Ventilation is relevant to the performance, safety, and controllability of marine vessels, propulsors, and control surfaces that operate at or near the free surface. The objectives of this work are to (1) review the fundamental physics driving ventilation and its impact upon the hydrodynamic and structural response, and (2) discuss the scaling relations and its implications on the design and interpretation of reduced-scale studies. Natural ventilation occurs when the flow around a body forms a cavity that is open to the free surface. The steady flow regimes, hydrodynamic loads, and unsteady transition mechanisms of naturally ventilated flows are reviewed. Forced ventilation permits control of the cavity pressure and cavity shape, but can result in unsteady cavity pulsations. When a lifting surface is flexible, flow-induced deformations can increase the loading and the size of cavities, as well as lead to earlier ventilation formation. Ventilation tends to reduce the susceptibility of a lifting surface to static divergence. However, fluctuations of fluid added mass, damping, and disturbing forces caused by unsteady ventilation will change the structural resonance frequencies and damping, and may accelerate hydroelastic instabilities. Scaling relations are developed for both the hydrodynamic and hydroelastic response. Similarity in the three-dimensional (3D) ventilation pattern and hydrodynamic response requires simultaneous satisfaction of Froude number, cavitation number, and geometric similarity. However, Froude scaling complicates the selection of suitable model-scale material to achieve similarity in the dynamic hydroelastic response and material failure mechanisms between the model and full scale.

References

References
1.
Wetzel
,
J. M.
,
1957
, “
Experimental Studies of Air Ventilation of Vertical, Semi-Submerged Bodies
,”
St. Anthony Falls Hydraulic Laboratory
, University of Minnesota, Minneapolis, MN, Technical Report No. 57.
2.
Wadlin
,
K. L.
,
1958
, “
Mechanics of Ventilation Inception
,”
Second Symposium on Naval Hydrodynamics
, pp.
425
446
.
3.
Breslin
,
J. P.
, and
Skalak
,
R.
,
1959
, “
Exploratory Study of Ventilated Flows About Yawed Surface-Piercing Struts
,” NASA Technical Memorandum, Washington, DC,
Technical Report No. 2-23-59W
.
4.
Arndt
,
R. E. A.
,
Hambleton
,
W. T.
,
Kawakami
,
E.
, and
Amromin
,
E. L.
,
2009
, “
Creation and Maintenance of Cavities Under Horizontal Surfaces in Steady and Gust Flows
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111301
.
5.
Amromin
,
E. L.
,
2015
, “
Ships With Ventilated Cavitation in Seaways and Active Flow Control
,”
Appl. Ocean Res.
,
50
, pp.
163
172
.
6.
Iafrati
,
A.
,
Grizzi
,
S.
,
Siemann
,
M.
, and
Benítez Montañés
,
L.
,
2015
, “
High-Speed Ditching of a Flat Plate: Experimental Data and Uncertainty Assessment
,”
J. Fluids Struct.
,
55
, pp.
501
525
.
7.
Rothblum
,
R. S.
,
Mayer
,
D. A.
, and
Wilburn
,
G. M.
,
1969
, “
Ventilation, Cavitation and Other Characteristics of High Speed Surface-Piercing Strut
,” Naval Ship Research and Development Center, Washington, DC, Technical Report No. 3023.
8.
Rood
,
E. P.
, Jr.
,
1975
, “
Turning Maneuver Limitations Imposed by Sudden Strut Side Ventilation on a 200-Ton 80-Knot Hydrofoil Craft
,” DTIC Document,
Technical Report No. SPD-584-02
.
9.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, New York.
10.
Franc
,
J.-P.
, and
Michel
,
J.-M.
,
2004
, “
Fundamentals of Cavitation
,”
Fluid Mechanics and Its Applications
, Vol.
76
,
Springer
, Dordrecht,
The Netherlands
.
11.
Mørch
,
K. A.
,
2009
, “
Cavitation Nuclei: Experiments and Theory
,”
J. Hydrodyn.
,
21
(
2
), pp.
176
189
.
12.
De Graaf
,
K. L.
,
Pearce
,
B. W.
, and
Brandner
,
P. A.
,
2016
, “
The Influence of Nucleation on Cloud Cavitation About a Sphere
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 10–15.
13.
Waid
,
R. L.
,
1968
, “
Experimental Investigation of the Ventilation of Vertical Surface-Piercing Struts in the Presence of Cavitation
,” Naval Ship Research and Development Center, Technical Report No. AD0738493.
14.
Swales
,
P. D.
,
Wright
,
A. J.
,
McGregor
,
R. C.
, and
Rothblum
,
R.
,
1974
, “
The Mechanism of Ventilation Inception on Surface Piercing Foils
,”
J. Mech. Eng. Sci.
,
16
(
1
), pp.
18
24
.
15.
Olofsson
,
N.
