This work is concerned with Mathieu's equation—a classical differential equation, which has the form of a linear second-order ordinary differential equation (ODE) with Cosine-type periodic forcing of the stiffness coefficient, and its different generalizations/extensions. These extensions include: the effects of linear viscous damping, geometric nonlinearity, damping nonlinearity, fractional derivative terms, delay terms, quasiperiodic excitation, or elliptic-type excitation. The aim is to provide a systematic overview of the methods to determine the corresponding stability chart, its structure and features, and how it differs from that of the classical Mathieu's equation.

References

References
1.
Rand
,
R. H.
, 2017, “
Lecture Notes on Nonlinear Vibrations (Version 53)
,” Cornell University, Ithaca, NY, accessed July 23, 2017, http://dspace.library.cornell.edu/handle/1813/28989
2.
Magnus
,
W.
, and
Winkler
,
S.
,
1961
, “
Hill's Equation—Part II: Transformations, Approximation, Examples
,” New York University, New York, Report No.
BR-38
.https://archive.org/details/hillsequationiit00magn
3.
McLachlan
,
N. W.
,
1947
,
Theory and Applications of Mathieu Functions
,
Clarendon Press
,
Oxford, UK
.
4.
Erdelyi
,
A.
,
1955
,
Higher Transcendental Functions
, Vol.
III
,
McGraw-Hill Book Company
,
New York
.
5.
Stoker
,
J. J.
,
1950
,
Nonlinear Vibrations in Mechanical and Electrical Systems
,
Interscience Publishers
,
New York
.
6.
Cartmell
,
M.
,
1990
,
Introduction to Linear, Parametric and Nonlinear Vibrations
,
Chapman and Hall
,
London
.
7.
Ruby
,
L.
,
1996
, “
Applications of the Mathieu Equation
,”
Am. J. Phys.
,
64
(
1
), pp.
39
44
.
8.
Mathieu
,
E.
,
1868
, “
Mémoire sur Le Mouvement Vibratoire d'une Membrane de forme Elliptique
,”
J. Math. Pures Appl.
,
13
, pp.
137
203
.
9.
Heine
,
E.
,
1878
,
Hanbuch Der Kugelfunktionen
, Vol.
2
, Georg Reimer, Berlin, p.
81
.
10.
Floquet
,
G.
,
1883
, “
Sur les equations differetielles lineaires
,”
Ann. de L' Cole Normale Super.
,
12
, pp.
47
88
.
11.
Hill
,
G. W.
,
1886
, “
Mean Motion of the Lunar Perigee
,”
Acta Math.
,
8
, pp.
1
36
.
12.
Lord Rayleigh
,
1887
, “
Maintenance of Vibrations by Forces of Double Frequency and Propagation of Waves Through a Medium With a Periodic Structure
,”
Philo Magaz.
,
24
(
147
), pp.
145
159
.http://optoelectronics.eecs.berkeley.edu/LordRayleighA.pdf
13.
Sieger
,
B.
,
1908
, “
Die Beugung einer ebened elektrischen Weilen an einem Schirm von elliptischen Querschnitt
,”
A. der P.
,
27
(
13
), p.
626
.
14.
Whittaker
,
E. T.
,
1912
, “
Elliptic Cylinder Functions in Harmonic Analysis
,”
Paediatric Intensive Care Medicine
, Vol.
1
, Springer, London, p.
366
.
15.
Ince
,
E.
,
1927
, “
Research Into the Characteristic Numbers of Mathieu Equation
,”
Proc. R. Soc. Edinburgh
,
46
, pp.
20
29
.
16.
Strutt
,
M. J. O.
,
1928
, “
Zur Wellenmechanik des Atomgitters
,”
Ann. Phys.
,
391
(
10
), pp.
319
324
.
17.
Stephenson
,
A.
,
1908
, “
On a New Type of Dynamic Stability
,”
Memoirs and Proceedings of the Manchester Literary and Philosophical Society
, Vol.
52
, Manchester Literary and Philosophical Society, Manchester, UK, pp.
1
10
.
18.
Stephenson
,
A.
,
1908
, “
On Induced Stability
,”
Philos. Mag.
,
15
(
86
), pp.
233
236
.
19.
