A comprehensive review of current analytical models, experimental techniques, and influencing factors is carried out to highlight the current challenges in this area. The study of fluid–solid boundary conditions has been ongoing for more than a century, starting from gas–solid interfaces and progressing to that of the more complex liquid–solid case. Breakthroughs have been made on the theoretical and experimental fronts but the mechanism behind the phenomena remains a puzzle. This paper provides a review of the theoretical models, and numerical and experimental investigations that have been carried out till date. Probable mechanisms and factors that affect the interfacial discontinuity are also documented.

References

1.
Helmholtz
,
H.
, and
Piotrowski
,
G.
,
1860
,
Über Reibung Tropfbarer Flüssigkeiten
, K. K. Hof- & Staatsdruckerei,
Wien
,
Austria
(in German).
2.
Gad-el-Hak
,
M.
,
2003
, “
Comments on ‘Critical View on New Results in Micro-Fluid Mechanics
,”’
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3941
3945
.
3.
Lamb
,
H.
,
2015
,
Hydrodynamics
,
Scholar's Choice
.
4.
Navier
,
C. L. M. H.
,
1823
, “
Mémoires de l'Académie
,”
Royale des Sciences de l'Institut de France
, Vol.
1
, Firmin Didot, Paris, pp.
414
416
.
5.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
(
2
), pp.
253
261
.
6.
Huang
,
W. D.
,
Bogy
,
D. B.
, and
Garcia
,
A. L.
,
1997
, “
Three-Dimensional Direct Simulation Monte Carlo Method for Slider Air Bearings
,”
Phys. Fluids
,
9
(
6
), pp.
1764
1769
.
7.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H.-J.
, and
Craig
,
V. S. J.
,
2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
(
12
), pp.
2859
2897
.
8.
Lauga
,
E.
,
Brenner
,
M. P.
, and
Stone
,
H. A.
,
2007
, “
Microfluidics: The No-Slip Boundary Condition
,”
Springer Handbook of Experimental Fluid Mechanics
,
C.
Tropea
,
A.
Yarin
, and
J. F.
Foss
, eds.,
Springer
, Berlin, pp.
1219
1240
.
9.
Léger
,
L.
,
Hervet
,
H.
,
Massey
,
G.
, and
Durliat
,
E.
,
1997
, “
Wall Slip in Polymer Melts
,”
J. Phys.: Condens. Matter
,
9
(
37
), pp.
7719
7740
.
10.
Kapitza
,
P. L.
,
1941
, “
The Study of Heat Transfer in Helium II
,”
J. Phys.-USSR
,
4
(
1–6
), pp.
181
210
.
11.
Maali
,
A.
, and
Bhushan
,
B.
,
2008
, “
Slip-Length Measurement of Confined Air Flow Using Dynamic Atomic Force Microscopy
,”
Phys. Rev. E
,
78
(
2
), p.
027302
.
12.
Honig
,
C. D. F.
,
Sader
,
J. E.
,
Mulvaney
,
P.
, and
Ducker
,
W. A.
,
2010
, “
Lubrication Forces in Air and Accommodation Coefficient Measured by a Thermal Damping Method Using an Atomic Force Microscope
,”
Phys. Rev. E
,
81
(
5
), p.
056305
.
13.
Rodrigues
,
T. S.
,
Butt
,
H.-J.
, and
Bonaccurso
,
E.
,
2010
, “
Influence of the Spring Constant of Cantilevers on Hydrodynamic Force Measurements by the Colloidal Probe Technique
,”
Colloids Surf., A
,
354
(
1–3
), pp.
72
80
.
14.
Zhu
,
Y.
, and
Granick
,
S.
,
2002
, “
Limits of the Hydrodynamic No-Slip Boundary Condition
,”
Phys. Rev. Lett.
,
88
(
10
), p.
106102
.
15.
Cottin-Bizonne
,
C.
,
Cross
,
B.
,
Steinberger
,
A.
, and
Charlaix
,
E.
,
2005
, “
Boundary Slip on Smooth Hydrophobic Surfaces: Intrinsic Effects and Possible Artifacts
,”
Phys. Rev. Lett.
,
94
(
5
), p.
056102
.
16.
Shu
,
J.-J.
,
Teo
,
J. B. M.
, and
Chan
,
W. K.
,
2016
, “
A New Model for Fluid Velocity Slip on a Solid Surface
,”
Soft Matter
,
12
(
40
), pp.
8388
8397
.
17.
Shu
,
J.-J.
,
Teo
,
J. B. M.
, and
Chan
,
W. K.
,
2016
, “
A New Model for Temperature Jump at a Fluid-Solid Interface
,”
PLoS One
,
11
(
10
), p.
e0165175
.
18.
Sharatchandra
,
M. C.
,
Sen
,
M.
, and
Gad-el-Hak
,
M.
,
1998
, “
Thermal Aspects of a Novel Viscous Pump
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
99
107
.
19.