,
1996
, “
Force and Flow Characteristics of a Partially Submerged Propeller
,” Ph.D. thesis, Department of Naval Architecture and Ocean Engineering, Chalmers University of Technology, Göteborg, Sweden.
16.
Young
,
Y. L.
, and
Brizzolara
,
S.
,
2013
, “
Numerical and Physical Investigation of a Surface-Piercing Hydrofoil
,”
Third International Symposium on Marine Propulsors
, pp.
1
8
.
17.
Terent'ev
,
A.
,
Kirschner
,
I. N.
, and
Uhlman
,
J. S.
,
2011
,
The Hydrodynamics of Cavitating Flows
,
Backbone Publishing Company
, Paramus, NJ.
18.
Tulin
,
M. P.
,
1964
, “
Supercavitating Flows: Small Perturbation Theory
,”
J. Ship Res.
,
7
, pp.
16
37
.
19.
Wu
,
T. Y. T.
,
1972
, “
Cavity and Wake Flows
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
243
284
.
20.
Munk
,
M. M.
,
1923
, “
General Theory of Thin Wing Sections
,” National Advisory Committee for Aeronautics, Cambridge, MA, Technical Report No. 142.
21.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
MIT Press
, Cambridge, MA.
22.
Milne-Thomson
,
L. M.
,
1973
,
Theoretical Aerodynamics
,
4th ed.
,
Dover
, Mineola, NY.
23.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections, Including a Summary of Airfoil Data
,
Dover
, Mineola, NY.
24.
Tulin
,
M. P.
,
1956
, “
Supercavitating Flow Past Foils and Struts
,”
Symposium on Cavitation in Hydrodynamics
, London.
25.
Scherer
,
J. O.
, and
Auslaender
,
J.
,
1964
, “
Experimental and Theoretical Performance of a Supercavitating Hydrofoil Operating Near a Free Surface
,”
J. Aircr.
,
2
(
2
), pp.
144
152
.
26.
Acosta
,
A. J.
,
1955
, “
Note on Partial Cavitation of Flat Plate Hydrofoils
,” California Institute of Technology, Pasadena, CA,
Technical Report No. E-19.9
.
27.
Kerwin
,
J. E.
, and
Hadler
,
J. B.
,
2010
,
Principles of Naval Architecture Series: Propulsion
,
Society of Naval Architects and Marine Engineers (SNAME)
, Alexandria, VA.
28.
Callenaere
,
M.
,
Franc
,
J.-P.
,
Michel
,
J.-M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
29.
Tulin
,
M.
,
1953
, “
Steady Two-Dimensional Cavity Flows About Slender Bodies
,” United States Navy Department-David W. Taylor Model Basin, Bethesda, MA, Technical Report No. 834.
30.
Wu
,
T. Y.-T.
,
1962
, “
A Wake Model for Free-Streamline Flow Theory—Part 1: Fully and Partially Developed Wake Flows Past an Oblique Flat Plate
,”
J. Fluid Mech.
,
13
(
2
), p.
161
.
31.
Wade
,
R. B.
, and
Acosta
,
A. J.
,
1966
, “
Experimental Observations on the Flow Past a Plano-Convex Hydrofoil
,”
ASME J. Basic Eng.
,
88
(
1
), pp.
273
283
.
32.
Harwood
,
C. M.
,
Young
,
Y. L.
, and
Ceccio
,
S. L.
,
2016
, “
Ventilated Cavities on a Surface-Piercing Hydrofoil at Moderate Froude Numbers: Cavity Formation, Elimination and Stability
,”
J. Fluid Mech.
,
800
, pp.
5
56
.
33.
Kawakami
,
D. T.
,
Fuji
,
A.
,
Tsujimoto
,
Y.
, and
Arndt
,
R. E. A.
,
2008
, “
An Assessment of the Influence of Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031303
.
34.
Ganesh
,
H.
,
Mäkiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.
35.
Ganesh
,
H.
,
2015
, “
Bubbly Shock Propagation as a Cause of Sheet to Cloud Transition of Partial Cavitation and Stationary Cavitation Bubbles Forming on a Delta Wing Vortex
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
36.
Arndt
,
R. E. A.
,
Ellis
,
C. R.
, and
Paul
,
S.
,
1995
, “
Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
498
504
.
37.
Ducoin
,
A.
,
André
,
J.
, and
Sigrist
,
J.-F.
,
2012
, “
An Experimental Analysis of Fluid Structure Interaction on a Flexible Hydrofoil in Various Flow Regimes Including Cavitating Flow
,”
Eur. J. Mech. B
,
36
, pp.
63
74
.
38.
Akcabay
,
D. T.
,
Chae
,
E. J.
,
Young
,
Y. L.
,
Ducoin
,
A.
, and
Astolfi
,
J. A.
,
2014
, “
Cavity Induced Vibration of Flexible Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
463
484
.
