The tiny contact zone (approximately 1 cm2) where steel wheel meets steel rail is fundamental to rail transport. This work is a comprehensive presentation of recent research in wheel–rail contact tribology. It stresses that, unlike gears or rolling bearings which are sealed contacts with reduced exposure to the surrounding environment, a wheel–rail contact is an open system that is exposed to dirt and particles as well as to applied and natural lubrication (the latter category includes rain, dew, and biological materials such as leaves). As an open system contact, it also radiates sound and airborne wear particles. These characteristics of an open system underscore the need for special studies of open system tribology. Areas requiring study include airborne particle emissions and the environmental effects of applied lubrication and friction modification. Given that adhesion, wear, and sound and particle emission are closely related in an open system, these should be studied together rather than independently.

References

1.
White
,
B. T.
,
Nilsson
,
R.
,
Olofsson
,
U. D.
,
Arnall
,
A.
,
Evans
,
M. D.
,
Armitage
,
T.
, Fisk, J., Fletcher, D. I., and Lewis, R.,
2017
, “
Effect of the Presence of Moisture at the Wheel–Rail Interface During Dew and Damp Conditions
,”
Proc. Inst. Mech. Eng., Part F
, epub.
2.
Nilsson
,
R.
,
2005
, “
On Wear in Rolling/Sliding Contacts
,”
Doctoral thesis
, KTH Royal Institute of Technology, Stockholm, Sweden.http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A7018&dswid=980
3.
Waara
,
P.
,
2001
, “
Lubricant Influence on Flange Wear in Sharp Railroad Curves
,”
Ind. Lubr. Tribol.
,
53
(4), pp.
161
168
.
4.
Olofsson
,
U.
,
2009
, “
Adhesion and Friction Modification
,”
Wheel-Rail Interface Handbook
,
R.
Lewis
and
U.
Olofsson
, eds.,
Woodhead Publishing
, Cambridge, UK, pp.
510
527
.
5.
Olofsson
,
U.
, and
Telliskivi
,
T.
,
2003
, “
Wear, Plastic Deformation and Friction of Two Rail Steels—A Full-Scale Test and a Laboratory Study
,”
Wear
,
254
(1–2), pp.
80
93
.
6.
Marshall
,
M.
,
Lewis
,
R.
,
Dwyer-Joyce
,
R.
,
Olofsson
,
U.
, and
Björklund
,
S.
,
2006
, “
Experimental Characterization of Wheel–Rail Contact Patch Evolution
,”
ASME J. Tribol.
,
128
(3), pp.
493
504
.
7.
Lee
,
K. M.
, and
Polycarpou
,
A. A.
,
2005
, “
Wear of Conventional Pearlitic and Improved Bainitic Rail Steels
,”
Wear
,
259
(1–6), pp.
391
399
.
8.
Olofsson
,
U.
,
Zhu
,
Y.
,
Abbasi
,
S.
,
Lewis
,
R.
, and
Lewis
,
S.
,
2013
, “
Tribology of the Wheel–Rail Contact—Aspects of Wear, Particle Emission and Adhesion
,”
Veh. Syst. Dyn.
,
51
(7), pp.
1091
1120
.
9.
Marta
,
H. A.
, and
Mels
,
K.
,
1969
, “
Wheel-Rail Adhesion
,”
ASME J. Eng. Ind.
,
91
(3), pp.
839
846
.
10.
Khalladi
,
A.
, and
Elleuch
,
K.
,
2016
, “
Tribological Behavior of Wheel–Rail Contact Under Different Contaminants Using Pin-on-Disk Methodology
,”
ASME J. Tribol.
,
139
(1), p.
011102
.
11.
Lyu
,
Y.
,
Zhu
,
Y.
, and
Olofsson
,
U.
,
2015
, “
Wear Between Wheel and Rail: A Pin-on-Disc Study of Environmental Conditions and Iron Oxides
,”
Wear
,
328–329
, pp.
277
285
.
12.
Lyu
,
Y.
,
Bergseth
,
E.
,
Olofsson
,
U.