Bataineh
,
K. M.
, and
Al-Nimr
,
M. A.
,
2009
, “
2D Navier–Stokes Simulations of Microscale Viscous Pump With Slip Flow
,”
ASME J. Fluids Eng.
,
131
(
5
), p.
051105
.
20.
Murad
,
S.
, and
Puri
, I
. K.
,
2013
, “
A Thermal Logic Device Based on Fluid-Solid Interfaces
,”
Appl. Phys. Lett.
,
102
(
19
), p.
193109
.
21.
Patankar
,
N. A.
,
2004
, “
Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars
,”
Langmuir
,
20
(
19
), pp.
8209
8213
.
22.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.
23.
Ternes
,
M.
,
Lutz
,
C. P.
,
Hirjibehedin
,
C. F.
,
Giessibl
,
F. J.
, and
Heinrich
,
A. J.
,
2008
, “
The Force Needed to Move an Atom on a Surface
,”
Science
,
319
(
5866
), pp.
1066
1069
.
24.
Gomes
,
K. K.
,
Mar
,
W.
,
Ko
,
W.
,
Guinea
,
F.
, and
Manoharan
,
H. C.
,
2012
, “
Designer Dirac Fermions and Topological Phases in Molecular Graphene
,”
Nature
,
483
(
7389
), pp.
306
310
.
25.
Israelachvili
,
J. N.
,
2012
,
Intermolecular and Surface Forces
, 3rd ed.,
World Publishing Corporation
Beijing
, Beijing, China.
26.
Cheng
,
L.
,
Fenter
,
P.
,
Nagy
,
K. L.
,
Schlegel
,
M. L.
, and
Sturchio
,
N. C.
,
2001
, “
Molecular-Scale Density Oscillations in Water Adjacent to a Mica Surface
,”
Phys. Rev. Lett.
,
87
(
15
), p.
156103
.
27.
Barrat
,
J.-L.
, and
Bocquet
,
L.
,
1999
, “
Influence of Wetting Properties on Hydrodynamic Boundary Conditions at a Fluid/Solid Interface
,”
Faraday Discuss.
,
112
, pp.
119
127
.
28.
Groß
,
A.
,
2009
,
Theoretical Surface Science: A Microscopic Perspective
, 2nd ed.,
Springer
, Berlin.
29.
Brenner
,
H.
, and
Ganesan
,
V.
,
2000
, “
Molecular Wall Effects: Are Conditions at a Boundary ‘Boundary Conditions’?
,”
Phys. Rev. E
,
61
(
6B
), pp.
6879
6897
.
30.
Cucchetti
,
A.
, and
Ying
,
S. C.
,
1996
, “
Memory Effects in the Frictional Damping of Diffusive and Vibrational Motion of Adatoms
,”
Phys. Rev. B
,
54
(
5
), pp.
3300
3310
.
31.
de Gennes
,
P. G.
,
2002
, “
On Fluid/Wall Slippage
,”
Langmuir
,
18
(
9
), pp.
3413
3414
.
32.
Gutfreund
,
P.
,
Wolff
,
M.
,
Maccarini
,
M.
,
Gerth
,
S.
,
Ankner
,
J. F.
,
Browning
,
J.
,
Halbert
,
C. E.
,
Wacklin
,
H.
, and
Zabel
,
H.
,
2011
, “
Depletion at Solid/Liquid Interfaces: Flowing Hexadecane on Functionalized Surfaces
,”
J. Chem. Phys.
,
134
(
6
), p.
064711
.
33.
Ala-Nissila
,
T.
,
Ferrando
,
R.
, and
Ying
,
S. C.
,
2002
, “
Collective and Single Particle Diffusion on Surfaces
,”
Adv. Phys.
,
51
(
3
), pp.
949
1078
.
34.
Richardson
,
S.
,
1973
, “
On the No-Slip Boundary Condition
,”
J. Fluid Mech.
,
59
(
4
), pp.
707
719
.
35.
Dussan
,
E. B.
, and
Davis
,
S. H.
,
1974
, “
On the Motion of a Fluid–Fluid Interface Along a Solid Surface
,”
J. Fluid Mech.
,
65
(
1
), pp.
71
95
.
36.
Brigo
,
L.
,
Natali
,
M.
,
Pierno
,
M.
,
Mammano
,
F.
,
Sada
,
C.
,
Fois
,
G.
,
Pozzato
,
A.
,
dal Zilio
,
S.
,
Tormen
,
M.
, and
Mistura
,
G.
,
2008
, “
Water Slip and Friction at a Solid Surface
,”
J. Phys.: Condens. Matter
,
20
(
35
), p.
354016
.
37.
Cottin-Bizonne
,
C.
,
Barrat
,
J.-L.
,
Bocquet
,
L.
, and
Charlaix
,
E.
,
2003
, “
Low-Friction Flows of Liquid at Nanopatterned Interfaces
,”
Nat. Mater.
,
2
(
4
), pp.
237
240
.
38.
Bonaccurso
,
E.
,
Butt
,
H.-J.
