With the use of lighter construction materials, more slender architectural designs, and open floor plans resulting in low damping, vibration serviceability has become a dominant design criterion for structural engineers worldwide. In principle, assessment of floor vibration serviceability requires a proper consideration of three key issues: excitation source, system, and receiver. Walking is usually the dominant human excitation for building floors. This paper provides a comprehensive review of a considerable number of references dealing with experimental measurement and mathematical modeling of dynamic forces induced by a single pedestrian. The historical development of walking force modeling—from single harmonic loads to extremely complex stochastic processes—is discussed. As a conclusion to this effort, it is suggested that less reliance should be made by the industry on the deterministic force models, since they have been shown to be overly conservative. Alternatively, due to the random nature of human walking, probabilistic force models seem to be more realistic, while more research is needed to achieve enough confidence to implement in design practice.

References

References
1.
Jones
,
C. A.
,
Reynolds
,
P.
, and
Pavic
,
A.
,
2011
, “
Vibration Serviceability of Stadia Structures Subjected to Dynamic Crowd Loads: A Literature Review
,”
J. Sound Vib.
,
330
(
8
), pp.
1531
1566
.
2.
Xie
,
W.
,
Chang
,
L.
, and
Du
,
Y.
,
2007
, “
Analysis on Vibration Isolation of Zhongnan Theater
,”
Chin. J. Geotech. Eng.
,
29
(
11
), pp.
1720
1725
.
3.
Davis
,
B.
,
Liu
,
D.
, and
Murray
,
T. M.
,
2014
, “
Simplified Experimental Evaluation of Floors Subject to Walking-Induced Vibration
,”
J. Performance Constr. Facil.
,
28
(
5
), p.
4014023
.
4.
Hudson
,
E. J.
,
2016
, “
Active Control of Concert-Induced Vibrations
,”
Geotechnical and Structural Engineering Congress
, Phoenix, AZ, Feb. 14–17, pp.
1729
1741
.
5.
Brownjohn
,
J. M. W.
, and
Pavic
,
A.
,
2015
, “
Human-Induced Vibrations on Footbridges
,”
Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance: Proceedings of the Third International Conference on Bridge Maintenance, Safety and Management
(
IABMAS
), Porto, Portugal, July 16–19, CRC Press, Boca Raton, FL, pp.
263
264
.
6.
Dallard
,
P.
,
Fitzpatrick
,
A. J.
,
Flint
,
A.
,
Le Bourva
,
S.
,
Low
,
A.
,
Ridsdill Smith
,
R. M.
, and
Willford
,
M.
,
2001
, “
The London Millennium Footbridge
,”
Struct. Eng.
,
79
(
22
), pp.
17
21
.
7.
Davis
,
B.
, and
Avci
,
O.
,
2015
, “
Simplified Vibration Serviceability Evaluation of Slender Monumental Stairs
,”
J. Struct. Eng.
,
141
(
11
), pp.
1
9
.
8.
Avci
,
O.
,
2014
, “
Modal Parameter Variations Due to Joist Bottom Chord Extension Installations on Laboratory Footbridges
,”
J. Performance Constr. Facil.
,
29
(
5
).
9.
Avci
,
O.
,
2016
, “
Amplitude-Dependent Damping in Vibration Serviceability: Case of a Laboratory Footbridge
,”
J. Archit. Eng.
,
22
(
3
).
10.
Avci
,
O.
,
Setareh
,
M.
, and
Murray
,
T. M.
,
2010
, “
Vibration Testing of Joist Supported Footbridges
,”
Structures Congress
, Orlando, FL, May 12–15, pp.
878
889
.
11.
Willford
,
M. R.
, and
Young
,
P.
,
2006
,
A Design Guide for Footfall Induced Vibration of Structures
,
The Concrete Centre
,
London
.
12.
Smith
,
A. L.
,
Hicks
,
S. J.
, and
Devine
,
P. J.
,
2007
,
Design of Floors for Vibration: A New Approach
,
Steel Construction Institute Ascot
,
Berkshire, UK
.