39.
Kiceniuk
,
T.
,
1954
, “
A Preliminary Experimental Study of Vertical Hydrofoils of Low Aspect Ratio Piercing a Water Surface
,” California Institute of Technology, Pasadena, CA,
Technical Report No. E-55.2
.
40.
Perry
,
B.
,
1955
, “
Experiments on Struts Piercing the Water Surface
,” California Institute of Technology, Pasadena, CA,
Technical Report No. E-55.1
.
41.
Wadlin
,
K. L.
,
1959
, “
Ventilated Flows With Hydrofoils
,”
Twelfth General Meeting of the American Towing Tank Conference
, Berkeley, CA.
42.
Harwood
,
C.
, and
Young
,
Y.
,
2014
, “
A Physics-Based Gap-Flow Model for Potential Flow Solvers
,”
Ocean Eng.
,
88
, pp.
578
587
.
43.
Harwood
,
C. M.
,
Brucker
,
K. A.
,
Miguel Montero
,
F.
,
Young
,
Y. L.
, and
Ceccio
,
S. L.
,
2014
, “
Experimental and Numerical Investigation of Ventilation Inception and Washout Mechanisms of a Surface-Piercing Hydrofoil
,”
30th Symposium on Naval Hydrodynamics
, Hobart, Australia, Nov. 4–7.
44.
Young
,
Y. L.
, and
Kinnas
,
S. A.
,
2003
, “
Analysis of Supercavitating and Surface-Piercing Propeller Flows Via BEM
,”
Comput. Mech.
,
32
(
4–6
), pp.
269
280
.
45.
Young
,
Y. L.
, and
Kinnas
,
S. A.
,
2003
, “
Numerical Modeling of Supercavitating Flows
,”
J. Ship Res.
,
47
(1), pp.
48
62
.
46.
Young
,
Y. L.
, and
Savander
,
B. R.
,
2011
, “
Numerical Analysis of Large-Scale Surface-Piercing Propellers
,”
Ocean Eng.
,
38
(
13
), pp.
1368
1381
.
47.
Rothblum
,
R. S.
,
1977
, “
Investigation of Methods of Delaying or Controlling Ventilation on Surface-Piercing Struts
,”
Ph.D. thesis
, University of Leeds, Leeds, UK.
48.
Acosta
,
A.
,
1973
, “
Hydrofoils and Hydrofoil Craft
,”
Annu. Rev. Fluid Mech.
,
5
(
1
), pp.
161
184
.
49.
Faltinsen
,
O. M.
,
2005
,
Hydrodynamics of High-Speed Marine Vehicles
,
Cambridge University Press
, New York.
50.
Ramsen
,
J. A.
,
1957
, “
An Experimental Hydrodynamic Investigation of the Inception of Vortex Ventilation
,” National Advisory Committee for Aeronautics, Washington, DC,
Technical Report No. 3903
.
51.
Califano
,
A.
, and
Steen
,
S.
,
2009
, “
Analysis of Different Propeller Ventilation Mechanisms by Means of RANS Simulations
,”
First International Symposium on Marine Propulsors
, Trondheim, Norway, June, pp. 334–341.
52.
Califano
,
A.
,
2010
, “
Dynamic Loads on Marine Propellers Due to Intermittent Ventilation
,”
Ph.D. thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
53.
Nishiyama
,
T.
,
1961
, “
Air-Drawing and Ventilating Flow Characteristics of a Shallowly Submerged Hydrofoil Section
,”
J. Am. Soc. Nav. Eng.
,
73
(
3
), pp.
593
602
.
54.
Fridsma
,
G.
,
1963
, “
Ventilation Inception on a Surface Piercing Dihedral Hydrofoil With Plane Surface Wedge Section
,” Davidson Laboratory, Stevens Institute of Technology, Hoboken, NJ,
Technical Report No. 952
.
55.
Rothblum
,
R. S.
,
McGregor
,
R. C.
, and
Swales
,
P. D.
,
1974
, “
Effect of Roughness, Wettability and Speed on the Ventilation Characteristics of Surface Piercing Hydrofoil Struts
,”
International Hovering Craft, Hydrofoil, and Advanced Transit Systems Conference
, pp.
235
243
.
56.
McGregor
,
R. C.
,
Wright
,
A. J.
,
Swales
,
P. D.
, and
Crapper
,
G. D.
,
1973
, “
An Examination of the Influence of Waves on the Ventilation of Surface-Piercing Struts
,”
J. Fluid Mech.
,
61
(
1
), p.
85
.
57.
Swales
,
P. D.
,
Wright
,
A. J.
,
McGregor
,
R. C.
, and
Cole
,
B. N.
,
1973
, “
Pressure, Flow Visualisation and Ventilation
,”
Hovering Craft Hydrofoil
,
13
(
1
), pp.
11
16
.