,
Lindgren
,
A.
, and
Höjer
,
M.
,
2015
, “
On the Relationships Among Wheel–Rail Surface Topography, Interface Noise and Tribological Transitions
,”
Wear
,
338–339
, pp.
36
46
.
13.
Abbasi
,
S.
,
Jansson
,
A.
,
Sellgren
,
U.
, and
Olofsson
,
U.
,
2013
, “
Particle Emissions From Rail Traffic: A Literature Review
,”
Crit. Rev. Environ. Sci. Technol.
,
43
(23), pp.
2511
2544
.
14.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Nilsson
,
R.
,
2012
, “
A Field Test Study of Leaf Contamination on Railhead Surfaces
,”
Proc. Inst. Mech. Eng., Part F
,
228
(1), pp.
71
84
.
15.
Broster
,
M.
,
Pritchard
,
C.
, and
Smith
,
D.
,
1974
, “
Wheel/Rail Adhesion: Its Relation to Rail Contamination on British Railways
,”
Wear
,
29
(3), pp.
309
321
.
16.
Beagley
,
T. M.
,
McEwen
,
I. J.
, and
Pritchard
,
C.
,
1975
, “
Wheel–Rail Adhesion-Boundary Lubrication by Oily Fluids
,”
Wear
,
31
(1), pp.
77
88
.
17.
Beagley
,
T.
,
McEwen
,
I.
, and
Pritchard
,
C.
,
1975
, “
Wheel/Rail Adhesion—The Influence of Railhead Debris
,”
Wear
,
33
(1), pp.
141
152
.
18.
Beagley
,
T.
, and
Pritchard
,
C.
,
1975
, “
Wheel/Rail Adhesion—The Overriding Influence of Water
,”
Wear
,
35
(2), pp.
299
313
.
19.
Suzumura
,
J.
,
Sone
,
Y.
,
Ishizaki
,
A.
,
Yamashita
,
D.
,
Nakajima
,
Y.
, and
Ishida
,
M.
,
2011
, “
In Situ X-Ray Analytical Study on the Alteration Process of Iron Oxide Layers at the Railhead Surface While Under Railway Traffic
,”
Wear
,
271
(1–2), pp.
47
53
.
20.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Chen
,
H.
,
2013
, “
Friction Between Wheel and Rail: A Pin-on-Disc Study of Environmental Conditions and Iron Oxides
,”
Tribol. Lett.
,
52
(2), pp.
327
339
.
21.
Zhu
,
Y.
,
Lyu
,
Y.
, and
Olofsson
,
U.
,
2015
, “
Mapping the Friction Between Railway Wheels and Rails Focusing on Environmental Conditions
,”
Wear
,
324–325
, pp.
122
128
.
22.
Lewis
,
S. R.
,
Lewis
,
R.
,
Olofsson
,
U.
,
Eadie
,
D. T.
,
Cotter
,
J.
, and
Lu
,
X.
,
2012
, “
Effect of Humidity, Temperature and Railhead Contamination on the Performance of Friction Modifiers: Pin-on-Disk Study
,”
Proc. Inst. Mech. Eng., Part F
,
227
(2), pp.
115
127
.
23.
Olofsson
,
U.
, and
Sundvall
,
K.
,
2004
, “
Influence of Leaf, Humidity and Applied Lubrication on Friction in the Wheel–Rail Contact: Pin-on-Disc Experiments
,”
Proc. Inst. Mech. Eng., Part F
,
218
(3), pp.
235
242
.
24.
Baek
,
K.-S.
,
Kyogoku
,
K.
, and
Nakahara
,
T.
,
2007
, “
An Experimental Investigation of Transient Traction Characteristics in Rolling–Sliding Wheel/Rail Contacts Under Dry–Wet Conditions
,”
Wear
,
263
(1–6), pp.
169
179
.
25.
Wang
,
W.
,
Shen
,
P.
,
Song
,
J.
,
Guo
,
J.
,
Liu
,
Q.
, and
Jin
,
X.