13.
Murray
,
T. M.
,
Allen
,
D. E.
, and
Ungar
,
E. E.
,
2003
, “Design Guide 11, Floor Vibrations Due to Human Activities,” American Institute of Steel Construction (
AISC
),
Chicago, IL.
14.
Pavic
,
A.
, and
Willford
,
M. R.
,
2005
, “
Appendix G: Vibration Serviceability of Post-Tensioned Concrete Floors
,”
Post-Tensioned Concrete Floors Design Handbook
,
Concrete Society
,
Slough, UK
, pp.
99
107
.
15.
Tredgold
,
T.
,
1890
,
Elementary Principles of Carpentry
,
E. & F.N. Spon
,
New York
.
16.
Pavic
,
A.
, and
Reynolds
,
P.
,
2002
, “
Vibration Serviceability of Long-Span Concrete Building Floors. Part 1: Review of Background Information
,”
Shock Vib. Dig.
,
34
(
3
), pp.
191
211
.
17.
Pavic
,
A.
, and
Reynolds
,
P.
,
2002
, “
Vibration Serviceability of Long-Span Concrete Building Floors. Part 2: Review of Mathematical Modelling Approaches
,”
Shock Vib. Dig.
,
34
(
4
), pp.
279
297
.
18.
Pavic
,
A.
,
Reynolds
,
P.
,
Waldron
,
P.
, and
Bennett
,
K. J.
,
2001
, “
Critical Review of Guidelines for Checking Vibration Serviceability of Post-Tensioned Concrete Floors
,”
Cem. Concr. Compos.
,
23
(
1
), pp.
21
31
.
19.
Racic
,
V.
,
Pavic
,
A.
, and
Brownjohn
,
J. M. W.
,
2009
, “
Experimental Identification and Analytical Modelling of Human Walking Forces: Literature Review
,”
J. Sound Vib.
,
326
(
1
), pp.
1
49
.
20.
Živanović
,
S.
,
Pavic
,
A.
, and
Reynolds
,
P.
,
2005
, “
Vibration Serviceability of Footbridges Under Human-Induced Excitation: A Literature Review
,”
J. Sound Vib.
,
279
(
1
), pp.
1
74
.
21.
Brownjohn
,
J.
,
Racic
,
V.
, and
Chen
,
J.
,
2016
, “
Universal Response Spectrum Procedure for Predicting Walking-Induced Floor Vibration
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
741
755
.
22.
Racic
,
V.
,
Brownjohn
,
J. M. W.
, and
Pavic
,
A.
,
2013
, “
Dynamic Loading Factors of Individual Jogging Forces
,”
4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
(
COMPDYN
), Kos Island, Greece, June 12–14, pp. 2619–2627.
23.
Racic
,
V.
, and
Pavic
,
A.
,
2010
, “
Mathematical Model to Generate Near-Periodic Human Jumping Force Signals
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
138
152
.
24.
Occhiuzzi
,
A.
,
Spizzuoco
,
M.
, and
Ricciardelli
,
F.
,
2008
, “
Loading Models and Response Control of Footbridges Excited by Running Pedestrians
,”
Struct. Control Health Monit.
,
15
(
3
), pp.
349
368
.
25.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
Wiley
,
Hoboken, NJ
.
26.
Ebrahimpour
,
A.
, and
Sack
,
R. L.
,
2005
, “
A Review of Vibration Serviceability Criteria for Floor Structures
,”
Comput. Struct.
,
83
(
28
), pp.
2488
2494
.
27.
Van Nimmen
,
K.
,
Gezels
,
B.
,
De Roeck
,
G.
, and
Van Den Broeck
,
P.
,
2014
, “
The Effect of Modelling Uncertainties on the Vibration Serviceability Assessment of Floors
,”
9th International Conference on Structural Dynamics
(
EURODYN
), Porto, Portugal, June 30–July 2, pp.
959
966
.
28.
Griffin
,
M. J.
,
2012
,
Handbook of Human Vibration
,
Academic Press
,
London
.
29.
