Jacobs and Martini (JM) give a nice review of direct measurement methods (in situ electron microscopy), as well as indirect methods (which are based on contact resistance, contact stiffness, lateral forces, and topography) for measurement of the contact area, mostly at nanoscale. They also discuss simulation techniques and theories from single-contact continuum mechanics, to multicontact continuum mechanics and atomistic accounting. As they recognize, even at very small scales, “multiple-contacts” case occurs, and a returning problem is that the “real contact area” is often an ill-defined, “magnification” dependent quantity. The problem remains to introduce a truncation to the fractal roughness process, what was called in the 1970s “functional filtering.” The truncation can be “atomic roughness” or can be due to adhesion, or could be the resolution of the measuring instrument. Obviously, this also means that the strength (hardness) at the nanoscale is ill-defined. Of course, it is perfectly reasonable to fix the magnification and observe the dependence of contact area, and strength, on any other variable (speed, temperature, time, etc.).

References

References
1.
Pitenis
,
A. A.
,
Dowson
,
D.
, and
Sawyer
,
W. G.
,
2014
, “
Leonardo Da Vinci's Friction Experiments: An Old Story Acknowledged and Repeated
,”
Tribol. Lett.
,
56
(
3
), pp.
509
515
.
2.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1939
, “
The Area of Contact Between Stationary and Between Moving Surfaces
,”
Proc. R. Soc. London A
,
169
(
939
), pp.
391
413
.
3.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London A
,
243
(
1233
), pp.
190
205
.
4.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
,
2000
, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London A
,
456
(
1994
), pp.
387
405
.
5.
Ciavarella
,
M.
, and
Demelio
,
G.
,
2001
, “
Elastic Multiscale Contact of Rough Surfaces: Archard's Model Revisited and Comparisons With Modern Fractal Models
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
496
498
.
6.
Persson
,
B. N.
,
2001
, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
,
115
(
8
), pp.
3840
3861
.
7.
Greenwood
,
J. A.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London A
,
295
(
1442
), pp.
300
319
.
8.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London A
,
316
(
1524
), pp.
97
121
.
9.
Thomas
,
T. R.
, and
Sayles
,
R. S.
,
1973
, “
Discussion to Radhakrishnan V. Analysis of Some of the Reference Lines Used for Measuring Surface Roughness
,”
Proc. Inst. Mech. Eng.
,
187
, pp.
575
582
.
10.
Thomas
,
T. R.
, and
Sayles
,
R. S.
,
1978
, “
Some Problems in the Tribology of Rough Surfaces
,”
Tribol. Int.
,
11
(
3
), pp.
163
168
.
11.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(2), pp.
314
326
.
12.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc R. Soc. London A
,
324
(
1558
), pp. 301–313.
13.
Fuller, K. N. G.
, and
Tabor, D. F. R. S.
,
1975
, “
The Effect of Surface Roughness on the Adhesion of Elastic Solids
,”
Proc. R. Soc. London A
,
345
(1642), pp. 327–342.
14.
Pastewka
,
L.
, and
Robbins
,
M. O.
,
2014
, “
Contact Between Rough Surfaces and a Criterion for Macroscopic Adhesion
,”
Proc. Natl. Acad. Sci.
,
111
(
9
), pp.
3298
3303
.
15.
Ciavarella
,
M.
,
2016
, “
On Pastewka and Robbins' Criterion for Macroscopic Adhesion of Rough Surfaces
,”
ASME J. Tribol.
,
139
(
3
), p.
031404
.
16.
Ciavarella
,
M.
,
2017
, “On the Use of DMT Approximations in Adhesive Contacts, With Remarks on Random Rough Contacts,”
Tribol. Int.
,
114
, pp. 445–449.
17.
Ciavarella
,
M.
,
2016
, “
On a Recent Stickiness Criterion Using a Very Simple Generalization of DMT Theory of Adhesion
,”
J. Adhes. Sci. Technol.
,
30
(
24
), pp.
2725
2735
.
18.
Ciavarella
,
M.
, and
Papangelo
,
A.
,
2017
, “
A Modified Form of Pastewka–Robbins Criterion for Adhesion
,”
J. Adhes.
, epub.
19.
Ciavarella
,
M.
,
Papangelo
,
A.
, and
Afferrante
,
L.
,
2017
, “
Adhesion Between Self-Affine Rough Surfaces: Possible Large Effects in Small Deviations From the Nominally Gaussian Case
,”
Tribol. Int.
,
109
, pp.
435
440
.
20.
Ciavarella
,
M.
, and
Afferrante
,
L.
,
2016
, “
Adhesion of Rigid Rough Contacts With Bounded Distribution of Heights
,”
Tribol. Int.
,
100
, pp.
18
23
.
21.
Joe
,
J.
,
Scaraggi
,
M.
, and
Barber
,
J. R.
,
2017
, “
Effect of Fine-Scale Roughness on the Tractions Between Contacting Bodies
,”
Tribol. Int.
,
111
, pp.
52
56
.
22.
Ciavarella
,
M.
,
2015
, “
Adhesive Rough Contacts Near Complete Contact
,”
Int. J. Mech. Sci.
,
104
, pp.
104
111
.
23.
Ciavarella
,
M.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2017
, “
Some Closed-Form Results for Adhesive Rough Contacts Near Complete Contact on Loading and Unloading in the Johnson, Kendall, and Roberts Regime
,”
ASME J. Tribol.
,
140
(
1
), p.
011402
.
24.
Luan
,
B.
, and
Robbins
,
M. O.
,
2005
, “
The Breakdown of Continuum Models for Mechanical Contacts
,”
Nature
,
435
(
7044
), pp.
929
932
.
25.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
153
159
.
26.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
University Press
,
Cambridge, UK
.
27.
Barber
,
J. R.
,
2003
, “
Bounds on the Electrical Resistance Between Contacting Elastic Rough Bodies
,”
Proc. R. Soc. London A
,
459
(
2029
), pp.
53
66
.
28.
Ben-David
,
O.
, and
Fineberg
,
J.
,
2011
, “
Static Friction Coefficient Is Not a Material Constant
,”
Phys. Rev. Lett.
,
106
(
25
), p.
254301
.
29.
Rubinstein
,
S. M.
,
Cohen
,
G.
, and
Fineberg
,
J.
,
2004
, “
Detachment Fronts and the Onset of Dynamic Friction
,”
Nature
,
430
(
7003
), pp.
1005–1009
.
You do not currently have access to this content.