, and
Craig
,
V. S. J.
,
2003
, “
Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System
,”
Phys. Rev. Lett.
,
90
(
14
), p.
144501
.
39.
Truesdell
,
R.
,
Mammoli
,
A.
,
Vorobieff
,
P.
,
van Swol
,
F.
, and
Brinker
,
C. J.
,
2006
, “
Drag Reduction on a Patterned Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
4
), p.
044504
.
40.
Sbragaglia
,
M.
,
Benzi
,
R.
,
Biferale
,
L.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows
,”
Phys. Rev. Lett.
,
97
(
20
), p.
204503
.
41.
Ziarani
,
A. S.
, and
Mohamad
,
A. A.
,
2008
, “
Effect of Wall Roughness on the Slip of Fluid in a Microchannel
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
2
), pp.
154
169
.
42.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
É.
,
Bocquet
,
L.
, and
Barrat
,
J.-L.
,
2004
, “
Dynamics of Simple Liquids at Heterogeneous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,”
Eur. Phys. J. E
,
15
(
4
), pp.
427
438
.
43.
Vinogradova
,
O. I.
, and
Yakubov
,
G. E.
,
2006
, “
Surface Roughness and Hydrodynamic Boundary Conditions
,”
Phys. Rev. E
,
73
(
4
), p.
45302
.
44.
Bartell
,
F. E.
, and
Shepard
,
J. W.
,
1953
, “
Surface Roughness as Related to Hysteresis of Contact Angles. II. The Systems Paraffin-3 Molar Calcium Chloride Solution-Air and Paraffin-Glycerol-Air
,”
J. Phys. Chem.
,
57
(
4
), pp.
455
458
.
45.
Patankar
,
N. A.
,
2003
, “
On the Modeling of Hydrophobic Contact Angles on Rough Surfaces
,”
Langmuir
,
19
(
4
), pp.
1249
1253
.
46.
Extrand
,
C. W.
,
2003
, “
Contact Angles and Hysteresis on Surfaces With Chemically Heterogeneous Islands
,”
Langmuir
,
19
(
9
), pp.
3793
3796
.
47.
Lauga
,
E.
, and
Squires
,
T. M.
,
2005
, “
Brownian Motion Near a Partial-Slip Boundary: A Local Probe of the No-Slip Condition
,”
Phys. Fluids
,
17
(
10
), p.
103102
.
48.
Gao
,
L.
, and
McCarthy
,
T. J.
,
2007
, “
How Wenzel and Cassie Were Wrong
,”
Langmuir
,
23
(
7
), pp.
3762
3765
.
49.
McHale
,
G.
,
2007
, “
Cassie and Wenzel: Were They Really So Wrong?
,”
Langmuir
,
23
(
15
), pp.
8200
8205
.
50.
Govardhan
,
R. N.
,
Srinivas
,
G. S.
,
Asthana
,
A.
, and
Bobji
,
M. S.
,
2009
, “
Time Dependence of Effective Slip on Textured Hydrophobic Surfaces
,”
Phys. Fluids
,
21
(
5
), p.
052001
.
51.
Öner
,
D.
, and
McCarthy
,
T. J.
,
2000
, “
Ultrahydrophobic Surfaces: Effects of Topography Length Scales on Wettability
,”
Langmuir
,
16
(
20
), pp.
7777
7782
.
52.
Lau
,
K. K. S.
,
Bico
,
J.
,
Teo
,
K. B. K.
,
Chhowalla
,
M.
,
Amaratunga
,
G. A. J.
,
Milne
,
W. I.
,
McKinley
,
G. H.
, and
Gleason
,
K. K.
,
2003
, “
Superhydrophobic Carbon Nanotube Forests
,”
Nano Lett.
,
3
(
12
), pp.
1701
1705
.
53.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.
54.
Choi
,
C.-H.
, and
Kim
,
C.-J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
(
6
), p.
066001
.
55.
Vinogradova
,
O. I.
,
1995
, “
Drainage of a Thin Liquid Film Confined Between Hydrophobic Surfaces
,”
Langmuir
,
11
(
6
), pp.
2213
2220
.
56.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
(
12
), p.
123601
.
57.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2010
, “
Flow Past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature
,”
Microfluid. Nanofluid.
,
9
(
2–3
), pp.
499
511
.
58.
Ng
,
C.-O.
,
Chu
,
H. C. W.
, and
Wang
,
C. Y.
,
2010
, “
On the Effects of Liquid-Gas Interfacial Shear on Slip Flow Through a Parallel-Plate Channel With Superhydrophobic Grooved Walls
,”
Phys. Fluids
,
22
(
10
), p.
102002
.
59.
Davis
,
A. M. J.
, and
Lauga
,
E.
,
2010
, “
Hydrodynamic Friction of Fakir-Like Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
661
, pp.
402
411
.
60.
Basson
,
A.
, and
Gérard-Varet
,
D.
,
2008
, “
Wall Laws for Fluid Flows at a Boundary With Random Roughness
,”
Commun. Pure Appl. Math.