Thomsen
,
J. J.
,
2003
,
Vibrations and Stability: Advanced Theory, Analysis, and Tools
,
Springer-Verlag
,
Berlin
.
20.
Seyranian
,
A. P.
, and
Mailybaev
,
A. A.
,
2003
,
Multiparameter Stability Theory with Mechanical Applications
, Vol.
13
,
World Scientific
, Singapore.
21.
Verhulst
,
F.
, 2009, “
Perturbation Analysis of Parametric Resonance
,”
Encyclopedia of Complexity and Systems Science
, R. Meyers, ed., Springer, New York.
22.
Vlajic
,
N.
,
Liu
,
X.
,
Karki
,
H.
, and
Balachandran
,
B.
,
2014
, “
Torsional Oscillations of a Rotor With Continuous Stator Contact
,”
Int. J. Mech. Sci.
,
83
, pp.
65
75
.
23.
Yang
,
T. L.
, and
Rosenberg
,
R. M.
,
1967
, “
On the Vibrations of a Particle in the Plane
,”
Int. J. Non-Linear Mech.
,
2
(1), pp.
1
25
.
24.
Yang
,
T. L.
, and
Rosenberg
,
R. M.
,
1968
, “
On the Forced Vibrations of a Particle in the Plane
,”
Int. J. Non-Linear Mech.
,
3
(
1
), pp.
47
63
.
25.
Cole
,
J. D.
,
1968
,
Perturbation Methods in Applied Mathematics
,
Blaisdell
, Waltham, MA.
26.
Nayfeh
,
A.
,
1973
,
Perturbation Methods
,
Wiley
, New York.
27.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi Discretization for Time Delay Systems: Stability and Engineering Applications
(Applied Mathematical Science, Vol. 178),
Springer Science+Business Media
, New York.
28.
Kovacic
,
I. I.
, and
Rand
,
R.
,
2014
, “
Duffing-Type Oscillators With Amplitude-Independent Period
,”
Applied Nonlinear Dynamical Systems
, Vol.
93
,
J.
Awrejcewicz
, ed.,
Springer
, Berlin, pp.
1
10
.
29.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
,
Chichester, UK
.
30.
Rand
,
R. H.
,
Ramani
,
D. V.
,
Keith
,
W. L.
, and
Cipolla
,
K. M.
,
2000
, “
The Quadratically Damped Mathieu Equation and Its Application to Submarine Dynamics
,”
Control of Noise and Vibration: New Millenium
, AD-Vol. 61,
ASME
,
New York
, pp.
39
50
.
31.
Ramani
,
D. V.
,
Keith
,
W. L.
, and
Rand
,
R. H.
,
2004
, “
Perturbation Solution for Secondary Bifurcation in the Quadratically-Damped Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
39
(
3
), pp.
491
502
.
32.
Morrison
,
T. M.
, and
Rand
,
R. H.
,
2007
, “
2:1 Resonance in the Delayed Nonlinear Mathieu Equation
,”
Nonlinear Dyn.
,
50
(
1–2
), pp.
341
352
.
33.
Insperger
,
T.
, and
Stepan
,
G.
,
2002
, “Stability Chart for the Delayed Mathieu Equation,” Proc. R. Soc. A,
458
(
2024
), pp.
1989
1998
.
34.
Butcher
,
E. A.
, and
Mann
,
B. P.
,
2009
, “
Stability Analysis and Control of Linear Periodic Delayed Systems Using Chebyshev and Temporal Finite Element Methods
,”
Delay Differential Equations: Recent Advances and New Directions
,
B.
Balachandran
,
D.
Gilsinn
, and
T.
Kalmar-Nagy
, eds.,
Springer
,
New York
.
35.
Atay
,
F. M.
,
1998
, “
Van Der Pol's Oscillator Under Delayed Feedback
,”
J. Sound Vib.
,
218
(
2
), pp.
333
339
.
36.
Wirkus
,
S.
, and
Rand
,
R. H.
,
2002
, “
The Dynamics of Two Coupled Van Der Pol Oscillators With Delay Coupling
,”
Nonlinear Dyn.
,
30
(3), pp.
205
221
.
37.
Sah
,
S. M.
, and
Rand
,
R.