,
2011
, “
Experimental Study on Adhesion Behavior of Wheel/Rail Under Dry and Water Conditions
,”
Wear
,
271
(9–10), pp.
2699
2705
.
26.
Lewis
,
R.
,
Gallardo-Hernandez
,
E. A.
,
Hilton
,
T.
, and
Armitage
,
T.
,
2009
, “
Effect of Oil and Water Mixtures on Adhesion in the Wheel/Rail Contact
,”
Proc. Inst. Mech. Eng., Part F
,
223
(3), pp.
275
283
.
27.
Wang
,
W. J.
,
Wang
,
H.
,
Wang
,
H. Y.
,
Guo
,
J.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and Jin, X. S.,
2013
, “
Sub-Scale Simulation and Measurement of Railroad Wheel/Rail Adhesion Under Dry and Wet Conditions
,”
Wear
,
302
(1–2), pp.
1461
1467
.
28.
Nakahara
,
T.
,
Baek
,
K.-S.
,
Chen
,
H.
, and
Ishida
,
M.
,
2011
, “
Relationship Between Surface Oxide Layer and Transient Traction Characteristics for Two Steel Rollers Under Unlubricated and Water Lubricated Conditions
,”
Wear
,
271
(1–2), pp.
25
31
.
29.
Oldknow
,
K.
,
Eadie
,
D. T.
, and
Stock
,
R.
,
2013
, “
The Influence of Precipitation and Friction Control Agents on Forces at the Wheel/Rail Interface in Heavy Haul Railways
,”
Proc. Inst. Mech. Eng., Part F
,
227
(1), pp.
86
93
.
30.
Lyu
,
Y.
,
Bergseth
,
E.
, and
Olofsson
,
U.
,
2016
, “
Open System Tribology and Influence of Weather Condition
,”
Sci. Rep.
,
6
, p.
32455
.
31.
Chen
,
H.
,
Ban
,
T.
,
Ishida
,
M.
, and
Nakahara
,
T.
,
2008
, “
Experimental Investigation of Influential Factors on Adhesion Between Wheel and Rail Under Wet Conditions
,”
Wear
,
265
(9–10), pp.
1504
1511
.
32.
Chen
,
H.
,
Ban
,
T.
,
Ishida
,
M.
, and
Nakahara
,
T.
,
2006
, “
Effect of Water Temperature on the Adhesion Between Rail and Wheel
,”
Proc. Inst. Mech. Eng., Part J
,
220
(7), pp.
571
579
.
33.
Chen
,
H.
,
Yoshimura
,
A.
, and
Ohyama
,
T.
,
1998
, “
Numerical Analysis for the Influence of Water Film on Adhesion Between Rail and Wheel
,”
Proc. Inst. Mech. Eng., Part J
,
212
(5), pp.
359
368
.
34.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Persson
,
K.
,
2012
, “
Investigation of Factors Influencing Wheel–Rail Adhesion Using a Mini-Traction Machine
,”
Wear
,
292–293
, pp.
218
231
.
35.
Lewis
,
S.
,
Lewis
,
R.
,
Richards
,
P.
, and
Buckley-Johnstone
,
L.
,
2014
, “
Investigation of the Isolation and Frictional Properties of Hydrophobic Products on the Rail Head, When Used to Combat Low Adhesion
,”
Wear
,
314
(1–2), pp.
213
219
.
36.
Arias-Cuevas
,
O.
,
Li
,
Z.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2010
, “
Rolling–Sliding Laboratory Tests of Friction Modifiers in Dry and Wet Wheel–Rail Contacts
,”
Wear
,
268
(3–4), pp.
543
551
.
37.
Bucher
,
F.
,
Dmitriev
,
A. I.
,
Ertz
,
M.
,
Knothe
,
K.
,
Popov
,
V. L.
,
Psakhie
,
S. G.
, and Shilko, E.,
2006
, “
Multiscale Simulation of Dry Friction in Wheel/Rail Contact
,”
Wear
,
261
(7–8), pp.
874
884
.
38.
Zhu
,
Y.
,
Chen
,
X.
,
Wang
,
W.
, and
Yang
,
H.
