Origami is a traditional art form that realizes three-dimensional shapes by folding paper sheets. Origami designers use mathematical theorems to support their design efforts. These theorems require a condition of a flat fold on folded sheets. When working with paper, the paper is essentially zero thickness and folds flat. Thus, to access the power of flat-foldability theorems for origami-inspire design, nonzero thickness stiff sheet crease patterns must still be flat foldable. For nonzero thickness sheets as would be used in practical engineering applications, special fold designs are required to allow an effectively flat fold. In this issue of ASME Applied Mechanics Reviews, Lang and co-authors present a review of fold design techniques to enable effectively flat folding of nonzero thickness sheets. In this discussion, the impact of the author's work is highlighted. As well, the contributions of the authors work is situated in the context of origami-inspired systems design. The integration of their work into a systems construct clarifies and motivates the need for further origami-inspired design research.

References

References
1.
Harbin
,
R.
,
1997
,
Secrets of Origami: The Japanese Art of Paper Folding
,
3rd ed.
,
Dover Publications
,
Mineola, NY
.
2.
Morris
,
E.
,
McAdams
,
D.
, and
Malak
,
R.
,
2016
, “
The State-of-the-Art of Origami-Inspired Products: A Review
,”
ASME
Paper No. DETC2016-59629.
3.
Gantes
,
C. J.
,
2001
,
Deployable Structures: Analysis and Design
,
WIT Press
, Southampton, UK.
4.
O'Rourke
,
J.
,
2011
,
How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra
,
Cambridge University Press
,
Cambridge, UK
.
5.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
6.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
7.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.
8.
Howell
,
D. C.
,
2001
,
Statistical Methods for Psychology
,
Thomson
, Stamford, CT, p.
5
.
9.
Shigley
,
J. E.
, and
Mischke
,
C. L.
,
1989
,
Mechanical Engineering Design
,
5th ed.
,
McGraw-Hill
,
New York
.
10.
Maanasa
,
V.
, and
Reddy
,
S. R. L.
,
2014
, “
Origami-Innovative Structural Forms & Applications in Disaster Management
,”
Int. J. Current Eng. Technol.
,
4
(5), pp. 3431–3436.
11.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
430
438
.
12.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.
13.
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Ku
,
J.
,
2011
, “
Folding Any Orthogonal Maze
,”
Fifth International Meeting of Origami Science, Mathematics, and Education
, pp. 449–454.
14.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
Cambridge, UK
.
15.
Hull
,
T.
,
2006
,
Project Origami: Activities for Exploring Mathematics
,
A. K. Peters/CRC Press
,
Boca Raton, FL
.
16.
Lang
,
R. J.
,
1996
, “
A Computational Algorithm for Origami Design
,”
12th Annual ACM Symposium on Computational Geometry
, Philadelphia, PA, May 24–26, pp. 98–105.
17.
Lang
,
R. J.
,
2003
, “
Origami Design Secrets: Mathematical Methods for an Ancient Art
,”
A. K. Peters/CRS Press
,
Boca Raton, FL
.
18.
Demaine
,
E. D.
, and
Tachi
,
T.
,
2017
, “
Origamizer: A Practical Algorithm for Folding Any Polyhedron, LIPIcs-Leibniz International Proceedings in Informatics
,” Vol. 77, Dagstuhl, Wadern, Germany.
19.
Tachi
,
T.
,
2006
, “
3D Origami Design Based on Tucking Molecule
,”
Fourth International Meeting of Origami Science, Mathematics, and, Education
, Pasadena, CA, pp. 259–272.
20.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Visualization Comput. Graph.
,
16
(
2
), pp.
298
311
.
21.
Li
,
W.
, and
McAdams
,
D. A.
,
2015
, “
Designing Optimal Origami Structures by Computational Evolutionary Embryogeny
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011010
.
22.
McAdams
,
D. A.
, and
Li
,
W.
,
2014
, “
A Novel Method to Design and Optimize Flat-Foldable Origami Structures Through a Genetic Algorithm
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031008
.
23.
Li
,
W.
, and
McAdams
,
D. A.
,
2013
, “
A Novel Pixelated Multicellular Representation for Origami Structures That Innovates Computational Design and Control
,”
ASME
Paper No. DETC2013-13231.
24.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
25.
Buchanan
,
R.
,
1992
, “
Wicked Problems in Design Thinking
,”
Des. Issues
,
8
(
2
), pp.
5
21
.
You do not currently have access to this content.