Reynolds
,
P.
,
2000
, “
The Effects of Raised Access Flooring on the Vibrational Performance of Long-Span Concrete Floors
,”
Ph.D. thesis
, University of Sheffield, Sheffield, UK.
30.
Middleton
,
C. J.
, and
Brownjohn
,
J. M. W.
,
2010
, “
Response of High Frequency Floors: A Literature Review
,”
Eng. Struct.
,
32
(
2
), pp.
337
352
.
31.
Ayyappa
,
E.
,
1997
, “
Normal Human Locomotion, Part 1: Basic Concepts and Terminology
,”
J. Prosthetics Orthotics
,
9
(
1
), pp.
10
17
.
32.
Messenger
,
N.
,
1994
, “
Moving the Human Machine: Understanding the Mechanical Characteristics of Normal Human Walking
,”
Phys. Educ.
,
29
(
6
), pp.
352
–357.
33.
Whittle
,
M. W.
,
2014
,
Gait Analysis: An Introduction
,
Butterworth-Heinemann
,
Oxford, UK
.
34.
Galbraith
,
F. W.
, and
Barton
,
M. V.
,
1970
, “
Ground Loading From Footsteps
,”
J. Acoust. Soc. Am.
,
48
(
5B
), pp.
1288
1292
.
35.
Inman
,
V. T.
,
Ralston
,
H. J.
, and
Todd
,
F.
,
1981
,
Human Walking
,
Williams & Wilkins
, Philadelphia, PA.
36.
Hausdorff
,
J. M.
,
2007
, “
Gait Dynamics, Fractals and Falls: Finding Meaning in the Stride-to-Stride Fluctuations of Human Walking
,”
Hum. Mov. Sci.
,
26
(
4
), pp.
555
589
.
37.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
Jeremy
,
C. O.
,
1992
,
Dynamics of Human Gait
,
Kiboho Publishers
,
Cape Town, South Africa
.
38.
Perc
,
M.
,
2005
, “
The Dynamics of Human Gait
,”
Eur. J. Phys.
,
26
(
3
), pp.
525
534
.
39.
Rose
,
J.
,
Gamble
,
J. G.
, and
Adams
,
J. M.
,
2006
,
Human Walking
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
40.
Newell
,
K. M.
, and
Slifkin
,
A. B.
,
1998
, “
The Nature of Movement Variability
,”
Motor Behavior and Human Skill
, Human Kinetics Publishers, Champaign, IL, pp.
143
160
.
41.
Pavia
,
A.
,
2009
, “
Probabilistic Assessment of Human Response to Footbridge Vibration
,”
J. Low Freq. Noise Vib. Act. Control
,
28
(
4
), pp.
255
268
.
42.
Živanović
,
S.
,
Pavic
,
A.
, and
Racic
,
V.
,
2012
, “
Towards Modelling In-Service Pedestrian Loading of Floor Structures
,”
Topics on the Dynamics of Civil Structures
, Vol.
1
,
Springer
, New York, pp.
85
94
.
43.
Bachmann
,
H.
, and
Ammann
,
W.
,
1987
,
Vibrations in Structures: Induced by Man and Machines
,
IABSE
,
Zurich, Switzerland
.
44.
Harper
,
F. C.
,
1962
, “
The Mechanics of Walking
,”
Res. Appl. Ind.
,
15
(
1
), pp.
23
28
.
45.
Blanchard
,
J.
,
Davies
,
B. L.
, and
Smith
,
J. W.
,
1977
, “
Design Criteria and Analysis for Dynamic Loading of Footbridges
,”
Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory
, Crowthorne, Berkshire, UK, May 19, pp. 90–106.
46.
Ohlsson
,
S. V.
,
1982
, “
Floor Vibration and Human Discomfort
,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.
47.
Andriacchi
,
T. P.
,
Ogle
,
J. A.
, and
Galante
,
J. O.
,
1977
, “
Walking Speed as a Basis for Normal and Abnormal Gait Measurements
,”
J. Biomech.
,
10
(
4
), pp.
261
268
.