,
2015
, “
A Study on Iron Oxides and Surface Roughness in Dry and Wet Wheel−Rail Contacts
,”
Wear
,
328–329
, pp.
241
248
.
39.
Zhu
,
Y.
,
Yang
,
H.
, and
Wang
,
W.
,
2015
, “
Twin-Disc Tests of Iron Oxides in Dry and Wet Wheel–Rail Contacts
,”
Proc. Inst. Mech. Eng., Part F
,
230
(4), pp.
1066
1076
.
40.
Gallardo-Hernandez
,
E. A.
, and
Lewis
,
R.
,
2008
, “
Twin Disc Assessment of Wheel/Rail Adhesion
,”
Wear
,
265
(9–10), pp.
1309
1316
.
41.
Wu
,
B.
,
Wen
,
Z.
,
Wang
,
H.
, and
Jin
,
X.
,
2014
, “
Numerical Analysis on Wheel/Rail Adhesion Under Mixed Contamination of Oil and Water With Surface Roughness
,”
Wear
,
314
(1–2), pp.
140
147
.
42.
Wang
,
H.
,
Wang
,
W.
, and
Liu
,
Q.
,
2015
, “
Numerical and Experimental Investigation on Adhesion Characteristic of Wheel/Rail Under the Third Body Condition
,”
Proc. Inst. Mech. Eng., Part J
,
230
(1), pp.
111
118
.
43.
Fletcher
,
D.
,
2012
, “
A New Two-Dimensional Model of Rolling–Sliding Contact Creep Curves for a Range of Lubrication Types
,”
Proc. Inst. Mech. Eng., Part J
,
227
(6), pp.
529
537
.
44.
Chen
,
H.
,
Ban
,
T.
,
Ishida
,
M.
, and
Nakahara
,
T.
,
2002
, “
Adhesion Between Rail/Wheel Under Water Lubricated Contact
,”
Wear
,
253
(1–2), pp.
75
81
.
45.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Söderberg
,
A.
,
2013
, “
Adhesion Modeling in the Wheel–Rail Contact Under Dry and Lubricated Conditions Using Measured 3D Surfaces
,”
Tribol. Int.
,
61
, pp.
1
10
.
46.
Arias-Cuevas
,
O.
, and
Li
,
Z.
,
2011
, “
Field Investigations Into the Adhesion Recovery in Leaf-Contaminated Wheel–Rail Contacts With Locomotive Sanders
,”
Proc. Inst. Mech. Eng., Part F
,
225
(5), pp.
443
456
.
47.
Cann
,
P. M.
,
2006
, “
The ‘Leaves on the Line' Problem—A Study of Leaf Residue Film Formation and Lubricity Under Laboratory Test Conditions
,”
Tribol. Lett.
,
24
(2), pp.
151
158
.
48.
Kalousek
,
J.
, and
Johnson
,
K.
,
1992
, “
An Investigation of Short Pitch Wheel and Rail Corrugations on the Vancouver Mass Transit System
,”
Proc. Inst. Mech. Eng., Part F
,
206
(2), pp.
127
135
.
49.
50.
Galas
,
R.
,
Omasta
,
M.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2016
, “
Laboratory Investigation of Ability of Oil-Based Friction Modifiers to Control Adhesion at Wheel–Rail Interface
,”
Wear
,
368–369
, pp.
230
238
.
51.
Lewis
,
S. R.
,
Lewis
,
R.
,
Evans
,
G.
, and
Buckley-Johnstone
,
L. E.
,
2014
, “
Assessment of Railway Curve Lubricant Performance Using a Twin-Disc Tester
,”
Wear
,
314
(1–2), pp.
205
212
.
52.
Chen
,
H.
,
Fukagai
,
S.
,
Sone
,
Y.
,
Ban
,
T.
, and
Namura
,
A.
,
2014
, “
Assessment of Lubricant Applied to Wheel/Rail Interface in Curves
,”
Wear
,
314
(1–2), pp.
228
235
.
53.