58.
Hecker
,
R.
, and
Ober
,
G.
,
1974
, “
Flow Separation, Reattachment, and Ventilation of Foils With Sharp Leading Edge at Low Reynolds Number
,” Naval Ship Research and Development Center,
Technical Report No. AD-787500
.
59.
Coffee
,
C. W.
, Jr.
, and
McKann
,
R. E.
,
1953
, “
Hydrodynamic Drag of 12- and 21-Percent-Thick Surface-Piercing Struts
,” NACA Technical Note, Washington, DC,
Technical Report No. 3093
.
60.
Fuwa
,
T.
,
Hirata
,
N.
,
Hori
,
T.
, and
Fujisawa
,
J.
,
1993
, “
Experimental Study on Spray Shape, Spray Drag and Flow Field of Surface-Piercing Vertical Strut Advancing at High Speed
,”
Papers Ship Res. Inst. (Senpaku Gijutsu Kenkyusho Hokoku)
,
30
(
6
), pp.
1
31
.
61.
Pogozelski
,
E. M.
,
Katz
,
J.
, and
Huang
,
T. T.
,
1997
, “
The Flow Structure Around a Surface Piercing Strut
,”
Phys. Fluids
,
9
(
5
), p.
1387
.
62.
Elata
,
C.
,
1967
, “
Choking of Strut-Ventilated Foil Cavities
,” Hydronautics,
Technical Report No. 605-2
.
63.
Califano
,
A.
, and
Steen
,
S.
,
2011
, “
Identification of Ventilation Regimes of a Marine Propeller by Means of Dynamic-Loads Analysis
,”
Ocean Eng.
,
38
(
14–15
), pp.
1600
1610
.
64.
Koushan
,
K.
,
2007
, “
Dynamics of Propeller Blade and Duct Loading on Ventilated Thrusters in Dynamic Positioning Mode
,”
Dynamic Positioning Conference, Oct. 9–10.
65.
Koushan
,
K.
,
2006
, “
Dynamics of Ventilated Propeller Blade Loading on Thrusters Due to Forced Sinusoidal Heave Motion
,”
26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22.
66.
Kozlowska
,
A. M.
,
Steen
,
S.
, and
Koushan
,
K.
,
2009
, “
Classification of Different Type of Propeller Ventilation and Ventilation Inception Mechanism
,”
First International Symposium on Marine Propulsor
, Trondheim, Norway, June, Vol.
9
, pp. 342–349.
67.
Young
,
Y. L.
, and
Kinnas
,
S. A.
,
2004
, “
Performance Prediction of Surface Piercing Propellers
,”
J. Ship Res.
,
48
(
4
), pp.
288
304
.
68.
De Lange
,
D. F.
, and
De Bruin
,
G. J.
,
1998
, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Fascination of Fluid Dynamics: A Symposium in Honour of Leen van Wijngaarden
,
A.
Biesheuvel
and
G. F.
van Heijst
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
91
114
.
69.
Duttweiler
,
M. E.
, and
Brennen
,
C. E.
,
1998
, “
Partial Cavity Instabilities
,”
1998 US-Japan Seminar on Abnormal Flow Phenomena in Turbomachines
(unpublished).
70.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
2001
, “
Partial Cavity Flows—Part 2: Cavities Forming on Test Objects With Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
43
63
.
71.
Glauert
,
H.
,
1943
,
The Elements of Aerofoil and Airscrew Theory
,
Cambridge University Press
, Cambridge UK.
72.
Ward
,
J. C.
,
Harwood
,
C. M.
, and
Young
,
Y. L.
,
2016
, “
Inverse Method for Determination of the In Situ Hydrodynamic Load Distribution in Multi-Phase Flow
,”
31st Symposium on Naval Hydrodynamics
, Monterey, CA, Sept. 11–16.
73.
Gault
,
D. E.
,
1957
, “
A Correlation of Low-Speed, Airfoil-Section Stalling Characteristics With Reynolds Number and Airfoil Geometry
,” National Advisory Committee for Aeronautics (NACA),
Technical Report No. 3963
.
74.
ITTC
2002
, “
ITTC: Recommended Procedures Testing and Extrapolation Methods Resistance Test
,”
International Towing Tank Conference
, p.
11
.
75.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2015
, “
Parametric Excitations and Lock-in of Flexible Hydrofoils in Two-Phase Flows
,”
J. Fluids Struct.
,
57
, pp.
344
356
.
76.
Brizzolara
,
S.
, and
Young
,
Y. L.
,
2012
, “
Physical and Theoretical Modeling of Surface-Piercing Hydrofoils for a High-Speed Unmanned Surface Vessel
,”
ASME
Paper No. OMAE2012-84028.
77.
Hay
,
A. D.
,
1947
, “
Flow About Semi-Submerged Cylinders of Finite Length
,” Princeton University and David Taylor Model Basin, Contract No. NObs-34006, Technical Report No. J05.