,
61
(
7
), pp.
941
987
.
61.
Samaha
,
M. A.
,
Tafreshi
,
H. V.
, and
Gad-el-Hak
,
M.
,
2011
, “
Modeling Drag Reduction and Meniscus Stability of Superhydrophobic Surfaces Comprised of Random Roughness
,”
Phys. Fluids
,
23
(
1
), p.
012001
.
62.
Priezjev
,
N. V.
, and
Troian
,
S. M.
,
2006
, “
Influence of Periodic Wall Roughness on the Slip Behaviour at Liquid/Solid Interfaces: Molecular-Scale Simulations Versus Continuum Predictions
,”
J. Fluid Mech.
,
554
, pp.
25
46
.
63.
Choi
,
C.-H.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
Phys. Fluids
,
15
(
10
), pp.
2897
2902
.
64.
Ho
,
T. A.
,
Papavassiliou
,
D. V.
,
Lee
,
L. L.
, and
Striolo
,
A.
,
2011
, “
Liquid Water Can Slip on a Hydrophilic Surface
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
39
), pp.
16170
16175
.
65.
Blake
,
T. D.
,
1990
, “
Slip Between a Liquid and a Solid: D. M. Tolstoi’s (1952) Theory Reconsidered
,”
Colloids Surf.
,
47
(
1
), pp.
135
145
.
66.
Ellis
,
J. S.
,
McHale
,
G.
,
Hayward
,
G. L.
, and
Thompson
,
M.
,
2003
, “
Contact Angle-Based Predictive Model for Slip at the Solid–Liquid Interface of a Transverse-Shear Mode Acoustic Wave Device
,”
J. Appl. Phys.
,
94
(
9
), pp.
6201
6207
.
67.
Voronov
,
R. S.
,
Papavassiliou
,
D. V.
, and
Lee
,
L. L.
,
2008
, “
Review of Fluid Slip Over Superhydrophobic Surfaces and Its Dependence on the Contact Angle
,”
Ind. Eng. Chem. Res.
,
47
(
8
), pp.
2455
2477
.
68.
Voronov
,
R. S.
,
Papavassiliou
,
D. V.
, and
Lee
,
L. L.
,
2007
, “
Slip Length and Contact Angle Over Hydrophobic Surfaces
,”
Chem. Phys. Lett.
,
441
(
4–6
), pp.
273
276
.
69.
Thompson
,
P. A.
, and
Robbins
,
M. O.
,
1990
, “
Shear Flow Near Solids—Epitaxial Order and Flow Boundary Conditions
,”
Phys. Rev. A
,
41
(
12
), pp.
6830
6837
.
70.
Hall
,
R. O. A.
, and
Martin
,
D. G.
,
1987
, “
The Evaluation of Temperature Jump Distances and Thermal Accommodation Coefficients From Measurements of the Thermal Conductivity of UO2 Packed Sphere Beds
,”
Nucl. Eng. Des.
,
101
(
3
), pp.
249
258
.
71.
Hersht
,
I.
, and
Rabin
,
Y.
,
1994
, “
Shear Melting of Solid-Like Boundary Layers in Thin Liquid Films
,”
J. Non-Cryst. Solids
,
172–174
(
2
), pp.
857
861
.
72.
Zhu
,
Y.
, and
Granick
,
S.
,
2004
, “
Superlubricity: A Paradox About Confined Fluids Resolved
,”
Phys. Rev. Lett.
,
93
(
9
), p.
096101
.
73.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2004
, “
A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels
,”
Phys. Fluids
,
16
(
5
), pp.
1509
1515
.
74.
Wolff
,
M.
,
Akgun
,
B.
,
Walz
,
M.
,
Magerl
,
A.
, and
Zabel
,
H.
,
2008
, “
Slip and Depletion in a Newtonian Liquid
,”
EPL
,
82
(
3
), p.
36001
.
75.
Ruckenstein
,
E.
, and
Rajora
,
P.
,
1983
, “
On the No-Slip Boundary Condition of Hydrodynamics
,”
J. Colloid Interface Sci.
,
96
(
2
), pp.
488
491
.
76.
Alexeyev
,
A. A.
, and
Vinogradova
,
O. I.
,
1996
, “
Flow of a Liquid in a Nonuniformly Hydrophobized Capillary
,”
Colloids Surf., A
,
108
(
2–3
), pp.
173
179
.
77.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
931
980
.
78.
Andrienko
,
D.
,
Dünweg
,
B.
, and
Vinogradova
,
O. I.
,
2003
, “
Boundary Slip as a Result of a Prewetting Transition
,”
J. Chem. Phys.
,
119
(
24
), pp.
13106
13112
.
79.
Ishida
,
N.
,
Inoue
,
T.
,
Miyahara
,
M.
, and
Higashitani
,
K.
,
2000
, “
Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy
,”
Langmuir
,
16
(
16
), pp.
6377
6380
.
80.
Lou
,
S.-T.