Wang
,
W. J.
,
Zhang
,
H. F.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2011
, “
Study on the Adhesion Behavior of Wheel/Rail Under Oil, Water and Sanding Conditions
,”
Wear
,
271
(9–10), pp.
2693
2698
.
54.
Stock
,
R.
,
Stanlake
,
L.
,
Hardwick
,
C.
,
Yu
,
M.
,
Eadie
,
D.
, and
Lewis
,
R.
,
2016
, “
Material Concepts for Top of Rail Friction Management—Classification, Characterisation and Application
,”
Wear
,
366–367
, pp.
225
232
.
55.
Areiza
,
Y. A.
,
Garcés
,
S. I.
,
Santa
,
J. F.
,
Vargas
,
G.
, and
Toro
,
A.
,
2015
, “
Field Measurement of Coefficient of Friction in Rails Using a Hand-Pushed Tribometer
,”
Tribol. Int.
,
82
, pp.
274
279
.
56.
Moreno-Rios
,
M.
,
Gallardo-Hernandez
,
E. A.
,
Vite-Torres
,
M.
, and
Pena-Bautista
,
A.
,
2014
, “
Field and Laboratory Assessments of the Friction Coefficient at a Railhead
,”
Proc. Inst. Mech. Eng., Part F
,
230
(1), pp.
313
320
.
57.
Wu
,
B.
,
Wen
,
Z.
,
Wang
,
H.
, and
Jin
,
X.
,
2013
, “
Analysis of Wheel/Rail Adhesion Under Oil Contamination With Surface Roughness
,”
Proc. Inst. Mech. Eng., Part J
,
227
(11), pp.
1306
1315
.
58.
Tomeoka
,
M.
,
Kabe
,
N.
,
Tanimoto
,
M.
,
Miyauchi
,
E.
, and
Nakata
,
M.
,
2002
, “
Friction Control Between Wheel and Rail by Means of On-Board Lubrication
,”
Wear
,
253
(1–2), pp.
124
129
.
59.
Egana
,
J. I.
,
Vinolas
,
J.
, and
Gil-Negrete
,
N.
,
2005
, “
Effect of Liquid High Positive Friction (HPF) Modifier on Wheel–Rail Contact and Rail Corrugation
,”
Tribol. Int.
,
38
(8), pp.
769
774
.
60.
Spiryagin
,
M.
,
Sajjad
,
M.
,
Nielsen
,
D.
,
Sun
,
Y. Q.
,
Raman
,
D.
, and
Chattopadhyay
,
G.
,
2014
, “
Research Methodology for Evaluation of Top-of-Rail Friction Management in Australian Heavy Haul Networks
,”
Proc. Inst. Mech. Eng., Part F
,
228
(6), pp.
631
641
.
61.
Matsumoto
,
A.
,
Sato
,
Y.
,
Ohno
,
H.
,
Tomeoka
,
M.
,
Matsumoto
,
K.
,
Ogino
,
T.
, Tanimoto, M., Oka, Y., and Okano, M.,
2005
, “
Improvement of Bogie Curving Performance by Using Friction Modifier to Rail/Wheel Interface
,”
Wear
,
258
(7–8), pp.
1201
1208
.
62.
Li
,
Z.
,
Arias-Cuevas
,
O.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2009
, “
Rolling–Sliding Laboratory Tests of Friction Modifiers in Leaf Contaminated Wheel–Rail Contacts
,”
Tribol. Lett.
,
33
, pp.
97
109
.
63.
Lewis
,
R.
,
Gallardo
,
E. A.
,
Cotter
,
J.
, and
Eadie
,
D. T.
,
2011
, “
The Effect of Friction Modifiers on Wheel/Rail Isolation
,”
Wear
,
271
(1–2), pp.
71
77
.
64.
Hardwick
,
C.
,
Lewis
,
S.
, and
Lewis
,
R.
,
2013
, “
The Effect of Friction Modifiers on Wheel/Rail Isolation at Low Axle Loads
,”
Proc. Inst. Mech. Eng., Part F
,
228
(7), pp.
768
783
.
65.
Lu
,
X.
