automation,
(
ICIA
) Hailar, China, July 28–30, pp. 327–332.
141.
Xu
,
K.
, and
Qiu
,
D.
,
2013
, “
Experimental Design Verification of a Compliant Shoulder Exoskeleton
,”
IEEE
International Conference on Robotics and Automation, Karlsruhe, Germany, May 6–10, pp.
3894
3901
.
142.
Stienen
,
A.
,
Hekman
,
E. E. G.
,
Prange
,
G. B.
,
Jannink
,
M. J. A.
,
Aalsma
,
A. M. M.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2009
, “
Dampace: Design of an Exoskeleton for Force-Coordination Training in Upper-Extremity Rehabilitation
,”
ASME J. Med. Devices
,
3
(
3
), p.
031003
.
143.
Stienen
,
A.
,
Hekman
,
E. E. G.
,
Van Der Helm
,
F. C. T.
,
Prange
,
G. B.
,
Jannink
,
M. J. A.
,
Aalsma
,
A. M. M.
, and
Van Kooij
,
H. D.
,
2007
, “
Dampace: Dynamic Force-Coordination Trainer for the Upper Extremities
,”
IEEE
Tenth International Conference on Rehabilitation Robotics,
Noordwijk, The Netherlands, June 13–15, pp.
820
826
.
144.
Kim
,
S.
,
Lee
,
J.
, and
Bae
,
J.
,
2017
, “
Analysis of Finger Muscular Forces Using a Wearable Hand Exoskeleton System
,”
J. Bionic Eng.
,
14
(
4
), pp.
680
691
.
145.
Hasegawa
,
Y.
,
Mikami
,
Y.
,
Watanabe
,
K.
, and
Sankai
,
Y.
,
2008
, “
Five-Fingered Assistive Hand With Mechanical Compliance of Human Finger
,”
IEEE
International Conference on Robotics and Automation
, Pasadena, CA, Pasadena, CA, May 19–23, pp.
718
724
.
146.
Kong
,
K.
, and
Tomizuka
,
M.
,
2008
, “
Mechanical Design and Impedance Compensation of SUBAR (Sogang University's Biomedical Assist Robot)
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Xi'an, China, June 2–5, pp.
377
382
.
147.
Shao
,
Z.-F.
,
Tang
,
X.
, and
Yi
,
W.
,
2014
, “
Optimal Design of a 3-DOF Cable-Driven Upper Arm Exoskeleton
,”
Adv. Mech. Eng.
,
6
, epub.
148.
Letier
,
P.
,
Avraam
,
M.
,
Veillerette
,
S.
,
Horodinca
,
M.
,
De Bartolomei
,
M.
,
Schiele
,
A.
, and
Preumont
,
A.
,
2008
, “
SAM: A 7-DOF Portable Arm Exoskeleton With Local Joint Control
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Nice, France, Sept. 22–26, pp.
3501
3506
.
149.
Vitiello
,
N.
,
Lenzi
,
T.
,
Roccella
,
S.
,
De Rossi
,
S. M. M.
,
Cattin
,
E.
,
Giovacchini
,
F.
,
Vecchi
,
F.
, and
Carrozza
,
M. C.
,
2013
, “
NEUROExos: A Powered Elbow Exoskeleton for Physical Rehabilitation
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
220
235
.
150.
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2016
, “
Biomechanical Walking Mechanisms Underlying the Metabolic Reduction Caused by an Autonomous Exoskeleton
,”
J. Neuroeng. Rehabil.
,
13
, p. 4.
151.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking During Load Carriage
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
80
.
152.
Cappello
,
L.
,
Pirrera
,
A.
,
Weaver
,
P.
, and
Masia
,
L.
,
2015
, “
A Series Elastic Composite Actuator for Soft Arm Exosuits Design and Preliminary Test
,”
IEEE
International Conference on Rehabilitation Robotics,
Singapore, Aug. 11–14, pp.
61
66
.
153.
Wege
,
A.
, and
Hommel
,
G.
,
2005
, “
Development and Control of a Hand Exoskeleton for Rehabilitation of Hand Injuries
,”
Intelligent Robots and Systems
, Edmonton, AB, Canada, Aug. 2–6, pp. 3046–3051.
154.
Chiaradia
,
D.
,
Xiloyannis
,
M.
,
Antuvan
,
C. W.
,
Frisoli
,
A.
, and
Masia
,
L.
,
2018
, “
Design and Embedded Control of a Soft Elbow Exosuit
,”
IEEE
International Conference on Soft Robotics
, Livorno, Italy, Apr. 24–28, pp.
565
571
.
155.
Svetlana
,
G.
,
Rodriguez–Guerrero
,
C.
,
Victor
,
G.
,
Bram
,
V.
, and
Dirk
,
L.
,
2018
, “
Evaluation and Analysis of Push-Pull Cable Actuation System Used for Powered Orthoses
,”
Front. Rob. AI
,
5
, p. 105.
You do not currently have access to this content.