,
Ouyang
,
Z.-Q.
,
Zhang
,
Y.
,
Li
,
X.-J.
,
Hu
,
J.
,
Li
,
M.-Q.
, and
Yang
,
F.-J.
,
2000
, “
Nanobubbles on Solid Surface Imaged by Atomic Force Microscopy
,”
J. Vac. Sci. Technol. B
,
18
(
5
), pp.
2573
2575
.
81.
Yang
,
J.
,
Duan
,
J.
,
Fornasiero
,
D.
, and
Ralston
,
J.
,
2003
, “
Very Small Bubble Formation at the Solid-Water Interface
,”
J. Phys. Chem. B
,
107
(
25
), pp.
6139
6147
.
82.
Zhang
,
X. H.
,
Zhang
,
X. D.
,
Lou
,
S. T.
,
Zhang
,
Z. X.
,
Sun
,
J. L.
, and
Hu
,
J.
,
2004
, “
Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface
,”
Langmuir
,
20
(
9
), pp.
3813
3815
.
83.
Boehnke
,
U.-C.
,
Remmler
,
T.
,
Motschmann
,
H.
,
Wurlitzer
,
S.
,
Hauwede
,
J.
, and
Fischer
,
T. M.
,
1999
, “
Partial Air Wetting on Solvophobic Surfaces in Polar Liquids
,”
J. Colloid Interface Sci.
,
211
(
2
), pp.
243
251
.
84.
Granick
,
S.
,
Zhu
,
Y.
, and
Lee
,
H.
,
2003
, “
Slippery Questions About Complex Fluids Flowing Past Solids
,”
Nat. Mater.
,
2
(
4
), pp.
221
227
.
85.
Steinberger
,
A.
,
Cottin-Bizonne
,
C.
,
Kleimann
,
P.
, and
Charlaix
,
E.
,
2007
, “
High Friction on a Bubble Mattress
,”
Nat. Mater.
,
6
(
9
), pp.
665
668
.
86.
Hyväluoma
,
J.
, and
Harting
,
J.
,
2008
, “
Slip Flow Over Structured Surfaces With Entrapped Microbubbles
,”
Phys. Rev. Lett.
,
100
(
24
), p.
246001
.
87.
Davis
,
A. M. J.
, and
Lauga
,
E.
,
2009
, “
Geometric Transition in Friction for Flow Over a Bubble Mattress
,”
Phys. Fluids
,
21
(
1
), p.
011701
.
88.
Haase
,
A. S.
,
Wood
,
J. A.
,
Lammertink
,
R. G. H.
, and
Snoeijer
,
J. H.
,
2016
, “
Why Bumpy is Better: The Role of the Dissipation Distribution in Slip Flow Over a Bubble Mattress
,”
Phys. Rev. Fluids
,
1
(
5
), p.
054101
.
89.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
.
90.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
(
6649
), pp.
360
362
.
91.
Harting
,
J.
,
Kunert
,
C.
, and
Herrmann
,
H. J.
,
2006
, “
Lattice Boltzmann Simulations of Apparent Slip in Hydrophobic Microchannels
,”
Europhys. Lett.
,
75
(
2
), pp.
328
334
.
92.
Craig
,
V. S. J.
,
Neto
,
C.
, and
Williams
,
D. R. M.
,
2001
, “
Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid
,”
Phys. Rev. Lett.
,
87
(
5
), p.
054504
.
93.
Zhu
,
Y.
, and
Granick
,
S.
,
2001
, “
Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces
,”
Phys. Rev. Lett.
,
87
(
9
), p.
96105
.
94.
Spikes
,
H.
, and
Granick
,
S.
,
2003
, “
Equation for Slip of Simple Liquids at Smooth Solid Surfaces
,”
Langmuir
,
19
(
12
), pp.
5065
5071
.
95.
Lauga
,
E.
, and
Brenner
,
M. P.
,
2004
, “
Dynamic Mechanisms for Apparent Slip on Hydrophobic Surfaces
,”
Phys. Rev. E
,
70
(
2
), p.
026311
.
96.
Martini
,
A.
,
Hsu
,
H.-Y.
,
Patankar
,
N. A.
, and
Lichter
,
S.
,
2008
, “
Slip at High Shear Rates
,”
Phys. Rev. Lett.
,
100
(
20
), p.
206001
.
97.
Gao
,
P.
, and
Feng
,
J. J.
,
2009
, “
Enhanced Slip on a Patterned Substrate Due to Depinning of Contact Line
,”
Phys. Fluids
,
21
(
10
), p.
102102
.
98.
Ulmanella
,
U.
, and
Ho
,
C.-M.
,
2008
, “
Molecular Effects on Boundary Condition in Micro/Nanoliquid Flows
,”
Phys. Fluids
,
20
(
10
), p.
101512
.
99.
Maxwell
,
J. C.
,
1879
, “
On Stresses in Rarefied Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc.
,
170
(
1
), pp.
231
256
.
100.
Burgdorfer
,
A.