,
Cotter
,
J.
, and
Eadie
,
D. T.
,
2005
, “
Laboratory Study of the Tribological Properties of Friction Modifier Thin Films for Friction Control at the Wheel/Rail Interface
,”
Wear
,
259
(7–12), pp.
1262
1269
.
66.
Lewis
,
R.
,
Dwyer-Joyce
,
R. S.
, and
Lewis
,
J.
,
2003
, “
Disc Machine Study of Contact Isolation During Railway Track Sanding
,”
Proc. Inst. Mech. Eng., Part F
,
217
(1), pp.
11
24
.
67.
Arias-Cuevas
,
O.
,
Li
,
Z.
, and
Lewis
,
R.
,
2011
, “
A Laboratory Investigation on the Influence of the Particle Size and Slip During Sanding on the Adhesion and Wear in the Wheel–Rail Contact
,”
Wear
,
271
(1–2), pp.
14
24
.
68.
Omasta
,
M.
,
Machatka
,
M.
,
Smejkal
,
D.
,
Hartl
,
M.
, and
Křupka
,
I.
,
2015
, “
Influence of Sanding Parameters on Adhesion Recovery in Contaminated Wheel–Rail Contact
,”
Wear
,
322–323
, pp.
218
225
.
69.
Arias-Cuevas
,
O.
,
Li
,
Z.
,
Lewis
,
R.
, and
Gallardo-Hernandez
,
E. A.
,
2010
, “
Laboratory Investigation of Some Sanding Parameters to Improve the Adhesion in Leaf-Contaminated Wheel—Rail Contacts
,”
Proc. Inst. Mech. Eng., Part F
,
224
(3), pp.
139
157
.
70.
Arias-Cuevas
,
O.
,
Li
,
Z.
, and
Lewis
,
R.
,
2009
, “
Investigating the Lubricity and Electrical Insulation Caused by Sanding in Dry Wheel–Rail Contacts
,”
Tribol. Lett.
,
37
(3), pp.
623
635
.
71.
Sone
,
Y.
,
Suzumura
,
J.
,
Ban
,
T.
,
Aoki
,
F.
, and
Ishida
,
M.
,
2008
, “
Possibility of In Situ Spectroscopic Analysis for Iron Rust on the Running Band of Rail
,”
Wear
,
265
(9–10), pp.
1396
1401
.
72.
Hardwick
,
C.
,
Lewis
,
R.
, and
Olofsson
,
U.
,
2013
, “
Low Adhesion Due to Oxide Formation in the Presence of Salt
,”
Proc. Inst. Mech. Eng., Part F
,
228
(8), pp.
887
897
.
73.
Cao
,
X.
,
Huang
,
W. L.
,
He
,
C. G.
,
Peng
,
J. F.
,
Guo
,
J.
,
Wang
,
W. J.
, Liu, Q., and Zhu, M.,
2016
, “
The Effect of Alumina Particle on Improving Adhesion and Wear Damage of Wheel/Rail Under Wet Conditions
,”
Wear
,
348–349
, pp.
98
115
.
74.
Wang
,
W. J.
,
Zhang
,
H. F.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X. S.
,
2015
, “
Investigation on Adhesion Characteristic of Wheel/Rail Under the Magnetic Field Condition
,”
Proc. Inst. Mech. Eng., Part J
,
230
(5), pp.
611
617
.
75.
Bugarcic
,
H.
,
1986
, “
The Influence of Contamination on Metallic Friction
,”
Wear
,
113
(1), pp.
21
35
.
76.
Cookson
,
J. M.
, and
Mutton
,
P. J.
,
2011
, “
The Role of the Environment in the Rolling Contact Fatigue Cracking of Rails
,”
Wear
,
271
(1–2), pp.
113
119
.
77.
Lewis
,
S. R.
, and
Dwyer-Joyce
,
R. S.
,
2009
,
Effect of Contaminants on Wear, Fatigue and Traction. Wheel–Rail Interface Handbook
,
Woodhead Publishing
, Cambridge, UK, pp.
437
455
.
78.