78.
Taylor
,
G. T.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
201
(
1065
), pp.
192
196
.
79.
Emmons
,
H. W.
,
Chang
,
C. T.
, and
Watson
,
B. C.
,
1960
, “
Taylor Instability of Finite Surface Waves
,”
J. Fluid Mech.
,
7
(
02
), pp.
177
193
.
80.
Califano
,
A.
, and
Steen
,
S.
,
2011
, “
Numerical Simulations of a Fully Submerged Propeller Subject to Ventilation
,”
Ocean Eng.
,
38
(
14–15
), pp.
1582
1599
.
81.
Rothblum
,
R. S.
,
1977
, “
Scale Effect in Models With Forced or Natural Ventilation Near the Free Water Surface
,”
18th General Meeting of the American Towing Tank Conference
, B. Johnson and B. Nehrling, eds., Vol.
2
, pp.
349
360
.
82.
Leger
,
A. T.
,
Bernal
,
L. P.
, and
Ceccio
,
S. L.
,
1998
, “
Examination of the Flow Near the Leading Edge of Attached Cavitation—Part 1: Detachment of Two-Dimensional and Axisymmetric Cavities
,”
J. Fluid Mech.
,
376
, pp.
61
90
.
83.
Amromin
,
E.
,
2007
, “
Determination of Cavity Detachment for Sheet Cavitation
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1105
1111
.
84.
McCroskey
,
W. J.
,
Carr
,
L. W.
, and
McAlister
,
K. W.
,
1976
, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
,
14
(
1
), pp.
57
63
.
85.
Carr
,
L. W.
,
McAlister
,
K. W.
, and
McCroskey
,
W. J.
,
1977
, “
Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments
,” NASA, Washington, DC,
Technical Note D-8382
.
86.
McCroskey
,
W. J.
,
McAlister
,
K. W.
,
Carr
,
L. W.
,
Pucci
,
S. L.
,
Lambert
,
O.
, and
Indergrand
,
R. F.
,
1981
, “
Dynamic Stall on Advanced Airfoil Sections
,”
J. Am. Helicopter Soc.
,
26
(
3
), pp.
40
50
.
87.
McCroskey
,
W. J.
,
McAlister
,
K. W.
,
Carr
,
L. W.
, and
Pucci
,
S. L.
,
1982
, “
An Experimental Study of Dynamic Stall on Advanced Airfoil Sections. Volume 1. Summary of the Experiment
,” NASA, Washington, DC,
Technical Memorandum 84245
.
88.
Shen
,
Y.
, and
Fuhs
,
D.
,
1997
, “
Blade Section Lift Coefficients for Propellers at Extreme Off-Design Conditions
,” Carderock Division, Naval Surface Warfare Center,
Technical Report No. CRDKNSWC/HD-1205-02
.
89.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
,
2013
,
Aeroelasticity
(Dover Books on Aeronautical Engineering),
Dover Publications
, Mineola, NY.
90.
Fung
,
Y. C.
,
2008
,
An Introduction to the Theory of Aeroelasticity
,
Dover Publications
, Mineola, NY.
91.
Pearce
,
B. W.
, and
Brandner
,
P. A.
,
2012
, “
Experimental Investigation of a Base-Ventilated Supercavitating Hydrofoil With Interceptor
,”
8th International Symposium on Cavitation
, Singapore, Aug.
14
16
.
92.
Schiebe
,
F. R.
, and
Wetzel
,
J. M.
,
1961
, “
Ventilated Cavities on Submerged Three-Dimensional Hydrofoils
,” DTIC Document,
Technical Report No. 36, Series B
.
93.
Hsu
,
C. C.
, and
Chen
,
C. F.
,
1962
, “
On the Pulsation of Finite Ventilated Cavities
,” Hydronautics,
Technical Report No. 115-4
.
94.
Michel
,
J. M.
,
1984
, “
Some Features of Water Flows With Ventilated Cavities
,”
ASME J. Fluids Eng.
,
106
(
3
), pp.
319
326
.
95.
Verron
,
J.
, and
Michel
,
J.-M.
,
1984
, “
Base-Vented Hydrofoils of Finite Span Under a Free Surface: An Experimental Investigation
,”
J. Ship Res.
,
28
(
2
), pp.
90
106
.
96.
Kopriva
,
J.
,
Arndt
,
R. E. A.
,
Wosnik
,
M.
, and
Amromin
,
E.
,
2005
, “
Comparison of Hydrofoil Drag Reduction by Natural and Ventilated Partial Cavitation
,”
ASME
Paper No. FEDSM2005-77131.
97.
Kopriva
,
J.
,
Arndt
,
R. E. A.
, and
Amromin
,
E. L.
,
2008
, “
Improvement of Hydrofoil Performance by Partial Ventilated Cavitation in Steady Flow and Periodic Gusts
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031301
.