,
2016
, “
Delay Terms in the Slow Flow
,”
J. Appl. Nonlinear Dyn.
,
5
(
4
), pp.
471
484
.
38.
Bernstein
,
A.
, and
Rand
,
R.
,
2016
, “
Delay-Coupled Mathieu Equations in Synchrotron Dynamics
,”
J. Appl. Nonlinear Dyn.
,
5
(
3
), pp.
337
348
.
39.
Rand
,
R. H.
,
Sah
,
S. M.
, and
Suchorsky
,
M. K.
,
2010
, “
Fractional Mathieu Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
11
), pp.
3254
3262
.
40.
Ross
,
B.
,
1975
, “
A Brief History and Exposition of the Fundamental Theory of Fractional Calculus
,”
Fractional Calculus and Its Applications
(Springer Lecture Notes in Mathematics, Vol. 57), Springer, New York, pp.
1
36
.
41.
Mesbahi
,
A.
,
Haeri
,
M.
,
Nazari
,
M.
, and
Butcher
,
E. A.
,
2015
, “
Fractional Delayed Damped Mathieu Equation
,”
Int. J. Control
,
88
(
3
), pp.
622
630
.
42.
Rand
,
R.
,
Zounes
,
R.
, and
Hastings
,
R.
,
1997
, “
Dynamics of a Quasiperiodically Forced Mathieu Oscillator
,”
Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume
,
A.
Guran
, ed.,
World Scientific
, Singapore, pp.
203
221
.
43.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
1998
, “
Transition Curves in the Quasiperiodic Mathieu Equation
,”
SIAM J. Appl. Math.
,
58
(
4
), pp.
1094
1115
.
44.
Abouhazim
,
N.
,
Rand
,
R. H.
, and
Belhaq
,
M.
,
2006
, “
The Damped Nonlinear Quasiperiodic Mathieu Equation Near 2:2:1 Resonance
,”
Nonlinear Dyn.
,
45
(
3–4
), pp.
237
247
.
45.
Rand
,
R.
,
Guennoun
,
K.
, and
Belhaq
,
M.
,
2003
, “
2:2:1 Resonance in the Quasiperiodic Mathieu Equation
,”
Nonlinear Dyn.
,
31
(4), pp.
367
374
.
46.
Rand
,
R.
, and
Morrison
,
T.
,
2005
, “
2:1:1 Resonance in the Quasi-Periodic Mathieu Equation
,”
Nonlinear Dyn.
,
40
(2), pp.
195
203
.
47.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2017
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquet Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
.
48.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
2002
, “
Global Behavior of a Nonlinear Quasiperiodic Mathieu Equation
,”
Nonlinear Dyn.
,
27
(
1
), pp.
87
105
.
49.
Abramowitz
,
M.
, and
Stegun
,
I.
,
1965
,
Handbook of Mathematical Functions
,
Dover Publications
,
Mineola, NY
.
50.
Kovacic
,
I.
,
Cveticanin
,
L.
,
Zukovic
,
M.
, and
Rakaric
,
Z.
,
2016
, “
Jacobi Elliptic Functions: A Review of Nonlinear Oscillatory Application Problems
,”
J. Sound Vib.
,
380
, pp.
1
36
.
51.
Byrd
,
P.
, and
Friedman
,
M.
,
1954
,
Handbook of Elliptic Integrals for Engineers and Scientists
,
Springer
,
Berlin
.
52.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2000
,
Tables of Integrals, Series and Products
,
Academic Press
,
New York
.
53.
Kovacic
,
I.
, and
Zukovic
,
M.
,
2014
, “
A Pendulum With an Elliptic-Type Parametric Excitation: Stability Charts for a Damped and Undamped System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
4
), pp.
1185
1202
.
54.
Sah
,
S. M.
, and
Mann
,
B.
,
2012
, “
Transition Curves in a Parametrically Excited Pendulum With a Force of Elliptic Type
,”
Proc. R. Soc. A
,
468
(
2148
), pp.
3995
4007
.
55.
Dingle
,
R. B.
, and
Müller-Kirsten
,
H. J. W.
,
1962
, “
Asymptotic Expansions of Mathieu Functions and Their Characteristic Numbers
,”
J. Die Reine Angew. Math.
,
1962
(211), pp.
11
32
.
You do not currently have access to this content.