48.
Kerr
,
S. C.
,
1998
, “
Human Induced Loading on Staircases
,”
Ph.D. thesis
, University of London, London.
49.
Rainer
,
J. H.
,
Pernica
,
G.
, and
Allen
,
D. E.
,
1988
, “
Dynamic Loading and Response of Footbridges
,”
Can. J. Civ. Eng.
,
15
(
1
), pp.
66
71
.
50.
Ebrahimpour
,
A.
,
Sack
,
R. L.
,
Patten
,
W. N.
, and
Hamam
,
A.
,
1994
, “
Experimental Measurements of Dynamic Loads Imposed by Moving Crowds
,”
Structures Congress XII
, ASCE, Atlanta, GA, Apr. 24–28, pp.
1385
1390
.
51.
Wheeler
,
J. E.
,
1980
, “
Pedestrian Induced Vibrations in Footbridges
,”
10th Australian Road Research Board Conference
(
ARRB
), Sydney, Australia, Aug. 25–29, pp.
21
35
.
52.
Wheeler
,
J. E.
,
1982
, “
Prediction and Control of Pedestrian-Induced Vibration in Footbridges
,”
J. Struct. Div.
,
108
(
9
), pp.
2045
2065
.
53.
Pavic
,
A.
,
1999
, “
Vibration Serviceability of Long-Span Cast In-Situ Concrete Floors
,”
Ph.D. thesis
, University of Sheffield, Sheffield, UK.
54.
Pedersen
,
L.
, and
Frier
,
C.
,
2010
, “
Sensitivity of Footbridge Vibrations to Stochastic Walking Parameters
,”
J. Sound Vib.
,
329
(
13
), pp.
2683
2701
.
55.
Brownjohn
,
J. M. W.
,
Pavic
,
A.
, and
Omenzetter
,
P.
,
2004
, “
A Spectral Density Approach for Modelling Continuous Vertical Forces on Pedestrian Structures Due to Walking
,”
Can. J. Civ. Eng.
,
31
(
1
), pp.
65
77
.
56.
Mercier
,
H.
,
Ammann
,
W. J.
,
Deischl
,
F.
,
Eisenmann
,
J.
,
Floegl
,
I.
,
Hirsch
,
G. H.
,
Klein
,
G. K.
,
Lande
,
G. J.
,
Mahrenholtz
,
O.
, and
Natke
,
H. G.
,
2012
,
Vibration Problems in Structures: Practical Guidelines
,
Birkhäuser
,
Basel, Switzerland
.
57.
Živanović
,
S.
, and
Pavic
,
A.
,
2007
, “
Probabilistic Approach to Subjective Assessment of Footbridge Vibration
,”
42nd UK Conference on Human Responses to Vibration
, Southampton, UK, Sept. 10–12.
58.
Hanagan
,
L. M.
,
2005
, “
Walking-Induced Floor Vibration Case Studies
,”
J. Archit. Eng.
,
11
(
1
), pp.
14
18
.
59.
Yoneda
,
M.
,
2002
, “
A Simplified Method to Evaluate Pedestrian-Induced Maximum Response of Cable-Supported Pedestrian Bridges
,”
International Conference on the Design and Dynamic Behaviour of Footbridges
, Paris, France, Nov. 20–22, pp.
255
256
.
60.
Young
,
P.
,
2001
, “
Improved Floor Vibration Prediction Methodologies
,” Arup Vibration Seminar on Engineering Structural Vibration, Current Developments in Research and Practice, London, Oct. 1.
61.
Willford
,
M.
,
Young
,
P.
, and
Field
,
C.
,
2007
, “
Predicting Footfall-Induced Vibration: Part 1
,”
Proc. Inst. Civ. Eng. Build.
,
160
(
2
), pp.
65
72
.
62.
Bachmann
,
H.
,
Pretlove
,
A. J.
, and
Rainer
,
J. H.
,
1995
, “
Vibrations Induced by People
,”
Vibration Problems in Structures
,
Birkhäuser
,
Basel, Switzerland
, pp.