,
1959
, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings
,”
J. Basic Eng.
,
81
(
1
), pp.
94
100
.
101.
Bhattacharya
,
D. K.
, and
Eu
,
B. C.
,
1987
, “
Nonlinear Transport Processes and Fluid-Dynamics: Effects of Thermoviscous Coupling and Nonlinear Transport Coefficients on Plane Couette Flow of Lennard-Jones Fluids
,”
Phys. Rev. A
,
35
(
2
), pp.
821
836
.
102.
Myong
,
R. S.
,
2004
, “
Gaseous Slip Models Based on the Langmuir Adsorption Isotherm
,”
Phys. Fluids
,
16
(
1
), pp.
104
117
.
103.
Tolstoi
,
D. M.
,
1952
, “
Molecular Theory of the Slip of Liquids on Solid Surfaces
,”
Dokl. Akad. Nauk SSSR
,
85
(
5
), pp.
1089
1092
(in Russian).
104.
Lichter
,
S.
,
Martini
,
A.
,
Snurr
,
R. Q.
, and
Wang
,
Q.
,
2007
, “
Liquid Slip in Nanoscale Channels as a Rate Process
,”
Phys. Rev. Lett.
,
98
(
22
), p.
226001
.
105.
Bowles
,
A. P.
,
Honig
,
C. D. F.
, and
Ducker
,
W. A.
,
2011
, “
No-Slip Boundary Condition for Weak Solid–Liquid Interactions
,”
J. Phys. Chem. C
,
115
(
17
), pp.
8613
8621
.
106.
Yang
,
F.
,
2009
, “
Slip Boundary Condition for Viscous Flow Over Solid Surfaces
,”
Chem. Eng. Commun.
,
197
(
4
), pp.
544
550
.
107.
Wang
,
F.-C.
, and
Zhao
,
Y.-P.
,
2011
, “
Slip Boundary Conditions Based on Molecular Kinetic Theory: The Critical Shear Stress and the Energy Dissipation at the Liquid–Solid Interface
,”
Soft Matter
,
7
(
18
), pp.
8628
8634
.
108.
Teo
,
J. B. M.
,
Shu
,
J.-J.
, and
Chan
,
W. K.
,
2017
, “
Slip of Fluid Molecules on Solid Surfaces by Surface Diffusion
,”
AIChE J.
,
63
, pp.
1
15
.
109.
Lichter
,
S.
,
Roxin
,
A.
, and
Mandre
,
S.
,
2004
, “
Mechanisms for Liquid Slip at Solid Surfaces
,”
Phys. Rev. Lett.
,
93
(
8
), p.
086001
.
110.
Martini
,
A.
,
Roxin
,
A.
,
Snurr
,
R. Q.
,
Wang
,
Q.
, and
Lichter
,
S.
,
2008
, “
Molecular Mechanisms of Liquid Slip
,”
J. Fluid Mech.
,
600
, pp.
257
269
.
111.
Bouzigues
,
C. I.
,
Bocquet
,
L.
,
Charlaix
,
E.
,
Cottin-Bizonne
,
C.
,
Cross
,
B.
,
Joly
,
L.
,
Steinberger
,
A.
,
Ybert
,
C.
, and
Tabeling
,
P.
,
2008
, “
Using Surface Force Apparatus, Diffusion and Velocimetry to Measure Slip Lengths
,”
Philos. Trans. R. Soc. A
,
366
(
1869
), pp.
1455
1468
.
112.
Maali
,
A.
, and
Bhushan
,
B.
,
2012
, “
Measurement of Slip Length on Superhydrophobic Surfaces
,”
Philos. Trans. R. Soc. A
,
370
(
1967
), pp.
2304
2320
.
113.
Honig
,
C. D. F.
, and
Ducker
,
W. A.
,
2007
, “
No-Slip Hydrodynamic Boundary Condition for Hydrophilic Particles
,”
Phys. Rev. Lett.
,
98
(
2
), p.
028305
.
114.
Henry
,
C. L.
, and
Craig
,
V. S. J.
,
2009
, “
Measurement of No-Slip and Slip Boundary Conditions in Confined Newtonian Fluids Using Atomic Force Microscopy
,”
Phys. Chem. Chem. Phys.
,
11
(
41
), pp.
9514
9521
.
115.
Lauga
,
E.
,
2004
, “
Apparent Slip Due to the Motion of Suspended Particles in Flows of Electrolyte Solutions
,”
Langmuir
,
20
(
20
), pp.
8924
8930
.
116.
Li
,
Z.
,
D’eramo
,
L.
,
Monti
,
F.
,
Vayssade
,
A.-L.
,
Chollet
,
B.
,
Bresson
,
B.
,
Tran
,
Y.
,
Cloitre
,
M.
, and
Tabeling
,
P.
,
2014
, “
Slip Length Measurements Using mu PIV and TIRF-Based Velocimetry
,”
Isr. J. Chem.
,
54
(
11–12
), pp.
1589
1601
.
117.
Joly
,
L.