Fletcher
,
D. I.
, and
Beynon
,
J. H.
,
2000
, “
The Effect of Intermittent Lubrication on the Fatigue Life of Pearlitic Rail Steel in Rolling–Sliding Contact
,”
Proc. Inst. Mech. Eng., Part F
,
214
(3), pp.
145
158
.
79.
Gao
,
N.
, and
Dwyer-Joyce
,
R. S.
,
2000
, “
The Effects of Surface Defects on the Fatigue of Water- and Oil-Lubricated Contacts
,”
Proc. Inst. Mech. Eng., Part J
,
214
(6), pp.
611
626
.
80.
Eadie
,
D. T.
,
Elvidge
,
D.
,
Oldknow
,
K.
,
Stock
,
R.
,
Pointner
,
P.
,
Kalousek
,
J.
, and Klauser, P.,
2008
, “
The Effects of Top of Rail Friction Modifier on Wear and Rolling Contact Fatigue: Full-Scale Rail–Wheel Test Rig Evaluation, Analysis and Modelling
,”
Wear
,
265
(9–10), pp.
1222
1230
.
81.
Stock
,
R.
,
Eadie
,
D. T.
,
Elvidge
,
D.
, and
Oldknow
,
K.
,
2011
, “
Influencing Rolling Contact Fatigue Through Top of Rail Friction Modifier Application—A Full Scale Wheel–Rail Test Rig Study
,”
Wear
,
271
(1–2), pp.
134
142
.
82.
Suda
,
Y.
,
Iwasa
,
T.
,
Komine
,
H.
,
Tomeoka
,
M.
,
Nakazawa
,
H.
,
Matsumoto
,
K.
, Nakai, T., Tanimoto, M., and Kishimoto, Y.,
2005
, “
Development of Onboard Friction Control
,”
Wear
,
258
(7–8), pp.
1109
1114
.
83.
Waara
,
P.
,
Norrby
,
T.
, and
Prakash
,
B.
,
2004
, “
Tribochemical Wear of Rail Steels Lubricated With Synthetic Ester-Based Model Lubricants
,”
Tribol. Lett.
,
17
(3), pp.
561
568
.
84.
Dubourg
,
M. C.
, and
Lamacq
,
V.
,
2002
, “
A Predictive Rolling Contact Fatigue Crack Growth Model: Onset of Branching, Direction, and Growth—Role of Dry and Lubricated Conditions on Crack Patterns
,”
ASME J. Tribol.
,
124
(4), pp.
680–688
.
85.
Lewis
,
R.
, and
Dwyer-Joyce
,
R. S.
,
2006
, “
Wear at the Wheel/Rail Interface When Sanding Is Used to Increase Adhesion
,”
Proc. Inst. Mech. Eng., Part F
,
220
(1), pp.
29
41
.
86.
Grieve
,
D. G.
,
Dwyer-Joyce
,
R. S.
, and
Beynon
,
J. H.
,
2001
, “
Abrasive Wear of Railway Track by Solid Contaminants
,”
Proc. Inst. Mech. Eng., Part F
,
215
(3), pp.
193
205
.
87.
Wang
,
W. J.
,
Liu
,
T. F.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X. S.
,
2014
, “
Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail Under Low Adhesion Conditions
,”
Tribol. Int.
,
75
, pp.
16
23
.
88.
Sundh
,
J.
, and
Olofsson
,
U.
,
2008
, “
Seizure Mechanisms of Wheel–Rail Contacts Under Lubricated Conditions Using a Transient Ball-on-Disc Test Method
,”
Tribol. Int.
,
41
(9–10), pp.
867
874
.
89.
Sundh
,
J.
,
Olofsson
,
U.
, and
Sundvall
,
K.
,
2008
, “
Seizure and Wear Rate Testing of Wheel–Rail Contacts Under Lubricated Conditions Using Pin-on-Disc Methodology
,”
Wear
,
265
(9–10), pp.
1425
1430
.
90.
Stoimenov
,
B. L.
,
Maruyama
,
S.
,
Adachi
,
K.
, and
Kato
,
K.