98.
Ceccio
,
S. L.
,
2010
, “
Friction Drag Reduction of External Flows With Bubble and Gas Injection
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
183
203
.
99.
Silberman
,
E.
, and
Song
,
C. S.
,
1959
, “
Instability of Ventilated Cavities
,” University of Minnesota, Minneapolis, MN,
Technical Report No. 29, Series B
.
100.
Song
,
C. S.
,
1964
, “
Measurements of Unsteady Force on Cavitating Hydrofoils in a Free Jet
,” Technical Report, St. Anthony Falls Hydraulic Lab,
Technical Paper No. 49, Series B
.
101.
Woods
,
L. C.
,
1966
, “
On the Instability of Ventilated Cavities
,”
J. Fluid Mech.
,
26
(
3
), p.
437
.
102.
Song
,
C. S.
,
1961
, “
Pulsation of Ventilated Cavities
,” University of Minnesota, Minneapolis, MN,
Technical Report No. 32, Series B
.
103.
Skidmore
,
G. M.
,
Brungart
,
T. A.
,
Lindau
,
J. W.
, and
Moeny
,
M. J.
,
2016
, “
The Control of Ventilated Supercavity Pulsation and Noise
,”
Int. J. Multiphase Flow
,
85
, pp.
14
22
.
104.
Parishev
,
E. V.
,
1978
, “
Theoretical Study of the Stability and Pulsations of Axisymmetric Tr. TsAGI
,” 1907, pp. 17–40 (in Russian).
105.
Kirschner
,
I. N.
, and
Arzoumanian
,
S. H.
,
2008
, “
Implementation and Extension of Paryshev's Model of Cavity Dynamics
,”
International Conference on Innovative Approaches to Further Increase Speed of Fast Marine Vehicles, Moving Above, Under and on the Water
Surface (
SuperFAST 2008
), St. Petersburg, Russia, July 2–4.
106.
Paryshev
,
E. V.
,
2006
, “
Approximate Mathematical Models in High-Speed Hydrodynamics
,”
J. Eng. Math.
,
55
(
1–4
), pp.
41
64
.
107.
Logvinovich
,
G. V.
,
1976
, “
Problems of the Theory of Axisymmetrical Cavities
,” Tr. TsAGI, 1797, pp. 3–17 (in Russian).
108.
Mouritz
,
A.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
42
.
109.
Russell
,
C.
,
2005
, “
Composites: Long-Term Viability and Benefits
,”
Reinf. Plast.
,
49
(
9
), pp.
36
42
.
110.
Chen
,
B.
,
Neely
,
S.
,
Michael
,
T.
,
Gowing
,
S.
,
Szwerc
,
R.
,
Buchler
,
D.
, and
Schult
,
R.
,
2006
, “
Design, Fabrication and Testing of Pitch-Adapting (Flexible) Composite Propellers
,”
SNAME Propellers/Shafting Symposium
, pp. 8-1–8-12.
111.
Liu
,
Z.
, and
Young
,
Y. L.
,
2009
, “
Utilization of Bending-Twisting Coupling Effects for Performance Enhancement of Composite Marine Propellers
,”
J. Fluids Struct.
,
25
(
6
), pp.
1102
1116
.
112.
Motley
,
M.
,
Liu
,
Z.
, and
Young
,
Y.
,
2009
, “
Utilizing Fluid-Structure Interactions to Improve Energy Efficiency of Composite Marine Propellers in Specially Varying Wake
,”
Compos. Struct.
,
90
(
3
), pp.
304
313
.
113.
Motley
,
M.
, and
Young
,
Y.
,
2011
, “
Performance-Based Design and Analysis of Flexible Composite Propulsors
,”
J. Fluids Struct.
,
27
(
8
), pp.
1310
1325
.
114.
Motley
,
M.
, and
Barber
,
R.
,
2014
, “
Passive Control of Marine Hydrokinetic Turbine Blades
,”
Compos. Struct.
,
110
, pp.
133
139
.
115.
Young
,
Y. L.
,
Motley
,
M. R.
,
Barber
,
R. B.
,
Chae
,
E. J.
, and
Garg
,
N.
,
2016
, “
Adaptive Composite Marine Propulsors and Turbines: Progress and Challenges
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060803
.
116.
Chae
,
E. J.
,
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2013
, “
Dynamic Response and Stability of a Flapping Foil in a Dense and Viscous Fluid
,”
Phys. Fluids
,
25
(
10
), p.
104106
.
117.
Akcabay
,
D. T.
,
Young
,
Y. L.
,
Lelong
,
A.
, and
Astolfi
,
J. A.
,
2014
, “
Cavity-Induced Vibrations of Flexible Hydrofoils and Their Susceptibility to Lock-In and Parametric Excitations
,”
Symposium on Naval Hydrodynamics
, Hobart, Australia, Nov. 2–7.