1
28
.
63.
Baumann
,
K.
, and
Bachmann
,
H.
,
1988
,
Dynamic Loads Caused by Humans and Their Effect on Beam Structures
,
Institute of Structural Engineering (IBK)
,
Zurich, Switzerland
.
64.
Pimentel
,
R. L.
,
1997
, “
Vibrational Performance of Pedestrian Bridges Due to Human-Induced Loads
,”
Ph.D. thesis
, University of Sheffield, Sheffield, UK.
65.
Bocian
,
M.
,
Macdonald
,
J. H. G.
, and
Burn
,
J. F.
,
2013
, “
Biomechanically Inspired Modeling of Pedestrian-Induced Vertical Self-Excited Forces
,”
J. Bridge Eng.
,
18
(
12
), pp.
1336
1346
.
66.
Liu
,
D.
, and
Davis
,
B.
,
2015
, “
Walking Vibration Response of High-Frequency Floors Supporting Sensitive Equipment
,”
J. Struct. Eng.
,
141
(
8
), p.
4014199
.
67.
Willford
,
M.
,
Young
,
P.
, and
Field
,
C.
,
2005
, “
Improved Methodologies for the Prediction of Footfall-Induced Vibration
,”
Proc. SPIE
,
5933
, p.
59330R
.
68.
Živanović
,
S.
, and
Pavić
,
A.
,
2009
, “
Probabilistic Modeling of Walking Excitation for Building Floors
,”
J. Performance Constr. Facil.
,
23
(
3
), pp.
132
143
.
69.
Živanović
,
S.
,
Pavić
,
A.
, and
Reynolds
,
P.
,
2007
, “
Probability-Based Prediction of Multi-Mode Vibration Response to Walking Excitation
,”
Eng. Struct.
,
29
(
6
), pp.
942
954
.
70.
Antoniou
,
A.
,
2006
,
Digital Signal Processing
,
McGraw-Hill
,
Toronto, Canada
.
71.
Smith
,
S. W.
,
1997
,
The Scientist and Engineer's Guide to Digital Signal Processing
,
California Technical Pub.
,
San Diego, CA
.
72.
Eriksson
,
P.-E.
,
1994
, “
Vibration of Low-Frequency Floors-Dynamic Forces and Response Prediction
,”
Ph.D. thesis
, Chalmers University of Technology, Göteborg, Sweden.
73.
Sahnaci
,
C.
, and
Kasperski
,
M.
,
2005
, “
Random Loads Induced by Walking
,”
6th European Conference on Structural Dynamics
(
EURODYN
), Paris, France, Sept. 4–7, pp.
441
446
.
74.
Chopra
,
A. K.
,
1995
,
Dynamics of Structures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
75.
Živanović
,
S.
,
2015
, “
Modelling Human Actions on Lightweight Structures: Experimental and Numerical Developments
,”
6th International Conference on Experimental Vibration Analysis for Civil Engineering Structures
(
EVACES
), Dübendorf, Switzerland, Oct. 19–21, p.
1005
.
76.
Racic
,
V.
,
Brownjohn
,
J. M. W.
, and
Pavic
,
A.
,
2012
, “
Random Model of Vertical Walking Force Signals
,”
Topics on the Dynamics of Civil Structures
, Vol.
1
,
Springer
, New York, pp.
73
84
.
77.
Racic
,
V.
, and
Brownjohn
,
J. M. W.
,
2012
, “
Mathematical Modelling of Random Narrow Band Lateral Excitation of Footbridges Due to Pedestrians Walking
,”
Comput. Struct.
,
90–91
, pp.
116
130
.
78.
McCormac
,
J. C.
, and
Nelson
,
J. K.
,
2003
,
Structural Steel Design: LRFD Method
,
Prentice Hall
,
Englewood Cliffs, NJ
.
79.
Leonard
,
D. R.
,
1966
, “
Human Tolerance Levels for Bridge Vibrations
,” Road Research Laboratory, Harmondsworth, UK, RRL Report No.
34
.
80.
Matsumoto
,
Y.