,
2007
, “
The Roughness Effect on the Frequency of Frictional Sound
,”
Tribol. Int.
,
40
(4), pp.
659
664
.
91.
Thompson
,
D. J.
, and
Jones
,
C. J. C.
,
2000
, “
A Review of the Modelling of Wheel/Rail Noise Generation
,”
J. Sound Vib.
,
231
(3), pp.
519
536
.
92.
Wu
,
T. X.
, and
Thompson
,
D. J.
,
2003
, “
On the Impact Noise Generation due to a Wheel Passing Over Rail Joints
,”
J. Sound Vib.
,
267
(3), pp.
485
496
.
93.
Thompson
,
D. J.
,
1996
, “
On the Relationship Between Wheel and Rail Surface Roughness and Rolling Noise
,”
J. Sound Vib.
,
193
(1), pp.
149
160
(1).
94.
Rudd
,
M.
,
1976
, “
Wheel/Rail Noise—Part II: Wheel Squeal
,”
J. Sound Vib.
,
46
(3), pp.
381
394
.
95.
Liu
,
X.
, and
Meehan
,
P. A.
,
2014
, “
Investigation of the Effect of Relative Humidity on Lateral Force in Rolling Contact and Curve Squeal
,”
Wear
,
310
(1–2), pp.
12
19
.
96.
Eadie
,
D. T.
,
Santoro
,
M.
, and
Kalousek
,
J.
,
2005
, “
Railway Noise and the Effect of Top of Rail Liquid Friction Modifiers: Changes in Sound and Vibration Spectral Distributions in Curves
,”
Wear
,
258
(7–8), pp.
1148
1155
.
97.
Höjer
,
M.
,
Bergseth
,
E.
,
Olofsson
,
U.
,
Nilsson
,
R.
, and
Lyu
,
Y.
,
2016
, “
A Noise Related Track Maintenance Tool for Severe Wear Detection of Wheel–Rail Contact
,”
Civil-Comp Proceedings
,
110
, p.
146
.http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A931368&dswid=5749
98.
Johansson
,
C.
, and
Johansson
,
P.
,
2003
, “
Particulate Matter in the Underground of Stockholm
,”
Atmos. Environ.
,
37
(1), pp.
3
9
.
99.
Sundh
,
J.
,
Olofsson
,
U.
,
Olander
,
L.
, and
Jansson
,
A.
,
2009
, “
Wear Rate Testing in Relation to Airborne Particles Generated in a Wheel–Rail Contact
,”
Lubr. Sci.
,
21
(4), pp.
135
150
.
100.
Liu
,
H.
,
Cha
,
Y.
,
Olofsson
,
U.
,
Jonsson
,
L. T. I.
, and
Jönsson
,
P. G.
,
2016
, “
Effect of the Sliding Velocity on the Size and Amount of Airborne Wear Particles Generated From Dry Sliding Wheel–Rail Contacts
,”
Tribol. Lett.
,
63
, p.
30
.
101.
Abbasi
,
S.
,
Olofsson
,
U.
,
Zhu
,
Y.
, and
Sellgren
,
U.
,
2013
, “
Pin-on-Disc Study of the Effects of Railway Friction Modifiers on Airborne Wear Particles From Wheel–Rail Contact
,”
Tribol. Int.
,
60
, pp.
136
139
.
102.
Abbasi
,
S.
,
Olander
,
L.
,
Larsson
,
C.
,
Olofsson
,
U.
,
Jansson
,
A.
, and
Sellgren
,
U.
,
2012
, “
A Field Test Study of Airborne Wear Particles From a Running Regional Train
,”
Proc. Inst. Mech. Eng., Part F
,
226
(1), pp.
95
109
.
103.
Fridell
,
E.
,
Björk
,
A.
,
Ferm
,
M.
, and
Ekberg
,
A.
,
2011
, “
On-Board Measurements of Particulate Matter Emissions From a Passenger Train
,”
Proc. Inst. Mech. Eng., Part F
,
225
(1), pp.
99
106
.
You do not currently have access to this content.