,
Ybert
,
C.
, and
Bocquet
,
L.
,
2006
, “
Probing the Nanohydrodynamics at Liquid-Solid Interfaces Using Thermal Motion
,”
Phys. Rev. Lett.
,
96
(
4
), p.
046101
.
118.
Daikhin
,
L.
,
Gileadi
,
E.
,
Tsionsky
,
V.
,
Urbakh
,
M.
, and
Zilberman
,
G.
,
2000
, “
Slippage at Adsorbate-Electrolyte Interface: Response of Electrochemical Quartz Crystal Microbalance to Adsorption
,”
Electrochim. Acta
,
45
(
22–23
), pp.
3615
3621
.
119.
Du
,
B.
,
Goubaidoulline
,
I.
, and
Johannsmann
,
D.
,
2004
, “
Effects of Laterally Heterogeneous Slip on the Resonance Properties of Quartz Crystals Immersed in Liquids
,”
Langmuir
,
20
(
24
), pp.
10617
10624
.
120.
McHale
,
G.
, and
Newton
,
M. I.
,
2004
, “
Surface Roughness and Interfacial Slip Boundary Condition for Quartz Crystal Microbalances
,”
J. Appl. Phys.
,
95
(
1
), pp.
373
380
.
121.
Willmott
,
G. R.
, and
Tallon
,
J. L.
,
2007
, “
Measurement of Newtonian Fluid Slip Using a Torsional Ultrasonic Oscillator
,”
Phys. Rev. E
,
76
(
6
), p.
066306
.
122.
Churaev
,
N. V.
,
Ralston
,
J.
,
Sergeeva
,
I. P.
, and
Sobolev
,
V. D.
,
2002
, “
Electrokinetic Properties of Methylated Quartz Capillaries
,”
Adv. Colloid Interface Sci.
,
96
(
1–3
), pp.
265
278
.
123.
Watanabe
,
K.
,
Takayama
,
T.
,
Ogata
,
S.
, and
Isozaki
,
S.
,
2003
, “
Flow Between Two Coaxial Rotating Cylinders With a Highly Water-Repellent Wall
,”
AIChE J.
,
49
(
8
), pp.
1956
1963
.
124.
Perisanu
,
S.
, and
Vermeulen
,
G.
,
2006
, “
Curvature, Slip, and Viscosity in He-3-He-4 Mixtures
,”
Phys. Rev. B
,
73
(
13
), p.
134517
.
125.
Bocquet
,
L.
,
Tabeling
,
P.
, and
Manneville
,
S.
,
2006
, “
Comment on ‘Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”’
Phys. Rev. Lett.
,
97
(
10
), p.
109601
.
126.
Harting
,
J.
,
Kunert
,
C.
, and
Hyvaluoma
,
J.
,
2010
, “
Lattice Boltzmann Simulations in Microfluidics: Probing the No-Slip Boundary Condition in Hydrophobic, Rough, and Surface Nanobubble Laden Microchannels
,”
Microfluid. Nanofluid.
,
8
(
1
), pp.
1
10
.
127.
Pahlavan
,
A. A.
, and
Freund
,
J. B.
,
2011
, “
Effect of Solid Properties on Slip at a Fluid–Solid Interface
,”
Phys. Rev. E
,
83
(
2
), p.
021602
.
128.
Yong
,
X.
, and
Zhang
,
L. T.
,
2013
, “
Slip in Nanoscale Shear Flow: Mechanisms of Interfacial Friction
,”
Microfluid. Nanofluid.
,
14
(
1–2
), pp.
299
308
.
129.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
167
178
.
130.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
,
1995
, “
Gas Flow in Micro-Channels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.
131.
Bentz
,
J. A.
,
Tompson
,
R. V.
, and
Loyalka
,
S. K.
,
2001
, “
Measurements of Viscosity, Velocity Slip Coefficients, and Tangential Momentum Accommodation Coefficients Using a Modified Spinning Rotor Gauge
,”
J. Vac. Sci. Technol. A
,
19
(
1
), pp.
317
324
.
132.
Bentz
,
J. A.
,
Tompson
,
R. V.
, and
Loyalka
,
S. K.
,
1999
, “
Viscosity and Velocity Slip Coefficients for Gas Mixtures: Measurements With a Spinning Rotor Gauge
,”
J. Vac. Sci. Technol. A
,
17
(
1
), pp.
235
241
.
133.
Graur
,
I. A.
,
Perrier
,
P.
,
Ghozlani
,
W.
, and
Méolans
,
J. G.
,
2009
, “
Measurements of Tangential Momentum Accommodation Coefficient for Various Gases in Plane Microchannel
,”
Phys. Fluids
,
21
(
10
), p.
102004
.
134.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, 2nd ed.,
Clarendon Press
, Oxford, UK.
135.
Shen
,
C.
,
2010
,
Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows
,
Springer
, Berlin.
136.
Kennard
,
E. H.
,
1954
,
Kinetic Theory of Gases
,
McGraw-Hill
, New York.