118.
Besch
,
P. K.
, and
Liu
,
Y.
,
1971
, “
Flutter and Divergence Characteristics of Four Low Mass Ratio Hydrofoils
,” Naval Ship Research and Development Center,
Technical Report No. 3410
.
119.
Liu
,
Z.
, and
Young
,
Y. L.
,
2010
, “
Static Divergence of Self-Twisting Composite Rotors
,”
J. Fluids Struct.
,
26
(
5
), pp.
841
847
.
120.
Ducoin
,
A.
,
André Astolfi
,
J.
, and
Gobert
,
M.-L.
,
2012
, “
An Experimental Study of Boundary-Layer Transition Induced Vibrations on a Hydrofoil
,”
J. Fluids Struct.
,
32
, pp.
37
51
.
121.
Chae
,
E. J.
,
Akcabay
,
D. T.
,
Lelong
,
A.
,
Astolfi
,
J. A.
, and
Young
,
Y. L.
,
2016
, “
Numerical and Experimental Investigation of Natural Flow-Induced Vibrations of Flexible Hydrofoils
,”
Phys. Fluids
,
28
(
7
), p.
075102
.
122.
Fu
,
Y.
, and
Price
,
W. G.
,
1987
, “
Interactions Between a Partially or Totally Immersed Vibrating Cantilever Plate and the Surrounding Fluid
,”
J. Sound Vib.
,
118
(
3
), pp.
495
513
.
123.
Motley
,
M. R.
,
Kramer
,
M. R.
, and
Young
,
Y. L.
,
2013
, “
Free Surface and Solid Boundary Effects on the Free Vibration of Cantilevered Composite Plates
,”
J. Compos. Struct.
,
96
, pp.
365
375
.
124.
Kramer
,
M. R.
,
Liu
,
Z.
, and
Young
,
Y. L.
,
2013
, “
Free Vibration of a Cantilevered Composite Plate in Air and in Water
,”
J. Compos. Struct.
,
95
, pp.
254
263
.
125.
Harwood
,
C. M.
,
Stankovich
,
A. J.
,
Young
,
Y. L.
, and
Ceccio
,
S. L.
,
2016
, “
Combined Experimental and Numerical Study of the Free Vibration of Surface-Piercing Struts
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Maui, HI, Dec. 16–21, 2017.
126.
Lindholm
,
U. S.
,
Kana
,
D. D.
,
Chu
,
W. H.
, and
Abramson
,
H. N.
,
1965
, “
Elastic Vibration Characteristics of Cantilever Plates in Water
,”
J. Ship Res.
,
9
(
1
), p.
123
.
127.
Harwood
,
C. M.
,
Ward
,
J. C.
,
Young
,
Y. L.
, and
Ceccio
,
S. L.
,
2016
, “
Experimental Investigation of the Hydro-Elastic Response of a Flexible Surface-Piercing Hydrofoil in Multi-Phase Flow
,”
31st Symposium on Naval Hydrodynamics
, Monterey, CA, Sept. 11–16.
128.
Abramson
,
H. N.
,
1969
, “
Hydroelasticity: A Review of Hydrofoil Flutter
,”
ASME Appl. Mech. Rev.
,
22
(
2
), pp.
115
121
.
129.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2014
, “
Influence of Cavitation on the Hydroelastic Stability of Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
170
185
.
130.
Hilborne
,
D. V.
,
1958
, “
The Hydroelastic Stability of Struts
,” Admiralty Research Laboratory, Technical Report No. ARL/R1/G/HY/5/3.
131.
Abramson
,
H. N.
, and
Chu
,
W. H.
,
1959
, “
A Discussion of the Flutter of Submerged Hydrofoils
,”
J. Ship Res.
,
3
(
2
), pp.
5
13
.
132.
Besch
,
P. K.
, and
Liu
,
Y. N.
,
1973
, “
Bending Flutter and Torsional Flutter of Flexible Hydrofoil Struts
,” Naval Ship Research and Development Center,
Technical Report No. 4012
.
133.
Besch
,
P. K.
, and
Liu
,
Y. N.
,
1974
, “
Hydroelastic Design of Subcavitating and Cavitating Hydrofoil Strut Systems
,” Naval Ship Research and Development Center,
Technical Report No. 4257
.
134.
Timman
,
R.
,
1958
, “
A Generalized Theory for Cavitating Hydrofoils in Nonsteady Flow
,”
Second Symposium on Naval Hydrodynamics
, pp. 559–582.
135.
Steinberg
,
H.
, and
Karp
,
S.
,
1962
, “
Unsteady Flow Past Partially Cavitating Hydrofoils
,”
Fourth Symposium on Naval Hydrodynamics
, pp. 551–575.
136.
Kaplan
,
P.