,
Nishioka
,
T.
,
Shiojiri
,
H.
, and
Matsuzaki
,
K.
,
1978
, “
Dynamic Design of Footbridges
,”
IABSE Proceedings
, Bergamo, Italy, May, Vol.
2
, pp.
1
15
.
81.
Kerr
,
S. C.
, and
Bishop
,
N. W. M.
,
2001
, “
Human Induced Loading on Flexible Staircases
,”
Eng. Struct.
,
23
(
1
), pp.
37
45
.
82.
Matsumoto
,
Y.
,
Sato
,
S.
,
Nishioka
,
T.
, and
Shiojiri
,
H.
,
1972
, “
A Study on Design of Pedestrian Over-Bridges
,”
Trans. JSCE
,
4
, pp.
50
51
.
83.
Kasperski
,
M.
, and
Sahnaci
,
C.
,
2007
, “
Serviceability of Pedestrian Structures
,”
25th International Modal Analysis Conference
(
IMAC
), Orlando, FL, Feb. 19–22, pp.
774
798
.
84.
Pachi
,
A.
, and
Ji
,
T.
,
2005
, “
Frequency and Velocity of People Walking
,”
Struct. Eng.
,
84
(
3
), pp.
36
40
.
85.
Kramer
,
H.
, and
Kebe
,
H. W.
,
1980
, “
Man-Induced Structural Vibrations
,”
Der Bauing.
,
54
(
5
), pp.
195
199
.
86.
Zivanovic
,
S.
,
2006
, “
Probability-Based Estimation of Vibration for Pedestrian Structures Due to Walking
,”
Ph.D. thesis
, University of Sheffield, Sheffield, UK.
87.
Wiseman
,
R.
,
2008
,
Quirkology: The Curious Science of Everyday Lives
,
Pan Macmillan
,
Wales, UK
.
88.
Schulze
,
H.
,
1980
, “
Dynamic Effects of the Live Load on Footbridges
,”
Signal Schiene
,
24
(
2
), pp.
91
93
.
89.
Yamasaki
,
M.
,
Sasaki
,
T.
, and
Torii
,
M.
,
1991
, “
Sex Difference in the Pattern of Lower Limb Movement During Treadmill Walking
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
62
(
2
), pp.
99
103
.
90.
Ebrahimpour
,
A.
,
Hamam
,
A.
,
Sack
,
R. L.
, and
Patten
,
W. N.
,
1996
, “
Measuring and Modeling Dynamic Loads Imposed by Moving Crowds
,”
J. Struct. Eng.
,
122
(
12
), pp.
1468
1474
.
91.
Živanović
,
S.
,
Pavic
,
A.
, and
Reynolds
,
P.
,
2007
, “
Probability Based Estimation of Footbridge Vibration Due to Walking
,”
25th International Modal Analysis Conference
(
IMAC XXV
), Orlando, FL, Feb. 19–22, pp. 1772–1782.
92.
Racic
,
V.
, and
Brownjohn
,
J. M. W.
,
2011
, “
Stochastic Model of Near-Periodic Vertical Loads Due to Humans Walking
,”
Adv. Eng. Inf.
,
25
(
2
), pp.
259
275
.
93.
Pavic
,
A.
,
Miskovic
,
Z.
, and
Živanović
,
S.
,
2008
, “
Modal Properties of Beam-and-Block Pre-Cast Floors
,”
IES J. Part A: Civ. Struct. Eng.
,
1
(
3
), pp.
171
185
.
94.
Feldmann
,
M.
,
2010
,
Human-Induced Vibration of Steel Structures (HIVOSS)
,
Office for Official Publications of the European Communities
, Luxembourg.
95.
Reynolds
,
P.
, and
Pavic
,
A.
,
2015
, “
Reliability of Assessment Criteria for Building Floor Vibrations Under Human Excitation
,”
50th UK Conference on Human Responses to Vibration
, University of Southampton, Human Factors Research Unit, Southampton, UK, Sept. 9, pp.
277
282
.
You do not currently have access to this content.