137.
Pollack
,
G. L.
,
1969
, “
Kapitza Resistance
,”
Rev. Mod. Phys.
,
41
(
1
), pp.
48
81
.
138.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.
139.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
140.
Goicochea
,
J. V.
,
Hu
,
M.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2011
, “
Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid–Liquid Interfaces
,”
ASME J. Heat Transfer
,
133
(8)
, p.
082401
.
141.
Acharya
,
H.
,
Mozdzierz
,
N. J.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2012
, “
How Chemistry, Nanoscale Roughness, and the Direction of Heat Flow Affect Thermal Conductance of Solid-Water Interfaces
,”
Ind. Eng. Chem. Res.
,
51
(
4
), pp.
1767
1773
.
142.
Wang
,
Y.
, and
Keblinski
,
P.
,
2011
, “
Role of Wetting and Nanoscale Roughness on Thermal Conductance at Liquid-Solid Interface
,”
Appl. Phys. Lett.
,
99
(
7
), p.
073112
.
143.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
(
18
), p.
186101
.
144.
Shenogina
,
N.
,
Godawat
,
R.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2009
, “
How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces
,”
Phys. Rev. Lett.
,
102
(
15
), p.
156101
.
145.
Murad
,
S.
, and
Puri
,
I. K.
,
2008
, “
Thermal Transport Across Nanoscale Solid-Fluid Interfaces
,”
Appl. Phys. Lett.
,
92
(
13
), p.
133105
.
146.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U.-S.
, and
Eastman
,
J. A.
,
2003
, “
Two Regimes of Thermal Resistance at a Liquid–Solid Interface
,”
J. Chem. Phys.
,
118
(
1
), pp.
337
339
.
147.
Hu
,
M.
,
Goicochea
,
J. V.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2009
, “
Thermal Rectification at Water/Functionalized Silica Interfaces
,”
Appl. Phys. Lett.
,
95
(
15
), p.
151903
.
148.
Murad
,
S.
, and
Puri
,
I. K.
,
2012
, “
Communication: Thermal Rectification in Liquids by Manipulating the Solid–Liquid Interface
,”
J. Chem. Phys.
,
137
(
8
), p.
081101
.
149.
Smoluchowski
,
M. S.
,
1898
, “
Ueber Wärmeleitung in Verdünnten Gasen
,”
Ann. Phys.
,
300
(
1
), pp.
101
130
.
150.
Schäfer
,
K.
,
Rating
,
W.
, and
Eucken
,
A.
,
1942
, “
Influence of the Inhibited Exchanges of Translation and Vibration Energy to Heat Conduction of Gases
,”
Ann. Phys.
,
434
(
2/3
), pp.
176
202
.
151.
Dadzie
,
S. K.
, and
Méolans
,
J. G.
,
2005
, “
Temperature Jump and Slip Velocity Calculations From an Anisotropic Scattering Kernel
,”
Physica A
,
358
(
2–4
), pp.
328
346
.
152.
Baule
,
B.
,
1914
, “
Theoretische Behandlung der Erscheinungen in Verdünnten Gasen
,”
Ann. Phys.
,
44
(
1
), pp.
145
176
.
153.
Deissler
,
R. G.
,
1964
, “
An Analysis of Second-Order Slip Flow and Temperature-Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
7
(
6
), pp.
681
694
.
154.
Lees
,
L.
, and
Liu
,
C.-Y.
,
1960
, “
Kinetic Theory Description of Plane, Compressible Couette Flow
,”
California Institute of Technology
, Pasadena, CA.
155.
Mazo
,
R. M.
,
1955
, “
Theoretical Studies on Low Temperature Phenomena
,”
Yale University
, New Haven, CT.
156.
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2001
, “
A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
105
112
.
157.
Bolmatov
,
D.
,
Brazhkin
,
V. V.
, and
Trachenko
,
K.
,
2012
, “
The Phonon Theory of Liquid Thermodynamics
,”
Sci. Rep.
,
2
(
421
), pp.
1
6
.
158.
Devienne
,
F. M.
,
1965
, “
Low Density Heat Transfer
,”
Adv. Heat Transfer
,
2
, pp.
271
356
.
159.
Trott
,
W. M.
,
Rader
,
D. J.
,
Castañeda
,
J. N.
,
Torczynski
,
J. R.
, and
Gallis
,
M. A.
,
2008
, “
Measurement of Gas-Surface Accommodation
,”
26th International Symposium on Rarefied Gas Dynamics
, Kyoto, Japan, July 20–25, pp.
621
628
.
160.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2004
, “
AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution
,”
J. Phys. Chem. B
,
108
(
49
), pp.
18870
18875
.
161.
Kim
,
B. H.
,
Beskok
,
A.
, and
Cagin
,
T.
,
2008
, “
Molecular Dynamics Simulations of Thermal Resistance at the Liquid–Solid Interface
,”
J. Chem. Phys.
,
129
(
17
), p.
174701
.
You do not currently have access to this content.