,
1962
, “
Hydroelastic Instabilities of Partially Cavitated Hydrofoils
,”
Fourth Symposium on Naval Hydrodynamics
, pp. 775–805.
137.
Kaplan
,
P.
, and
Zeckendorf
,
L. J.
,
1964
, “
A Study of Hydroelastic Stability of Partially Cavitated Hydrofoils by Application of Quasi-Steady Theory
,” Oceanics,
Technical Report No. 64010
.
138.
Parkin
,
B. R.
,
1957
, “
Fully Cavitating Hydrofoils in Nonsteady Motion
,” Engineering Division, California Institute of Technology, Pasadena, CA,
Technical Report No. 85-2
.
139.
Kaplan
,
P.
, and
Henry
,
C. J.
,
1960
, “
A Study of the Hydroelastic Instabilities of Supercavitating Hydrofoils
,”
J. Ship Res.
,
4
(
3
), pp.
28
38
.
140.
Chu
,
W. H.
,
1964
, “
Linearized, Oscillating, Supercavitating Flow at Nonzero Cavitation Numbers
,” Southwest Research Institute, Contract No. NObs-90344,
Technical Report No. 1
.
141.
Hsu
,
C. C.
,
1965
, “
Fully Cavitating Hydrofoils in Nonuniform Motion Under a Free Surface
,”
J. Ship Res.
,
8
(
4
), pp.
46
55
.
142.
Kaplan
,
P.
, and
Lehman
,
A. F.
,
1966
, “
An Experimental Study of Hydroelastic Instabilities of Finite Span Hydrofoils Under Cavitating Conditions
,”
AIAA J. Aircr.
,
3
(
3
), pp.
262
269
.
143.
Song
,
C. C. S.
, and
Almo
,
J.
,
1967
, “
An Experimental Study of the Hydroelastic Instability of Supercavitating Hydrofoils
,” St. Anthony Falls Hydraulic Lab Project, University of Minnesota, Minneapolis, MN,
Technical Report No. 89
.
144.
Song
,
C. S.
,
1969
, “
Vibration of Cavitating Hydrofoils
,” St. Anthony Falls Hydraulic Lab Project,
Report No. 111
.
145.
Brennen
,
C.
,
Oey
,
K.
, and
Babcock
,
C.
,
1980
, “
Leading-Edge Flutter of Supercavitating Hydrofoils
,”
J. Ship Res.
,
24
(
3
), pp.
135
146
.
146.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on von Kármán Vortex Shedding and Induced Hydrofoil Vibrations
,”
ASME J. Fluids Eng.
,
129
(
8
), p.
966
.
147.
Rothblum
,
R. S.
,
1980
, “
Ventilation: Waterline Vents and Surface Seal Thickness
,”
19th General Meeting of the American Towing Tank Conference
, S. B. Cohen, ed., Vol.
2
, pp.
961
970
.
148.
Baker
,
W. E.
,
Westline
,
P. S.
, and
Dodge
,
F. T.
,
1973
,
Similarity Methods in Engineering Dynamics: Theory and Practice of Scale Modeling
,
Hayden Book Company
, Rochelle Park, NJ.
149.
Schuring
,
D. J.
,
1977
,
Scale Models in Engineering-Fundamentals and Application
,
Pergamon Press
, Oxford, UK.
150.
Mäkiharju
,
S. A.
,
Elbing
,
B. R.
,
Wiggins
,
A.
,
Schinasi
,
S.
,
Vanden-Broeck
,
J.-M.
,
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2013
, “
On the Scaling of Air Entrainment From a Ventilated Partial Cavity
,”
J. Fluid Mech.
,
732
, pp.
47
76
.
151.
McCormick
,
B.
,
1954
, “
A Study of the Minimum Pressure in a Trailing Vortex System
,”
Ph.D. dissertation
, Penn State University, State College, PA.
152.
Shen
,
Y. T.
,
Gowing
,
S.
, and
Jessup
,
S.
,
2009
, “
Tip Vortex Cavitation Inception Scaling for High Reynolds Number Applications
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071301
.
153.
Loftin
,
L. K.
, and
Smith
,
H. A.
,
1949
, “
Aerodynamic Characteristics of 15 NACA Airfoil Sections at Seven Reynolds Numbers From 0.7 × 106 to 9.0 × 106
,” National Advisory Committee for Aeronautics, Technical Report No. 1945.
154.
Jacobs
,
E. N.
, and
Sherman
,
A.
,
1939
, “
Airfoil Section Characteristics as Affected by Variations of the Reynolds Number
,” National Advisory Committee for Aeronautics,
Technical Report No. 586
.
155.
Ashby
,
M.
,
2009
,
The CES Edupack Resource Booklet 2: Material and Process Charts
,
Granta Design Limited, Cambridge, UK
.
You do not currently have access to this content.